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Abstract: Cancer remains one of the global leading causes of death and various vaccines have been
developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer
vaccines. Although many vaccines have been effective in in vivo and clinical studies and some
have been FDA-approved, there are major limitations to overcome: (1) developing one universal
vaccine for a specific cancer is difficult, as tumors with different antigens are different for different
individuals, (2) the tumor antigens may be similar to the body’s own antigens, and (3) there is the
possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability
to distinguish between the tumor and the body’s antigens is indispensable. This paper provides a
comprehensive review of different types of cancer vaccines and highlights important factors necessary
for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer
therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of
using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major
limitations in the cancer vaccine developmental process.
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1. Introduction

Vaccines have been used to protect human health against infectious diseases since their
first discovery in the late 1700s [1]. The recent success of vaccines against the coronavirus
disease is encouraging researchers to extend the underlying concepts to treat cancers [2,3].
Active immunotherapy or vaccination is one of the important aspects of efficient tumor
eradication by therapeutic cancer vaccines that can be stimulated and enhanced in two
major ways: (1) using nonspecific proinflammatory molecules and adjuvants to improve
the antitumor immune response already present in the body or (2) provoking a new
immune response against specific tumor antigens in the host [4]. The desired tumor
antigens and adjuvants are usually delivered together to stimulate adaptive immune
systems, aiming to accomplish the optimal activation of dendritic cells (DCs) and durable
responses from effector T cells [5]. Innate immune cells, such as natural killer (NK) cells
and phagocytes, also play essential roles in tumor recognition and inhibition [6]. However,
the immunosuppressive tumor microenvironment (TME) is one of the key obstacles to
tumor-infiltrating immune cells and immunotherapies. The combination of therapeutic
cancer vaccines and immune checkpoint inhibitors has become the emerging approach to
enhance patients’ response rates and survival [7]. The efficacy of cancer vaccines is still
under scrutiny in numerous clinical trials [8]. In this review, we explore the mechanism
of the cancer immune cycle in the TME and analyze the effectiveness and limitations of
major cancer vaccine platforms. Further, we provide new insights for forthcoming cancer
vaccines to be more efficient.
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2. Tumor Microenvironment and Cancer Vaccine Mechanisms

The TME contains a plethora of immune cells, such as monocytes, macrophages,
natural killer cells (NKs), dendritic cells (DCs), lymphocyte B cells, and lymphocyte T cells
(CD4+ and CD8+) that play key role in the antigen-presentation process and cancer immune
cycle that can lead to tumor progression; therefore, targeting the TME and its components is
considered a major mechanism for effective cancer vaccines [5,9–11]. Macrophages, B cells,
and DCs in the TME are some examples of the cells called antigen-presenting cells (APCs).
These cells promote antigen-specific immune cell interaction and activation (called priming
process) by taking up the antigens originating either from vaccine injections through
various administration routes (subcutaneous, intradermal, or intramuscular) or from dead
cancer cells. The APCs then make the antigens present on the major histocompatibility
complex (MHC) class I or II [12–14] (in humans, the human leukocyte antigen (HLA) is
the MHC system [15]). This is followed by APC migrations from the TME to the lymph
nodes to activate the effector T cells (CD4+ or CD8+) [16–18]. Lymph nodes are one of the
secondary lymphoid organs (SLOs) that provide a three-dimensional structure for immune
cells and enhance the interactions between antigen-loaded APCs and effector T cells to
activate T cells and produce an effective immune response. Within the lymph nodes, the
mature APCs can activate the effector T cells by presenting the MHC-antigen complexes to
the effector T cells. This is followed by the infiltration of the activated effector T cells into
the TME, where the T cells can recognize the targeted cancer cells and kill them [19–21].
Primary (quiescent) B cell follicles in SLOs (called follicular B cells) become activated upon
antigen binding to the primary follicles; following activation, primary follicular B cells turn
into the secondary follicles, containing a central germinal center (GC) full of B cell blasts,
and with antibody maturation, these B cell blasts undergo several phases and processes
pertinent to antibody maturation. These steps lead to the differentiation of lymphocytes
into effector T (Teff) cells and B memory cells and in this way, their migrations into the
TME is facilitated, leading to the eradication of the tumor cells [5,22–30]. However, based
on studies on the TME, the generation of antitumor defenses occur not only in SLOs, but
also directly within SLO-like aggregations called tertiary lymphoid structures (TLS) [31]
that develop in the TME through cytokine accumulations, including CXCL13, RANKL, and
interleukin (IL)-7. These structures interact with lymphoid tissue-inducer cells (LTi), as
well as other cells, specifically DCs, NKs, or CD8+ T cells, leading to the secretion of factors
that are essential for high endothelial venule (HEV) formation (which mediate lymphocyte
trafficking to lymph nodes), immune cell recruitment, and cell retention. Together, these
aforementioned factors recruit and activate the LTi cells [31–40]. All these stages, from
antigen absorption to cancer cell death, are considered as parts of the cancer immune cycle
that will be discussed in detail in the following section.

Among the various APCs present in the TME, DCs are the most potent APC compared
with B cells and macrophages. These cells mediate the antigen priming-related processes
through two general mechanisms: canonical (cross-antigen presentation) and non-canonical
(cross-antigen dressing) pathways [41,42]. The canonical pathways are more commonplace
and are based on the type of the antigenic proteins (exogenous/endogenous). APCs (like
DCs) can drive the canonical antigen presentation mechanism via two major pathways:
(1) the cytosolic or proteasome degradation path (specified for endogenous protein presen-
tation), during which the endogenous antigenic proteins, with either a proteosome or a
phagosome origin, are cleaved by the cytosolic proteasomes of the DCs to generate peptide
fragments, which then become presented by MHC-I molecules and activate the effector
T cells against tumor cells, in particular antigen-specific CD8+ cytotoxic T lymphocytes
(CTLs) [43–46], or (2) the vacuolar or endocytosis path (specified for exogenous antigenic
protein presentation), during which DCs take up the exogenous antigenic proteins via
the endocytosis process to form special vesicular structures called endosomes, which will
then be fused with lysosomes, where the lysosomes’ low pH degrades these antigens
to peptide fragments, which are then presented on MHC-II molecules, and activate the
CD4+ T cells, leading to CTL activation, function, and survival [13,23,41,47–55]. Apart
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from the above-mentioned canonical pathways, several papers have demonstrated the
presence of non-canonical/cross-dressing pathways through which the APCs such as DCs
do not present the antigen themselves. Instead, the antigen–MHC complexes from the
other adjacent DCs or tumor cells (donor cells) get transferred to the APCs, such as DCs
(receiver cells), though various mechanisms, including trogocytosis, exosome uptake, and
tunneling nanotubes [49,56–59], and activate the related effector T cells without further
antigen processing stages [60–66]. These processes are shown in Figure 1.
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Figure 1. APC presentation mechanisms. tumor microenvironment and its components: TME con-
tains a wide range of antigen cross-presentation processes that can be mediated by dendritic cells
either through the canonical/cross-presentation pathways (A), or through the non-canonical/cross-
dressing path (B). The cross-presentation mechanisms are mediated in two ways: cytosolic or proteo-
some degradation (A-1) and through the vacuolar pathway (A-2). In the cytosolic pathway, antigens
that stem from either endosome or phagosome structures move toward the cytosol, forming acidic
cytosolic proteosomes that cleave the antigens into shorter peptides. These peptides have two fates:
(1) they are transported to the endoplasmic reticulum (ER) for further modifications. The modified
antigenic peptides are then loaded on MHC class I molecules and move to the cell surface. (2) the
cleaved peptides return to phagosomes/endosomes prior to loading on the MHC I and moving to
the cell surface. In the vacuolar pathway, the aforementioned events related to antigen loading on
MHC class I occur in the phagosomes or endosomes, which is followed by the moving of the antigen-
loaded APCs (DCs) toward the secondary lymphoid organ (SLO) to activate T cells [13,41,49–53]. In
the non-canonical/cross-dressing path, the antigen–MHC complex is formed on another cell and
is then transformed to the APCs, such as DCs, and the DCs would finally be able to activate the
related effector T cell via different pathways: trogocytosis (B-1), exosome uptake (B-2), and tunneling
nanotubes (B-3) [59,60,64–67]. In Trogocytosis, the membrane patch, including the plasma membrane
and cytosol from one cell (donor), is transformed to the other cell (trogocytic) [58,59]; exosome uptake
by APCs depends on the ability of the exosomes (small membrane-based vesicles formed during
the endocytosis process) to transfer particular materials (that can not only be further degraded and
reprocessed by APCs for presentation on the MHC molecules, but can also be considered as functional
MHC–peptide complexes [59,68]); the tunneling nanotubes are long protrusions derived from cell
membranes that not only facilitate the exchange of cell surface molecules and cytoplasmic contents
but also can mediate cross-dressing between remote DCs through the transferring of MHC molecules
between distant cells [59,69].
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3. Cancer Immune Cycle

