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Abstract: This study aims at identifying molecular biomarkers differentiating responders and non-
responders to treatment with Tumor Necrosis Factor inhibitors (TNFi) among patients with axial
spondyloarthritis (axSpA). Whole blood mRNA and plasma proteins were measured in a cohort of
biologic-naïve axSpA patients (n = 35), pre and post (14 weeks) TNFi treatment with adalimumab.
Differential expression analysis was used to identify the most enriched pathways and in predictive
models to distinguish responses to TNFi. A treatment-associated signature suggests a reduction in
inflammatory activity. We found transcripts and proteins robustly differentially expressed between
baseline and week 14 in responders. C-reactive protein (CRP) and Haptoglobin (HP) proteins showed
strong and early decrease in the plasma of axSpA patients, while a cluster of apolipoproteins (APOD,
APOA2, APOA1) showed increased expression at week 14. Responders to TNFi treatment present
higher levels of markers of innate immunity at baseline, and lower levels of adaptive immunity
markers, particularly B-cells. A logistic regression model incorporating ASDAS-CRP, gender, and
AFF3, the top differentially expressed gene at baseline, enabled an accurate prediction of response
to adalimumab in our cohort (AUC = 0.97). In conclusion, innate and adaptive immune cell type
composition at baseline may be a major contributor to response to adalimumab in axSpA patients. A
model including clinical and gene expression variables should also be considered.
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1. Introduction

Axial Spondyloarthritis (axSpA) can lead to significant disability and impairment in
quality of life [1]. Clinical features of axSpA are heterogeneous, including inflammatory
back pain, asymmetrical peripheral oligoarthritis (predominantly of the lower limbs), and
enthesitis, and specific organ involvement, such as acute anterior uveitis, psoriasis, and
chronic inflammatory bowel disease [2].

In axSpA, non-steroidal anti-inflammatory drugs (NSAIDs) have a central role in treat-
ment and are considered the first choice therapy. However, biological disease-modifying
antirheumatic drugs (bDMARDs), including Tumor Necrosis Factor inhibitors (TNFi),
Interleukin-17 and Interleukin-23 inhibitors (IL-17i, IL23i), and, more recently, target syn-
thetic DMARDs (tsDMARDs) as Janus Kinase (JAK) inhibitors, are recommended to patients
enduring active disease despite conventional treatment (or intolerance/contraindication) [3].
The efficacy of bDMARDs has been documented in several studies showing significant and
early improvements in disease activity and function [4,5] sustainable for long periods of
time [6–8]. In spite of its well documented benefit in axSpA, up to 40% of patients fail to
respond to bDMARD treatment [9] or suffer adverse events [10,11].

Patients that fail to respond to the first bDMARD usually switch to another (with the
same or another mechanism of action), and it may take several iterations to find a suitable
drug that reduces disease activity effectively [3]. Response to an effective therapy can take
several months, and the delay for non-responders implies continued impact of disease,
and, potentially, additional irreversible damage and potential exposition to adverse events.
In this context, it is important to identify, as early as possible, patients highly (un)likely to
respond to therapy, following the treat-to-target concept [12] and in line with the concept
of “window of opportunity” [13,14].

Studies specifically in axSpA indicate that primary non-responders to TNFi tend to
be older, HLA-B27 negative, have higher baseline structural damage, and poor function,
Ref. [15] and are treated with soluble TNF receptors [9]. Likewise, some markers were
identified in association with a good response to therapy, namely: younger age, HLA-B27
carriage, elevation of acute phase reactants (CRP), and marked spinal inflammation, as
evaluated by MRI [16].

No studies so far have identified molecular changes associated with a good/bad
response to TNFi treatment in axSpA. However, several studies have tried to develop
molecular predictors of response to TNFi treatment in rheumatoid arthritis (RA), with
variable success [17–19]. One such study using whole blood transcriptome achieved
65% accuracy in predicting response to infliximab using a 10-gene biomarker set [17]. In
another study using transcriptome of monocytes, CD11C was found to be a very good
predictor of response (95% accuracy) to adalimumab monotherapy in RA [18]. Thomson
and colleagues used publicly available data to develop a model that increased the capacity
to detect non-responders, from 27% to 59%, using 18 signaling mechanisms [19]. More
recently, a set of studies suggested an interplay between innate and adaptive immunity,
with a higher myeloid-driven inflammation in responders and higher lymphoid activity in
non-responders [19–21].