The cancer immune cycle includes a series of repeated and amplified phases, each
of which are mediated by specific cytokines and chemokines which will lead to effective
anti-cancer immune response and cancer cell death. Theses stages are as follows: (1) In
the first step, the neoantigens that were generated during the tumor formation process are
released from the dead tumor cells, which are then carried by the DCs to the adjacent draining
lymph node (DLN). (2) The second stage starts with DCs presenting the acquired antigen
to T cells through MHC-I and MHC-II molecules to form the MHC-I and MHC-II–antigen
complexes, through the cross-presentation pathways discussed earlier. (3) Effector T cells
can then recognize the antigen and become activated. (4) Antigen-recognizing tumor-specific
T cells present in the DLN, express specific chemokine receptors as well as cell adhesion
molecules required for the migration of T cells and their infiltration into the tumor tissue. By
virtue of these expressed molecules, T cells leave the DLN and move toward the tumor tissue
via the blood stream. (5) This is followed by T cell infiltration into the tumor tissue and (6)
the recognition and binding of the MHC-I–antigen complex by virtue of the T cell receptor
(TCR), which stimulates the secretion of various cytokines from the DCs that finally activate
the T cells. (7) These processes work together to eventually kill the cancer cell [67,70] through
various mechanisms, including direct tumor lysis and degranulation [71], antibody-dependent
cellular cytotoxicity [72], and/or complement-dependent cytotoxicity [73–75]; however, a
new pathway for the cancer-killing action of the T cells have been reported recently, which
is independent of the antigen presentation by the MHC-I and its recognition by T cells [76].
Considering that additional neoantigens are released upon cancer cell death, causing the
immune reaction and continuing the cycle again from the first phase where the neoantigens
are upregulated by the cytokines, this mechanism is named cancer immune cycle, the steps of
which are shown in Figure 2 in more detail. The cancer immune cycle becomes malfunctioned
in cancer patients, as at least one of these steps is defective [67,77]. With this in mind, one of
the effective ways to treat cancers would be to develop therapeutic vaccines that can target
the cytokines in the cancer immune cycle (Figure 2).
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Figure 2. Caner immune cycle phases and regulation. Cancer immune cycle phases are regulated by
a wide spectrum of cytokines and chemokines, some of which stimulate the cancer immune cycle to
kill the cancer cells, whereas some cytokines act as inhibitors and down regulate the processes. The
stimulatory cytokines work together to mediate the T cell activation. Activated T cells go the TME
and induce tumor killing. Each phase is regulated by a wide range of cytokines and other molecular
factors, as shown in green for inducers and red as inhibitors.
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4. Escaping from the Cancer Immune Cycle

The host immune system constitutes a surveillance part and a protective part; the
immune surveillance system constantly inspects the body and boosts antitumor immune
responses in order to identify and destroy any existent tumor cells and finally to prevent
cancer progression [78–81]. In general, cancer cells undergo various genetic and epigenetic
modifications, leading to the generation of specific antigens; these antigens then stimulate
T cells to recognize and kill cancer cells; however, as tumor cells grow, they start to develop
mechanisms known as “cancer immunoediting” to escape this host immune surveillance
system; thus, the immune system is not able to eliminate these cancer cells [79,82,83]. On
the other hand, looking at the protective part of a normal immune system, it consists of
specific protein molecules called “immune checkpoints” that are present on the surface
of immune cells (including T cells), and their corresponding ligand receptors, which are
present on the cancer cells. These immune checkpoints induce inhibitory signals (using
the mono-tyrosine-based signaling motifs, in particular, immunoreceptor tyrosine-based
inhibitory and switch motifs) that prevent the generation of any strong immune response
signals that destroy healthy cells in the body. In this way, immune checkpoints tend to
protect normal cells [84–86]. PD-1, CTLA-4, LAG3, TIM3, BTLA, and TIGIT are some of
the common immune checkpoints that mediate tumor cell recognition by T cells; when
the immune checkpoint proteins present on T cells’ surfaces recognize and bind to the
tumor cells’ receptors, they send an “off” signal to the T cells and hence prevent the
eradication of cancer cells by the immune system. With this in mind, some cancer cells
tend to facilitate cancer growth and metastasis by upregulating negative signals via cell
surface immune checkpoint molecules and inhibiting T cell activations [87,88], while some
other tumor cells may activate immunosuppressive leukocytes (such as eosinophils) to
create a TME that is unable to respond to antitumor immune molecules well [89]. Moreover,
some tumor-intrinsic genes, including YTHDF1, degrade the MHC-I complex molecules,
resulting in immune evasion [90]. According to the mechanisms of action of the cancer
vaccines as well as the cancer immunity cycle discussed earlier, some of the key factors for
a successful cancer vaccine design are the selection of the appropriate tumor antigen to
stimulate effective T cells, the achievement of a sufficient antigen concentration in APCs
in such a way as to activate them, as well as the inducement of durable immunogenic
responses by activating the effector T cells, i.e., CD4+ and CD8+ [23]. In this respect, the
selection of the right antigen along with its delivery method would be of high importance,
which will be discussed in detail in the following subsections.

5. Tumor Antigen Classifications

Tumor antigens are any antigenic substances generated in tumor cells that trigger an
immunogenic response and serve as biomarkers for tumor recognition that can be used to
develop novel therapeutic cancer vaccines. Tumor antigens can appear in phases pertinent
to protein synthesis and degradation [82,91]. On the basis of the expression patterns of the
HLAs, tumor antigens can be classified into two general groups: tumor-associated antigens
(TAAs), in which the antigen is presented by the HLAs that are only expressed on tumor
cells (mainly HLA class I), and tumor-specific antigens (TSAs, or neoantigens), in which
the antigen is presented by the HLAs that are expressed not only on cancer cells, but also
to normal cells [28,92].

Based on the molecular structure and sources of the antigens, TAAs can fall into one of
these categories: differentiated (tissue-lineage), oncofetal, cancer–testis, aberrantly glycosy-
lated and expressed, overexpressed, as well as oncoviral antigens. On the other hand, TSAs
are classified, according to the frequency of observations, into shared (public) and personal-
ized (private) neoantigens; shared (public) neoantigens arise from alterations that occur
specifically in tumors which are observed across other patients/different malignancies,
while their personalized (private) counterparts are those originating from tumor-specific
alterations that are less likely to occur across other populations/malignancies; thus, person-
alized neoantigens are patient-specific. To date, a few numbers of public neoantigens have
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been recognized, whereas the private neoantigens usually originate from non-recurrent
driver/passenger mutations and comprise most of the known neoantigens [25,26,54,93–96].
Furthermore, based on the source from which the antigen is derived, the antigen can be
canonical (derived from the protein-coding genes), or non-canonical (derived from non-
protein coding genes); in the canonical antigen, the antigen is expressed within the open
reading frames (ORFs) of the protein-coding genes [93], such as the overexpression of
numerous cancer-related genes [60,65,94], including p53 [97–100], cancer/testis antigens
(CTAs) [100,101], and the human telomerase reverse transcriptase [102,103]. Non-canonical
antigens are expressed outside of the ORFs [104], and can stem from alterations of the anti-
gen at various levels, such as genomic, epigenomic, proteomic, transcriptomic, translational,
and antigen-processing levels (intronic retention, alternative splicing, codon read-through,
and noncanonical/non-AUG translation initiation levels) [93,100,105]. The tumor antigen
classifications along with their properties are summarized in Figure 3.
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Figure 3. Tumor antigen classifications. In general, tumor antigens are classified as tumor-specific
and tumor-associated antigens, each divided into several categories. Each category is compared in
terms of (1) tumor specificity (refers to the degree to which a particular immune response targets and
interacts specifically with tumor cells or its antigens while sparing normal cells; hence, a high tumor
specificity is desired), (2) central tolerance (mechanisms by which the immune system recognizes the
self-antigens from cancer antigens and eliminates cancer cells during their development within the
body without mounting immune responses against the self-antigens. Thus, a high central tolerance is
desired, as it means that the immune system exhibits a strong level of tolerance towards self-antigens,
including those present on normal cells and tissues, and can recognize them better), (3) immuno-
genicity (indicates the ability of cancer cells to stimulate an immune response from the host immune
system. This immune response can involve the activation of immune cells, and the production of
antibodies against tumor-specific or tumor-associated antigens; so, high immunogenicity is a desired
factor), and (4) prevalence (this shows how common or rare the occurrence of tumor antigens is in
patients) [25,26,54,93–96].

Apart from the type of the antigen, determining an efficacious method for the delivery
of the tumor antigen to the APCs would not only make antigen-mediated APC targeting
more selective and induce T cell activations, but it would also decrease systemic toxicity.
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Since different types of antigens have various physical properties, inducing an optimum
immune response would depend mostly on the selection of an appropriate delivery sys-
tem [23]. Some of the major delivery methods are using cells, antigens, peptides, nucleic
acids, and viral-based ones, each of which will be discussed in detail in the following sec-
tions.

6. Different Cancer Vaccine Platforms
6.1. Peptide-Based Vaccines

In peptide-based cancer vaccines, usually 20–30 amino acids are used to make a
wide range of peptides for activating the immune system of patients, enabling them to
recognize and kill the tumor cells by enhancing the T cell-mediated immune responses
specific to a particular tumor, i.e., CD8+ and CD4+ T cells via the MHC class I and II
molecules, respectively [106,107]. These peptides usually belong to one of the TAAs
or TSAs (including cancer/testis antigens and neoantigens) that are used for designing
personalized vaccines. Peptide-based cancer vaccines can not only activate both B cells and
T cell-mediated immune responses, but also induce long-lasting tumor-killing effects [108];
however, to elicit an efficient antitumor T cell response, cancer vaccines usually deliver a
mix of tumor antigen peptides including TAAs and TSAs. The identification and discovery
of tumor antigen peptides have been discussed in other reviews [54,93,109]. Synthetic long
peptides (SLPs) are stronger than short peptides in activating T cell responses because
SLPs need to be processed by the APCs and can activate both cytotoxic CD8+ T cell
and CD4+ T helper cell responses [110,111]. Due to low immunogenicity, peptide-based
vaccines are usually formulated with immune adjuvants. Adjuvants have been licensed
by the FDA and EMA for humans, include aluminum salts, MF59, adjuvant systems, and
CpG 1018 [112]. Other adjuvants under investigation are polyinosinic-polycytidylic acid
stabilized with polylysine and carboxymethylcellulose (poly-ICLC), glucopyranosyl lipid
A, Imidazoquinolines, CpG oligodeoxynucleotides, cyclic dinucleotides, etc. [113]. To
further increase the immunogenicity of peptide antigens, heteroclitic peptides, which are
modified versions of peptides that have been altered (by replacing amino acid residues
in the epitope sequence that have similar biochemical properties, overall structure, and
function compared to the original amino acid sequences; this is known as conservative
amino acid substitution) to enhance their binding affinity to the MHC molecules; in this
way, they can induce an enhanced immune response against specific antigens, making
heteroclitic peptides a potential tool in vaccine development and immunotherapy for
diseases such as cancer [114–117]. Considering the short half-life and poor stability of
the free peptides in the body, tumor antigen peptides are usually incorporated into other
delivery systems. Poly lactic-co-glycolic acid (PLGA) nanoparticles and liposomes are
two representative delivery systems of antigen peptides and adjuvants because of their
proven safety [118,119]. A comparative study by Varypataki, Jiskoot et al. showed that
SLP-loaded PLGA nanoparticles and cationic liposomes are more potent for stimulating the
T cell responses in vivo than squalene or Montanide-based emulsions [119]. Both vehicles
can protect the peptides from degradation and promote dendritic cell uptake and lymph
node transport.

In the last decade, liposomal vaccines evaluated in clinical trials include Tecemotide,
DepoVax, ISCOMATRIX, Lipo-MERIT, etc.; however, none of them improved the pa-
tients’ survival [120,121]. In addition to synthetic nanoparticles, dendritic cell-derived
exosomes (DEXs) could play an important role in tumor immunology by transferring
MHC/peptide complexes to other immune cells and stimulating T and NK cells directly
or indirectly [122,123]. DEXs loaded with antigen peptides have been assessed as cancer
vaccines in clinical trials, but failed to generate adequate adaptive immunity in patients
with advanced cancer [123]. Nevertheless, DEXs still hold the promise of being a part of
combination therapies.
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6.2. Recombinant (Pathogen) Vaccines: Viral and Bacterial-Based Vaccines

There are three major classes of recombinant viral/bacterial vaccines: (1) inactivated
vaccines (that use killed virus/bacteria that has been cultured in the lab) [124,125], (2) live
attenuated vaccines (in which the virus/bacteria is being weakened but not completely
killed) [126,127], and (3) subunit vaccines (in which a portion of the virus/bacteria-like protein
is used) [126,128,129]. All recombinant vaccines are based on administrating the recombinant
genes (such as genes encoding TAAs, cytokines, or costimulatory molecules that are inserted
into the viral/bacterial genome) using recombination/selection methods into APCs to stimu-
late the appropriate antitumor immune responses and by engaging both innate and adaptive
immune systems. Viral/bacterial-based vaccines can provide effective and long-lasting im-
mune responses [130–135]. These vaccines target the APCs and initiate immune responses
through two major mechanisms: (1) the indirect infection of the APCs, which works through
cellular damage mediated by viral infection to send danger signals and as well as costimula-
tory molecules to activate the APCs of bone marrow [130,136,137], and (2) the direct infection
of the APCs, which is based on the processing of the antigens in the MHC pathways. The
latter mechanism facilitates recombinant viral vaccine modifications for enhancing the
antigen presentation [130,138,139]. Some of these modifications are based on expressing
the genes encoding the minimal level of MHC class I-restricted peptides [140], inserting
endosomal/lysosomal sorting signals into the gene encoding antigen [12,141], as well as
using poxviruses to activate T cells [142–144], or to be used as a vector to carry specific cos-
timulatory molecules or cytokines [145]. One of the recent effective bacterial-based cancer
vaccines was developed by Wu et al.; these researchers used attenuated flagellated bacteria
(strain of Salmonella typhimurium) coated with positively charged dendrimer nanoparticles
with the ability to bind to negatively charged antigens, and the bacterial had become less
immunogenic via gene mutations [146].

6.3. Cell-Based Vaccines: Dendritic Cells (DCs), Stem Cells, and Chimeric Antigen Receptor
(CAR) T Cell Therapy

Therapeutic cell-based vaccines are based on the in vitro activation of the APCs (like
NK cells or DCs) by the viral peptides, genes, or by using genetically modified tumor
cells (killed tumor cells). In this regard, the cell-based vaccines can be classified as tumor
cell vaccines and immune cell vaccines [147]. In the tumor cell vaccines, the whole tu-
mor cell is used as the source of the vaccine, which contains whole TAAs, including the
CD4+ and Cd8+ T cells’ epitopes. Whole-cell cancer vaccines are currently in clinical trials.
Using whole tumor cells as a vaccine that has all the possible antigens in it rather than
protein/peptide tumor antigens not only eliminates the need to identify the ideal target
antigen; in addition, several tumor antigens can be targeted at once, which would then in-
duce further immune responses to more tumor cells [148,149]. However, there is still a need
for a stimulus/stimulatory factor(s) to provoke the antigen absorption process by the APCs
to recruit cells from innate and adaptive immune systems. With this in mind, cell-based
vaccines have been modified either genetically or via irradiation in such a way as to be
able to secrete cytokines without further proliferation in the host [147,150,151]. Most of the
recent developed cancer vaccines are based on using whole cells like DCs, which affect the
function of the cells in the immune system. The importance of DCs in antigen uptake and
presentation processes, as well as T cell activations, which are mediated by a wide spectrum
of receptors present on DCs’ surfaces, including those for antigen uptake, antigen presenta-
tion, costimulatory molecules, cytokines receptors, receptors for environmental sensors,
cytokine production-related receptors, as well as chemokine receptors, have turned DCs
into the most commonplace immune cells used in developing immune cell-based cancer
vaccines [12,22,39,49,147,152–154]. To improve the efficacy of DCs in antigen absorption
and T cell activation, researchers have started to use stem cells to develop better cell-based
cancer vaccines. The application of stem cells in the realm of cancer vaccines started with
embryonic stem cells (ESCs) [155]; considering that ESCs are usually obtained from an unre-
lated donor, they express a mismatched MHC and minor histocompatibility (miH) antigens
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(which are peptides derived from normal self-proteins that, in humans, are presented by
HLA), and if transplanted in the host, they will cause alloimmune responses [156–158]. Al-
though ESCs express a low amount of HLA-I [159–163] and almost no HLA-II [162–165] and
costimulatory molecules [162,164,165], this amount is sufficient to stimulate the cytotoxic T
cell-mediated xenorejection of human ESCs [158,166,167]. Following the characterization
of human ESC lines, and considering the ability of whole-cell vaccines to deliver multiple
oncofetal antigens at once, along with their universal application to all patients regardless
of their HLA type [156,168,169], researchers have started to apply these ESCs to whole-cell
cancer vaccines to make ECS-based cancer vaccines. Using xenogeneic human ESCs as the
plausible cancer vaccine to be tested on mouse and rat models, studies have found that
human ESCs resulted in a moderate tumor killing effect, whereas in the case of using allo-
geneic or autologous ESCs, they observed more potent tumor suppressive effects [169,170].
However, considering that human ESCs were injected into mice, there was the possibility
that the aforementioned immune responses were due to the incompatibility of the MHC
antigens between the human ESCs and mouse cells rather than the ESC lines [169]; more-
over, the tumorigenicity induced by the ESCs hampered their usage as effective cancer
vaccines for clinical applications [171–173]. These problems led researchers to shift their
focus toward using induced pluripotent stem cells (iPSCs), as they share very common
features with ESCs in terms of gene expression and epigenetic profiles [174–179]. However,
iPSCs also have some level of tumorigenicity. Various methods have been reported to
overcome their tumorgenicity when developing stem cell-based vaccines: the terminal
differentiation or complete elimination of residual iPSCs from culture; interfering with
tumor-progression genes to prevent tumor formation from the residual cells; and tumor
detection and elimination after its initial formation in the patient’s body [173]. In light
of this, most of the recent work with iPSCs have used irradiation to remove the residual
iPSCs in the culture and strongly prevent teratoma formation and further iPSC-mediated
tumorigenicity [180–183]. Early studies working on iPSCs transfected to mouse colon
cancer demonstrated that although the iPSCs were able to induce cytokines in response to
the cancer cells, no tumor rejection was observed, indicating that iPSCs need modifications
to be able to induce a strong immune response against tumor cells; for instance, considering
that autologous iPSCs have more accurate tumor antigens compared with their xenogeneic
counterparts, they can be a better option for developing anti-cancer vaccines than the
xenogeneic ones, as they can minimize the alloimmunity; further, to enhance their immune
responses against cancers, immunostimulatory adjuvants can be used with them (such as
TLR9) [169]. Kooreman et al. used the same strategy to generate an iPSC vaccine against
pancreatic ductal adenocarcinoma, in which the autologous iPSCs were irritated, followed
by the addition of CPG (a type of TLR 9 adjuvant) to improve the immune response [169].
Another study developed autologous iPSCs from patients with T cell acute lymphoblastic
leukemia and were loaded in DCs; this showed efficacy in suppressing acute lymphoblastic
leukemia cancer [184]. In a recent study, iPSC-derived exosomes were incubated with
DCs (dendritic cells) and their antitumor effects were explored in murine melanoma mod-
els; according to their results, the DC+ exosome vaccination significantly inhibited lung
metastasis in in vivo models, induced long-term T cell responses, and did not alter the
viability of normal cells and mouse viscera [185]. In the same way, another group prepared
a nanostructure by combining the iPSCs and DC exosomes that contained the anticancer
drug doxorubicin; this improved the in vivo efficacy of chemotherapy drugs as well as the
antitumor immunity [186]. Apart from iPSCs, researchers have used inactivated cancer
stem cells (CSCs) to develop cancer vaccines [187]. Chimeric antigen receptors (CARs) are
recombinant protein receptors that have been engineered in such way as to enable T cells to
target a specific antigen in order to generate an antitumor immune response and kill specific
tumor cells. The general structure of these receptors are made up of three major domains:
(1) an extracellular domain specified for selective binding to a particular tumor antigen,
(2) a transmembrane domain, and (3) a intracellular domain; together, these domains
facilitate T cell-mediated tumor death by providing T cell signals that are necessary for
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their activations and for attacking the tumor cells [188–191]. One of the examples of CAR-T
cell therapy is based on using genetically modified autologous T cells expressing CD-19.
The therapy reprograms the patient’s own T cells via a transgene that encodes the CAR and
is able to recognize and destroy any cells (normal and malignant) that express the CD-19,
in a way that, after binding to CD19-expressing cells, the CAR sends a signal that enhances
the T cell expansion, activation, and target cell elimination, along with the persistence of
the drug. The aforementioned mechanism can be seen in two of the current FDA-approved
drugs based on CAR-T cell therapy, i.e., Tisagenlecleucel (used to treat acute lymphoblastic
leukemia) and Axicabtagene ciloleucel (used for treating large B cell lymphoma) [192,193].
However, there are some limitations to overcome: there is the possibility of antigen loss, so
that patients treated with CAR-T cells may partially express the antigen or may not express
it at all [194–196]; another problem is the possibility of the expression of the tumor antigen
by normal cells [197]. Although the combination of checkpoint inhibitors and CAR-T cell
therapy is a new treatment option, this treatment may still be unable to induce efficient
T cell infiltration and may lead to cytokine-mediated toxicities that have been reported
in several CAR-T cell therapies [198–201]. This requires looking for a novel method to
optimize the CAR-T cell therapy-based cancer vaccines.

6.4. DC Subsets and Their Roles in Priming and Activating T Cells

DCs originate from macrophage–DC progenitors (MDP) in bone marrow and generate
common DC progenitors (CDP) that then differentiate into the DCs [154,202], which com-
prise various types of immune cells that, based on their phenotypes, ontogenetic features,
distribution in tissues, as well as transcriptional-related characteristics, are divided into
three major groups: classical/conventional DCs (cDCs) (that include cDC1s and cDC2s),
plasmacytoid DCs (pDCs), as well as monocyte-derived DCs (moDCs) [203,204]. Each
of these DC groups secrete specific types of cytokines that are specialized for priming
and activating various classes of effector T cells and regulating particular stages of the
cancer immune cycle; thus, in this way, they can affect the result of an immune response
in different ways [49,202,203,205]; for example, cDC1s are specialized for antigen priming
as well as their cross-presentations to the CD8+ T cells, followed by their recognition via
MHC I signaling [202,206–212]. On the other hand, cDC2s are mostly involved in the
cross-presentation of the antigens to CD4+ T cells and their recognition through the MHCII
path, promoting Th1, Th2, and Th17 polarization [202,211–216]. According to single-cell
analysis, a further level of complexity in DCs has been reported via the identification
of various types of cDC2 subsets [203,217,218]. pDCs produce type I interferons (IFNs)
that are engaged in antiviral and antitumor immune responses [202,212,216,219,220]. Fi-
nally, moDCs, which are stimulated by inflammation, become differentiated and recruited
to inflammatory parts of the body, such as the TME [216,221–224]. Prior to encounters
with the antigen, DCs are immature and characterized by a high expression of MHC-II
inside the cell, low expressions of co-stimulatory molecules and chemokine, and cytokine
receptors [225–227]. However, these immature DCs uptake the antigen via the cross-
presentation process or cross-dressing, and become mature DCs through various pathways,
in particular receptor-mediated endocytosis [228–231]. Due to the presence of various
types of receptors on the their surfaces (Figure 4), DC maturations can be stimulated by
different factors, ranging from monoclonal antibodies (mAb) to DCs modifications, and
the physiological alterations in DCs occur during their maturations, enabling DCs to se-
crete a wide range of stimulatory cytokines and other chemical molecules to block the
inhibitory signals and increase co-stimulatory molecules, cytokine production, and antigen
presentation [232–236]. DCs then process and present tumor antigens derived from the
vaccinating cells to the effector T cells (CD4 and CD8) via the formation of antigen–
MHC complexes on the DCs, and T cells bind to this complex with their T cell recep-
tors (TCRs) [17,234,235,237]. During maturation, DCs undergo physiological alterations,
leading to the incremental expression of surface MHC I and MHC II molecules [238,239],
co-stimulatory molecules (such as B7-1/CD80, ICAM-1/CD54, LFA-3/CD58, and Tropo-
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modulin1) [240–243], chemokine receptors [244,245], and cytokine secretions [246–249], that
together regulate the T cell response. Furthermore, DC maturation results in a reduction in
the pH of the endocytic vacuoles, leading to proteolysis, the transport of peptide–MHC
molecules to the cell surface, and a reduction in the capacity for antigen capture [250–255].
Following the upregulated expressions of various stimulatory molecules/receptors, the
DCs migrate toward the draining lymph nodes to interact with the T cell and induce
the immune response to finally present the tumor antigen derived from the vaccinated
cells to the effector T cells (CD4 and CD8) via the formation of antigen–MHC complexes
so that T cells can bind to these complexes present on the surface of the DCs with their
receptors (TCRs) and become activated; this process leads to tumor killing [17]. If the CD8
T cells are activated efficiently, with addition of other traditional cancer therapy meth-
ods, such as monoclonal antibodies, chemotherapy, and radiation therapy, they all can
work together synergistically to improve the efficiency of T cell-mediated tumor-killing
effects [256–260]. With this perspective, T cell activation regulation is one of the key factors
to be considered when developing cancer vaccines. T cell activation is modulated by a
wide range of other factors and signals produced by the activated DCs [261], agonist anti-
bodies [262,263], co-stimulatory molecule receptors [264,265], and co-inhibitors (immune
checkpoint inhibitors) [84,266]. However, in order to maintain immune homeostasis and
self-tolerance, as well as to reduce/prevent inflammation and autoimmunity diseases, it
would be necessary to inhibit the effects of stimulatory signals when needed. In light
of this, specific molecules, including (1) a heterogeneous Foxp3 expressing a subset of
CD4+ T cells known as regulatory T cells (Tregs) that have immunosuppressive proper-
ties [267–270], and (2) other suppressive immune cells, such as myeloid-derived suppressor
cells (MDSC) [271–273], act and suppress by secreting various inhibitory cytokines and
molecules (such as TGF-β, IL-10, and IL-35) [257,274–277]. Chemotherapy and radiation, if
used at immunomodulatory doses, could inhibit the T cell activation [278–282].

6.5. Nucleic Acid-Based Vaccines: DNA and mRNA Vaccines

Nucleic acid vaccines are based on using either DNA or mRNA to deliver genes to the
host APCs to encode the tumor antigens and produce antigen proteins so that the expressed
tumor antigens induce appropriate immune response to kill/inhibit cancer cells [283].

6.5.1. DNA-Based Cancer Vaccines

The history of using DNA cancer vaccines goes back to 1990 when Wolff et al. studied
the effects of the direct injection of naked DNA to murine muscles, which resulted in
the expression of their corresponding proteins [284]. And in 1998, the first human trials
of a DNA vaccine were reported, which demonstrated the efficiency of DNA vaccines
in treating immunodeficiency virus type 1 (HIV) [285]. Cancer DNA vaccines are based
on using bacterial plasmids that encode the tumor antigens to activate both innate and
adaptive immune responses. In order for the DNA vaccines to be functional, they need to
enter to the cell nucleus to be transcribed into mRNA; then, they are transported to the
cytoplasm to be translated to the encoded antigens, followed by antigen processing and
presentation to CD8+ T (via MHC I) and CD4+ T (via MHC II) cells to activate particular
immune responses [286–289]. The mode of action of DNA vaccines is the activation of
adaptive and innate immune systems [290]. Regarding the adaptive immunity activation-
based mechanisms, there are three major pathways: (1) the direct insertion of DNA into
a somatic cell, such as a muscle cell, followed by translating to antigens, and their direct
presentation to the cytotoxic CD8+T cells via the MHC-1 molecules [291]; (2) the releasing
of the DNA-encoded antigen in somatic cells through secretion or via apoptotic bodies,
followed by phagocytosis and the processing of the released peptides by APCs and their
cross-presentations to the CD4+ T cells by the MHC II molecules [291]; and (3) the direct
transfection of DNA into the APCs to generate antigens (which would be endogenous
antigens). These endogenous antigens are then processed and presented to CD8+ T and
CD4+ T cells via MHC I and MHC II molecules, respectively, to induce adaptive cellular
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immunity (via activation of CD8+ T cells followed by their differentiation to CTLs) as well
as humoral immunity (by activating the CD4+ T cells); this direct transfection of DNA into
APCs, which mainly takes the form of intradermal delivery, is a momentous pathway for
DNA-based cancer vaccines [292]. Turning to the innate immunity activation pathways
mediated by DNA vaccines, there are a wide range of factors that regulate the aforemen-
tioned pathway, such as CpG (cytosine phosphate guanosine) dinucleotides, which are
immunostimulatory motifs within bacterially produced plasmid DNA [293]. These are
involved in stimulating innate immunity activation by interacting with one of the key
innate immunity stimulators, i.e., Toll-like receptor 9 (TLR9). This is followed by thTLR9
recognizing unmethylated CpG motifs in bacterial DNA, resulting in the triggering of
the TLR-mediated signaling pathway of macrophages, dendritic cells, and B cells, which
involves activations of the NF-κB, IRAK, and MyD88 signaling pathways to produce proin-
flammatory cytokines, chemokines, and immunoglobulins [113,294]. Furthermore, DNA
itself activates the STING signaling pathway, which is the major pathway controlling the
DNA signaling cascades, which occur in cytoplasm independent of TLR. In vivo studies
have confirmed that DNA vaccines cannot induce a robust adaptive immune response in
the absence of the STING path [113,295]. DNA vaccines offer various advantages, including
being highly specific and safe, encoding a wide range of antigens, having low production
costs, as well as easy transport and storage; moreover, DNA vaccine have a lower risk of
insertional mutation and DNA rarely binds to host chromosomes [296–298]. Furthermore
optimized DNA vaccines have been efficient in preclinical studies [299–302]. However, be-
cause of their poor immunogenicity, DNA vaccines have gained little progression in clinical
trials [303,304]. There are several optimization strategies to tackle the poor immunogenicity
problem, including the optimization of plasmid elements (such as the Kozak sequence,
intron, and species-specific codons) [305,306], a powerful promoter sequence for an efficient
transcription (such as modified viral cytomegalovirus promoters) [306–308], using specific
adjuvants (such as cytosine–guanine dinucleotide (CPG) motifs, polymers, nanoparticles,
liposomes, and small molecule agonists) [305,306,309], and finally, modifying the design of
tumor antigens [305,306].

6.5.2. mRNA-Based Vaccines

In vitro transcribed mRNA vaccines are the very early versions of mRNA vaccines
developed in 1984 using an in vitro transcribed system containing a plasmid DNA template,
RNA polymerases, along with other main components [310]. Although at first mRNA
vaccines were not developed for therapeutic purposes, early research, including the first
in vitro (using DCs that were pulsed with RNA) and in vivo (in mice) studies pertinent to
the mRNA-based cancer vaccine back in the 1990s [311], paved the way for using mRNA
vaccines for treating diseases, including cancers. Subsequent research that focused on de-
livering mRNA into the cells using liposomes further confirmed the therapeutic efficiency
of mRNA-based vaccines [312], as mRNA vaccines bring a wide spectrum of benefits,
such as tolerability (side effects are controllable and temporary) and the lack of a need for
genome integration (because unlike DNA, there is no need for the mRNA to enter the cell
nucleus); thus, the risk of insertional mutagenesis is eliminated. There is no need for the
usage of any pathogenic/viral agents for developing mRNA-based vaccines; therefore, it is
non-infectious. Furthermore, mRNA vaccines are degraded easily (which reduces risk of
toxicity), providing humoral and cellular immunity, which are essential for antitumor re-
sponses. Additionally, mRNA vaccine production is fast and inexpensive [313–316]. There
are four major types of transcribed mRNA: conventional mRNA, self-amplifying mRNA
(samRNA), trans-amplifying RNA (tamRNA), and circular mRNA (circmRNA) [317–320].
The general structure of these in vitro transcribed conventional mRNAs are similar to
natural mRNAs in eukaryotic cells, i.e., they are made up of a 5′ cap, 5′ and 3′ untranslated
regions (UTRs), an open reading frame (ORF), and a poly(A) tail [320–323]. In spite of the
advantages of such mRNA vaccines, some drawbacks, including the inherent instability of
the mRNA, lack of good manufacturing practices, low protein expression efficacy, high im-
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munogenicity, along with the difficulties related to the in vivo delivery of mRNA into cells,
and off-target side effects as a result of repeating the injection dosage to maintain protein
expression, have hampered its advancement as an effective therapeutic vaccine [314,324].
With this in mind, in recent decades, considerable efforts have been made to optimize
mRNA-based vaccines by improving mRNA stability, reducing its in vitro and in vivo
immunogenicity through chemical modifications, product purification, and sequence op-
timization, such as the 5′ end (autologous) or the 5′ cap (analogues) modifications, ORF
modification by codon optimization, guanine plus cytosine (GC) content enrichment, main-
taining the length of the 3′ poly(A) tail within 120–150 nucleotides, and adding chemically
modified adenosines [325–330]. Another way to improve the stability and the protein yield
was to develop other types of vaccines which are based on RNA rather than mRNA. For
example, self-amplifying RNA (saRNA), trans-amplifying RNA (taRNA), and circular RNA
(circRNA) have brought therapeutic benefits in the realm of cancer vaccines [320,331–340].

However, in order for mRNA vaccines to be used in clinical applications, they should
be protected from enzymatic degradation, successfully delivered to the target cells, followed
by endocytosis, and escape from endosomes to prevent premature degradation. The
physicochemical properties of mRNA complexes should be taken into consideration, as
they affect the mRNA uptake mechanisms by the targeted cells [315,341,342]. With this
perspective, the efficient delivery of mRNA to the targeted cell/tissue is necessary. To
reach this goal, two major approaches have been developed: (1) ex vivo DC transfection via
electroporation followed by re-infusion of the transfected cells [343–345], and (2) the direct
injection of mRNA, with or without a carrier [322,345,346]. In the first approach, mRNA
is loaded into the DCs through electroporation (to achieve optimized ex vivo transfection
without using any carriers). Upon generating transfection DCs, they would be re-infused to
the patient to act as carriers as part of an autologous vaccine and induce immune responses.
With the ability to initiate adaptive immune responses as well as anti-body responses (by
presenting the intact antigen to B cells), DCs have gained considerable attention to be used
as ex vivo and in vivo carriers in the realm of mRNA vaccine delivery [347–352].

In the same vein, intradermal and intranodal injections were efficient in providing
in vivo immunizations [353,354]. On the other hand, physical methods (using electropora-
tion [355] or a gene gun [356–358]) increase the mRNA uptake efficiency by the DCs, but
are faced with major limitations that hamper their further development, such as increasing
cell death, and confining accessibility to target cells [359]; furthermore, using a gene gun,
for instance, demonstrated efficiency only in mouse models but not in human models or
larger study scales; electroporation increased the immunogenicity (only in the case of a
self-amplifying RNA vaccine) [315,358,360]. Using viral carriers for mRNA delivery has
several drawbacks, making them inappropriate carriers; some of these drawbacks include
poor in vivo efficacy, the possibility of stimulation of immune responses mediated by the
vectors, already-existing immunity against viral vectors, and biosafety issues [133,361–363].
These drawbacks led scientists to look for other mRNA carriers, which resulted in taking
advantage of nanoparticles, in particular the lipid and polymeric-based nanoparticles, to
develop versatile, effective, and safe carriers for mRNA delivery [364–368]. Some of these
lipid/polymeric-based methods are based on using protamine (cationic peptide) [369–371],
cationic lipids [372,373], and polymers, including dendrimers and chitosan [374–376], as
well as lipid nanoparticles [352,365,377], which are conjugated with other polymers like
polyethylene glycol (PEG) to increase the stability. In the case of lipid carriers, cholesterol
and other natural lipids present in the membrane have been applied to enhance the efficacy.
The lipid-based delivery vector not only improves the efficiency of mRNA delivery and
facilitates the selective targeting of organs and/or cells (as it would be possible by adjusting
the ratio of various elements in the lipid nanoparticle) [352,364], but also, such lipid-based
carriers induce an adjuvant effect, as reported in some of the recent studies showing that
lipid nanoparticles induce strong in vivo immune responses, with stronger adjuvant effi-
cacy than AddaVax (a commonplace vaccine adjuvant) [322,378–380]; furthermore, lipid
nanoparticles can enhance the antitumor efficacy of mRNA cancer vaccines through acti-
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vating the Toll-like receptor 4 (TLR4) signaling pathway [381,382]. mRNA vaccines can be
administered through several routes, such as subcutaneous, intradermal, intranasal, intra-
muscular, intranodal, intratumorally, and intravenous delivery routes [383]. The ex vivo
engineering of autologous DCs with mRNA has been considered as the preferred method
for tumor antigen delivery, but most approaches used for developing mRNA vaccines have
a tendency to use direct mRNA administration with lipid nanoparticle carriers [343,384].
mRNA-based vaccination is developed to either induce or enhance an effective antitumor
immune response. Following the administration and cellular uptake by APCs, mRNA goes
to the cytoplasm and undergoes antigen priming and MHC-antigen presentation cascades,
leading to APC-mediated antigen presentation via MHC-I and MHC-II and CD8+ and
CD4+ T cell activation. Apart from that, CD4+ T cells themselves can induce a humoral
immune response through coactivating antigen-specific B cells, and these B cells can serve
as APCs to conversely activate CD4+ T cells upon the presentation of antigens to the B cells
via MHC class II [385–388].

6.6. Personalized Cancer Vaccines

Personalized cancer vaccines are another type of immunotherapy designed to target
a patient’s specific cancer cells based on their unique genetic profiles to stimulate the
patient’s immune system to recognize and attack cancer cells more selectively [389]. Based
on the different cancer vaccine platforms discussed earlier, several types of personalized
cancer vaccines have been developed and used in preclinical and clinical studies, such as
personalized cancer vaccines based on peptides [106,390], whole cells [390,391], nucleic
acids (DNA and mRNA) [390,392], and neoantigens [390,393]. There are several steps for
developing personalized cancer vaccines: (1) a genomic analysis of the patient’s tumor (to
identify tumor-specific characteristics, such as mutations, neoantigens, and other related
characteristics that can be targeted by the immune system); (2) antigen selection (based
on the genomic analysis, tumor-specific antigens are selected for inclusion in the vaccine);
and (3) vaccine formulation (vaccines are formulated using different approaches, such as
with peptides derived from tumor antigens, DCs loaded with tumor antigens, DNA or
RNA encoding tumor antigens, neoantigens [394], or whole tumor cell lysates) [395]. Upon
administration of a personalized cancer vaccine, antigens in the vaccine are presented to
immune cells by the APCs and stimulate an immune response against the cancer cells
bearing the targeted antigens. Cancer vaccines, both conventional and the personalized
type, contribute to the growing field of cancer immunotherapy, with personalized vac-
cines showing promise in improving treatment outcomes for patients with specific tumor
profiles, as this type of vaccine offers a highly targeted and individualized approach to
cancer immunotherapy, compared to its conventional counterpart that may target common
antigens or cancer-associated antigens across broader patient populations. Personalized
vaccines are designed to target the patient’s specific cancer cells based on the tumor’s
genetic and antigen profile and stimulate the immune system to recognize and attack those
specific cancer cells, while conventional cancer vaccines may target common antigens
shared by several cancer patients or antigens associated with certain types of cancer but
are not personalized to an individual’s tumor. Additionally, the antigens for personalized
cancer vaccines are selected based on a genomic analysis of the patient’s tumor and neoanti-
gens, whereas the targeted antigens in the conventional cancer vaccines are more broadly
expressed across cancer cells of a particular type or could be associated with cancer but not
specific to an individual’s tumor. Considering the production process, the personalized
cancer vaccines have a customized production process, (sequencing the patient’s tumor
DNA/RNA, identifying specific mutations, synthesizing, or selecting peptides or antigens
based on these mutations, and formulating the vaccine); however, the conventional types
are produced using standardized antigens or antigen sources that are not personalized
to a patient’s tumor). Personalized cancer vaccines activate a targeted immune response
against the patient’s specific cancer cells bearing the selected antigens; however, the con-
ventional vaccines induce a generalized immune response against common cancer antigens
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or antigens associated with specific types of cancer. Personalized cancer vaccines are often
used in precision medicine, where treatments are tailored to individual patients based on
their unique characteristics. While personalized cancer vaccines offer promising potential
in cancer therapy, there are also some challenges that need to be addressed; for instance,
they require complex processes (such as genomic sequencing of the tumor, identification of
specific antigens), and custom manufacturing of the vaccine for each patient. Considering
that these processes are time-consuming, resource-intensive, and costly, these vaccines
have limited accessibility among patient populations; this time-consuming problem may
lead to other issues and these vaccines are not suitable for patients who require immediate
treatment (those with rapidly progressing cancers), as the time required for genomic analy-
sis, antigen selection, and vaccine production may delay treatment initiation [396]. Tumor
heterogeneity is another challenge; considering the genetically heterogeneous nature of the
tumors, they contain a mix of different cell populations with varying genetic mutations
and antigen profiles, and thus, personalized vaccines may not target all relevant antigens
present in the tumor, leading to potential escape mechanisms by cancer cells that are not
targeted by the vaccine [397]. Furthermore, personalized cancer vaccines may face chal-
lenges in overcoming the immune evasion mechanism of the cancer cells, leading to limited
efficacy in some cases; other barriers can be attributed to the limited clinical evidence along
with other logistical challenges (including storage, transportation, and administration of
the personalized cancer vaccines) [393,398–400]. Despite these challenges, ongoing research
and advancements in cancer immunotherapy continue to improve the development and
utilization of personalized cancer vaccines, with the aim of addressing these limitations
and enhancing their effectiveness in treating cancer. The most effective approach has
been the development of neoantigen-based personal cancer vaccines [394,400–404]. In
general, all of the current cancer vaccine platforms have advantages, such as inducing both
humoral and adaptive immune systems, long-term stability, flexibility, high immunogenic-
ity, clinical safety, and etc. [106,187,324,364,405–424] along with disadvantages, such as
antigen loss, low MHC expression, in appropriate APC uptake and antigen presentation,
and etc. [106,201,287,363,383,411,412,416,418,419,422,423] that are summarized in details in
Table 1.

Table 1. Comparing different vaccine platforms.

Advantages Disadvantages Status of Some of the Vaccines in Clinical Trials
(2016–2023)

Peptide
vaccines

• Simple chemical-based
synthesis

• Cost-effectiveness
• Flexibility to multiple

antigens
• High specificity
• High stability
• Safety for clinical

applications
• Induce both humoral

and adaptive immunity
systems [106,405–410]

• Relatively poor
immunogenicity

• Inappropriate adjuvants
• Tumor heterogeneity
• Antigen loss
• Lower MHC expression
• Lack of T cell infiltration

in the tumor tissue
• Inducing immune

suppression through T
cell dysfunction

• There is no FDA
approved in vivo
peptide-based cancer
vaccines [106,411,412]

Glioblastoma/Glioma:

• Phase I (NCT05283109, NCT05283109, NCT04280848,
NCT04116658, NCT04943718, NCT02960230)

• Phase II (NCT04280848, NCT04116658, NCT03018288,
NCT02960230)

• Phase III (NCT03149003)

Breast Cancer:

• Phase I (NCT05269381, NCT02938442),
• Phase II (NCT02938442, NCT03012100, NCT03606967,

NCT02636582, NCT04197687, NCT03606967)

Cervical/Uterus/Ovarian Cancers:

• Phase I (NCT05269381, NCT04580771, NCT03728881,
NCT02865135, NCT03311334, NCT03761914,
NCT02785250, NCT03206047),

• Phase II (NCT03728881, NCT04445064, NCT03946358,
NCT02865135, NCT03311334, NCT03029403,
NCT03761914, NCT02785250, NCT03206047,
NCT04713514)

• Phase III (NCT04782895, NCT04508309)

Lung Cancer:

• Phase I (NCT05269381, NCT02818426, NCT03715985),
• Phase II (NCT02818426, NCT04263051, NCT03715985)
• Phase III (NCT02654587, NCT04998474)
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Table 1. Cont.

Advantages Disadvantages Status of Some of the Vaccines in Clinical Trials
(2016–2023)

Peptide
vaccines

Prostate Cancer:

• Phase I (NCT05010200)
• Phase II (NCT03579654, NCT04114825)

Leukemia/Blood Cancer:

• Phase I (NCT03559413, NCT03761914), NCT05025488,
NCT04688385)

• Phase II (NCT04747002, NCT03560752, NCT03559413,
NCT03761914, NCT04060277, NCT03702231,
NCT02802943)

Head and Neck Cancer:

• Phase I (NCT02865135, NCT03821272, NCT05269381)
• Phase II (NCT03946358, NCT04369937, NCT02865135,

NCT03821272, NCT04445064)

Gastric Cancer:

• Phase I (NCT05269381)

Bladder Cancer:

• Phase I (NCT05843448, NCT03715985, NCT05843448)
• Phase II (NCT03715985)

Liver Cancer:

• Phase I (NCT05059821)
• Phase II (NCT04206254)
• Phase III (NCT04206254)

Colorectal Cancer:

• Phase I (NCT03761914)
• Phase II (NCT03761914)

Melanoma Cancer:

• Phase I (NCT05269381, NCT03715985)
• Phase II (NCT03715985)

Viral/
bacterial-
based
vaccines

• Recapitulate the natural
infection process of
specific pathogens

• Induce strong and
long-lasting immune
responses

• Produce high
immunogenicity without
adjuvant

• Flexible and facile
engineering possibility
for designing more
selective vaccines
[413–415]

• Not a robust immune
response in some cases

• Pre-existing immunity to
the viral vectors

• Limited capacity for gene
insertion

• Limited expression of
viral transgene due to
lysis of the target cell
[363,416]

Pancreatic Cancer:

• Phase I (NCT03329248, NCT03136406, NCT03953235,
NCT05076760),

• Phase II (NCT03329248, NCT03329248, NCT03953235)

Glioblastoma/Glioma:

• Phase II (NCT04105374)
• Phase III (NCT04105374)

Breast Cancer:

• Phase I (NCT05076760)
• Phase II (NCT03632941)

Prostate Cancer:

• Phase I (NCT03815942, NCT02649855, NCT05553639,
NCT02933255)

• Phase II (NCT03815942, NCT03315871, NCT02649855,
NCT02933255, NCT05553639)

Cervical/Uterus/Ovarian Cancers:

• Phase II (NCT03113487)

Lung Cancer:

• Phase I (NCT03953235, NCT05076760)
• Phase II (NCT03953235)

Head and Neck Cancer: Phase I (NCT05076760)
Gastric Cancer: Phase II (NCT04111172)
Colorectal Cancer:

• Phase I (NCT03563157)
• Phase II (NCT03563157)

Melanoma Cancer:

• Phase I (NCT05076760, NCT04410874)
• Phase II (NCT04410874)
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Table 1. Cont.

Advantages Disadvantages Status of Some of the Vaccines in Clinical Trials
(2016–2023)

DNA
vaccines

• Cost-effectiveness
• Repetitive

administration
possibility

• Simple and flexible
design

• Encoding different
antigens

• Triggers long-lasting
innate and adaptive
immune responses

• Devoid of pathogenic
infection or clinical side
effects

• Heat stable
• Facile transportation and

storage
• Large-scale production

possibility [417–420]

• Poor immunogenicity
• Requires a carrier for

delivery
• Inefficient APC-mediated

antigen uptake
• Inefficient immune

responses
• Risk of integrating into

the host’s chromosomal
DNA and insertional
mutagenesis

• Expression of
antibiotic-resistant genes
[287,418,419]

Pancreatic Cancer:

• Phase I (NCT03122106, NCT04853017, NCT05726864)
• Phase II (NCT05726864)

Glioblastoma/Glioma:

• Phase I (NCT03491683, NCT04015700, NCT03750071,
NCT05698199)

• Phase II (NCT03491683, NCT03750071)

Breast Cancer:

• Phase I (NCT02780401, NCT03199040, NCT03199040)
• Phase II (NCT05455658, NCT04329065)

Prostate Cancer:

• Phase I (NCT03532217, NCT04989946)
• Phase II (NCT03600350, NCT04090528, NCT04989946)

Cervical/Uterus/Ovarian Cancers:

• Phase I (NCT03444376, NCT04131413, NCT04853017)
• Phase II (NCT03444376, NCT03439085, NCT03439085,

NCT03911076, NCT03823131, NCT05334706,
NCT03946358, NCT05799144, NCT03911076,
NCT05334706)

• Phase III (NCT03721978)

Lung Cancer:

• Phase I (NCT03166254, NCT05726864, NCT04853017)
• Phase II (NCT04397003, NCT05242965, NCT05726864)

Head and Neck Cancer:

• Phase II (NCT03823131, NCT03946358, NCT05799144)

Melanoma Cancer:

• Phase I (NCT03289962, NCT03655756, NCT04160065)
• Phase II (NCT03897881, NCT04526899, NCT04079166)

mRNA
vaccines

• Encoding and expressing
TAA, TSA, and their
related cytokines

• Stronger humoral and
cellular immunities
compared with the
pathogen and
peptide-based vaccines

• Rapid production
• Low manufacturing costs

[324,421]

• In vivo instability of
mRNA

• Insufficient mRNA
distribution

• Inducing unwanted
immune responses

• Possibility of vascular
blockage due to
combination of mRNA
with serum proteins
[383,422,423].

Pancreatic Cancer:

• Phase I (NCT04161755, NCT03948763, NCT04741984)

Glioblastoma/Glioma:

• Phase I (NCT05938387, NCT04573140, NCT04741984,
NCT04911621)

• Phase II (NCT03927222, NCT03688178, NCT04911621)

Breast Cancer:

• Phase I (NCT03788083)

Prostate Cancer:

• Phase I (NCT04382898, NCT04382898)
• Phase II (NCT04382898, NCT04382898)

Cervical/Uterus/Ovarian Cancers:

• Phase I (NCT04163094, NCT03323398, NCT04163094)
• Phase II (NCT03323398)

Lung Cancer:

• Phase I (NCT03639714, NCT03164772, NCT03289962,
NCT05660408, NCT03948763)

• Phase II (NCT03639714, NCT03164772, NCT05660408)

Head and Neck Cancer:

• Phase II (NCT04534205)

Colorectal Cancer:

• Phase I (NCT03948763, NCT03948763)
• Phase II (NCT04486378, NCT05456165)
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Table 1. Cont.

Advantages Disadvantages Status of Some of the Vaccines in Clinical Trials
(2016–2023)

Cell-based
vaccines
(DCs, iPSCs,
and CAR-T
cells)

• Presenting all potential
antigens to the immune
system

• Producing various tumor
antigens

• Long-lasting immune
responses

• Mimicking the
expression of tumor-cell
antigens

• Inducing significant
antitumor immune
responses (in particular
in iPSCs) [187,424]

• Expensive
• Longer treatment

duration (in case of
iPSCs or CAR-T cell)

• Loss of the antigen
recognized by CAR

• Cytokine-related
toxicities (in case of
CAR-T cell therapy) [201]

Pancreatic Cancer:

• Phase I (NCT02451982, NCT03767582, NCT03387098,
NCT03552718)

• Phase II (NCT03190265, NCT02648282, NCT02451982,
NCT03767582, NCT03161379, NCT03387098)

Breast Cancer:

• Phase I (NCT03328026, NCT03552718, NCT03674827,
NCT03387085, NCT05269381, NCT05035407)

• Phase II (NCT03328026, NCT03384914, NCT05455658,
NCT03387085)

Colorectal Cancer:

• Phase I (NCT03552718)
• Phase II (NCT04912765, NCT02919644)

Head and Neck Cancer:

• Phase I (NCT03552718)
• Phase II (NCT04166006, NCT04445064)

Glioblastoma/Glioma:

• Phase I (NCT04388033, NCT04388033, NCT04911621,
NCT03914768, NCT04388033, NCT03914768)

• Phase II (NCT04523688, NCT04388033, NCT03395587,
NCT03548571, NCT02465268, NCT03400917,
NCT04388033, NCT04911621, NCT04388033)

• Phase III (NCT03548571)

Lung Cancer:

• Phase I (NCT03674827, NCT05035407, NCT03970746,
NCT04487756, NCT02466568, NCT03674827,
NCT05104515, NCT05035407)

• Phase II (NCT03970746, NCT03406715, NCT04487756,
NCT04277221, NCT02466568, NCT04998474,
NCT04300244, NCT05242965)

Liver Cancer:

• Phase I (NCT03552718, NCT03552718, NCT03674073,
NCT05059821)

• Phase II (NCT04912765, NCT04317248, NCT03406715)

Cervical/uterine/Ovarian Cancers:

• Phase I (NCT05269381, NCT05035407, NCT05104515,
NCT05035407)

• Phase II (NCT04800978)

Gastric Cancer:

• Phase I (NCT04567069, NCT05035407)
• Phase II (NCT04567069)

Leukemia/Blood Cancer:

• Phase II (NCT03059485, NCT04977024)

Melanoma Cancer:

• Phase I (NCT03552718, NCT05269381)
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7. Combining Artificial Intelligence and Cold Plasma Technology as Novel Modality
Tools to Develop Cancer Vaccines

Several major companies are currently the leaders of producing therapeutic cancer
vaccines, including the following: Immatics, BioNTech, AstraZeneca, Memorial Sloan
Kettering Cancer Center, Merck, Massachusetts General Hospital, F. Hoffmann-La Roche,
Bristol-Myers Squibb, Regeneron Pharmaceuticals, and Novartis. In spite of numerous
patents and the development of various cancer vaccines by the above-mentioned companies,
there are several major challenges for the development of efficient and universal cancer
vaccines, such as tumor variability in different people, the similarity of the tumor antigens
to the body’s own antigens, as well as the possibility of cancer recurrence (caused by an
immunosuppressive TME, or tumor heterogenicity) [390,425]. With this in mind, optimizing
current cancer vaccines that can cover a wide range of tumor antigens, distinguish tumor
antigens from the body’s counterparts, and prevent cancer recurrence is indispensable.
As can be seen in Table 1, all of the vaccine platforms have their own particular pros and
cons, and this has led scientists to optimize cancer vaccines by combining these different
platforms with the aim of reinforcing the advantages and reducing the disadvantages,
and to come up with better therapeutic cancer vaccines. Examples of such combination
therapies include using lipid-based deliveries (liposomes, lipid nanoparticles, catanionic
lipids), various polymers, in particular, PEG, to enhance mRNA stability, infusing polymers
with the target cells, tumor specificity, amplifying the tumor antigen response, and reducing
possible toxicities [426–435]. Furthermore, in order to overcome the immunosuppressive
TME (which can prevent function and activation of immune cells necessary for destroying
cancer cells [436,437]), researchers have combined the usage of mRNA vaccines with
immune checkpoint inhibitors [328,438,439]. Tumor heterogenicity refers to the presence
of genetically diverse subpopulations with different phenotypic profiles and leads to a
diversity of genetic mutations. Tumor homogeneity can be seen between tumors or within
the same tumor; tumor homogeneity makes it difficult to detect mutations that occur in
subpopulations and has hampered the design of appropriate treatment strategies [440,441].
In terms of tumor heterogenicity, there are spatial (dynamic genome evolution through
tumor progression) and temporal (tumor is made up of subclones with different genetic
profiles which makes people with the same cancer and tumor subtypes respond differently
toward treatments) heterogenicities and both should be overcome [324]. Some of the
strategies were based on designing personalized mRNA cancer vaccines based on the
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variations seen in tumor regions via tissue multipoint sampling; these strategies are able
target multiple antigens expressed across various tumor regions at the same time (to
target the spatial heterogenicity) and monitor the progression of the disease, which can be
followed by modulating treatment plans based on the results of monitoring (to tackle the
temporal heterogenicity). However, these strategies and combination therapies make the
vaccine design and administration routes more complex, and increase the cost and duration
of the treatment time for patients [324]. With the extension of artificial intelligence (AI)
applications in various sectors, including medicine, scientists have taken advantage of AI
algorithms (such as MHC-binding prediction tools, quantification of mutated transcript
expression, and clonality of the mutation, identifying tumor-specific T cell epitopes) to
predict the tumor antigens and their properties based on tumor genomic data. Based on the
likelihood of eliciting a T cell response, scientists can select some of the specific mutations
as vaccine candidates. AI tools may enhance the accuracy of vaccine designs and overcome
the challenges associated with the heterogeneity of tumors [442–446].

Using AI algorithms seems to be a promising tool that could help in addressing the
major challenges of cancer vaccine development. Another possible technology that could
be used along with the AI-related tools is cold plasma-related systems. Cold atmospheric
plasma (CAP), also known as nonthermal or cold physical plasma, is a medium consisting
of partially ionized gas(es) that provokes the generation of various reactive oxygen and
nitrogen species. CAP has been applied in a wide range of industries, including medicine
and in particular, in cancer therapy; CAP has shown promising results in destroying cancer
cells as well as solid tumors by affecting various related mechanisms at the same time,
such as inducing apoptosis, specifically in tumor cells but not in their normal counterparts,
reducing cell migration, arresting the cell cycle at the S-phase, damaging the DNA, along
with increasing the intracellular concentrations of ROS in the TME, reducing tumor im-
munosuppression, and improving antigenicity [447–453]. CAP has gained FDA approval
to be used in cancer therapy [454–456]. However, this technology has not been used in
cancer vaccine development yet. Based on the way that CAP has been applied in cancer
therapy, we propose that CAP technology could be applied in cancer vaccine development
directly or indirectly. The direct methods can include the direct exposure of cancer cells
along with vaccine administrations (for example, simultaneous administration of lipid
nanoparticle mRNA cancer vaccines and cold plasma exposure of the cancer cells), and
the indirect method can include exposing either the cells in the culture medium (such
as patient T cells in case of CAR-T cells, or iPSCs) or the culture medium alone to the
CAP first and then growing the cells in the medium. This might help to reduce tumor
heterogenicity by preventing genetic mutations with tumor progression, improving the
selectivity of the therapy in killing cancer cells without affecting normal cells, and pre-
venting tumor antigen expression by normal cells. Other methods may include trying to
develop other new CAR-T cells, rather than CD19 and BCMA, which are able to recognize
different tumor antigens, and applying cold plasma. Considering that CAP can enhance the
tumor antigenicity (the degree of difference between cancer and normal cells recognized
by immune cells) and upregulate immunogenic cell surface molecules such as MHC-I
and II, introducing CAP in this field might lead to interesting outcomes. Other methods
could include loading the inactivated whole-cell cancer stem cells with lipid nanoparticles
containing anti-cancer agents or loading the cancer stem cells with liposomes containing
iPSCs, followed by their injection; this could improve the efficiency of DCs and thus the
immunogenic response. Moreover, this method may be able to target several factors at
the same time; for example, both inactivated cancer stem cells and iPSCs cover a wide
range of tumor antigens by themselves, which are poorly immunogenic (do not scape
the cancer immune cycle) [185,187,424], and if they are used together in a system, this
coverage spectrum might be increased and help to solve tumor heterogenicity problems.
Furthermore, this combination system could further enhance the immunogenic response
to prevent cancer recurrence. In the end, if the cold plasma is integrated with such a
combination system, the combination system could be improved even more, as the CAP
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itself selectively destroys the tumor cells. At the same time, the liposomes containing iPSCs
penetrate the DCs and enhance the variability of tumor antigen presentation, followed
by their detection by T cells and the immune response. These are some of the methods
that require future investigations, which might open novel and effective approaches to
therapeutic cancer vaccine development.

8. Summary and Conclusions

To summarize, we have highlighted the recent research progress of four major vac-
cine platforms and their limitations. We believe that a comprehensive understanding of
the immunosuppressive tumor microenvironment is essential for developing effective
cancer vaccines. Besides, particle-based delivery systems have been intensively studied
for cancer vaccines in the past few decades, and these hold great promise for improving
the immunogenicity of vaccines and facilitating lymph node transport. There is already
a consensus that cancer vaccines could achieve a greater therapeutic effect if they were
administered in combination with other immunomodulation or standardized therapies.
However, sustained endeavors are still needed for identifying tumor-specific neoantigens,
effective adjuvants, and optimizing delivery platforms.
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