Reliable predictors of outcome for TNFi monotherapies in axSpA are not yet available.
The goal of this study is to identify predictors, at baseline, of patient response to TNFi ther-
apy (adalimumab) in axSpA using transcriptome and proteome approaches in peripheral
blood samples.
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2. Materials and Methods
2.1. Study Design and Samples Collection

The Bioefficacy study, Biomarkers Identification of Anti-TNFα Agent’s Efficacy in Anky-
losing Spondylitis Patients Using a Transcriptome Analysis and Mass Spectrometry (clinical
trials.gov identifier NCT02492217), is multicentric and conducted across multiple Rheuma-
tology departments in mainland Portugal. It is a prospective, non-randomized study,
spanning 14-weeks focusing on adult patients with axSpA (detailed in Table 1), aged be-
tween 18 and 75 years old, and fulfilling the axSpA ASAS criteria [22]. The study was
conducted from 2014 to 2019, and involved biologic-naïve patients initiating TNFi therapy
with adalimumab (40 mg subcutaneously fortnightly), according to the Portuguese Soci-
ety of Rheumatology Guidelines [23] (see Supplementary Materials). The detailed study
protocol has been published. Clinical evaluations (Bath Ankylosing Spondylitis Activity
Index—BASDAI, Bath Ankylosing Spondylitis Functional Index—BASFI, Bath Ankylosing
Spondylitis Metrology Index—BASMI, and 36-Item Short-Form Health Survey—SF-36) and
peripheral blood collections were performed at baseline (BL) (start bDMARD) and after
3–5 days (D3), 2 weeks (W2), and at 14 weeks (W14). Patients were classified as responders
or non-responders, according to ASAS20 [24,25] at week 14. To increase confidence in
the response assessment, ∆ASDAS and BASDAI 50 [16] were used as secondary response
criteria. All clinical evaluations were performed by previously trained rheumatologists.
Blood samples were collected from all subjects at baseline to test for HLA-B27 status and
at each timepoint to determine C-reactive protein (CRP), Erythrocyte Sedimentation Rate
(ESR), and other biochemical parameters, and for RNA-seq and serum proteome analysis
(further details in supplementary methods).

Table 1. Summary of the clinical characteristics of the cohort. For each continuous variable, the mean
and standard deviation within each group were calculated. The two-sample Wilcoxon test (continuous
variables) and chi-square test of association (categorical variables) were used to compare characteristics
between non-Responders (NR) and responders (R). Variables include Erythrocyte Sedimentation Rate
(ESR, in mm/h), C-reactive protein (CRP, in mg/L), Bath Ankylosing Spondylitis Disease Activity
Index (BASDAI) scores, Bath Ankylosing Spondylitis Functional Index (BASFI) scores, and Ankylosing
Spondylitis Disease Activity Score (ASDAS) using the ESR levels (ASDAS-ESR) or CRP levels (ASDAS-
CRP). For these characteristics, the value at baseline and week 14 is provided, as well as the difference of
the values between the two endpoints. Other fixed clinical characteristics include age at diagnosis (in
years of age), disease duration (in years since start of first symptoms), presence (positive) or absence
(negative) of the HLA-B27 allele, and sex (biological gender)—female or male.

NR (N = 17)
Mean (sd)

R (N = 18)
Mean (sd) p

Erythrocyte Sedimentation Rate (mm/h)

Baseline 26.1 (20.4) 33.2 (28.5) 0.541

Week 14 11.9 (10.7) 10.8 (9.10) 0.856

BL-W14 14.2 (16.3) 22.3 (23.5) 0.298

C-Reactive Protein (mg/L)

Baseline 11.3 (11.5) 23.7 (19.7) 0.011

Week 14 7.42 (10.9) 3.90 (2.78) 0.754

BL-W14 3.89 (4.78) 19.8 (19.4) <0.001

BASDAI score

Baseline 5.35 (2.63) 6.53 (1.46) 0.234

Week 14 4.07 (2.18) 1.93 (1.44) 0.003

BL-W14 1.28 (1.50) 4.60 (1.81) <0.001
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Table 1. Cont.

NR (N = 17)
Mean (sd)

R (N = 18)
Mean (sd) p

BASFI score

Baseline 5.29 (2.72) 6.71 (1.91) 0.156

Week 14 3.71 (2.65) 2.55 (2.10) 0.176

BL-W14 1.58 (1.49) 4.16 (2.06) <0.001

ASDAS-ESR score

Baseline 3.23 (0.86) 3.76 (1.08) 0.203

Week 14 2.27 (0.93) 1.48 (0.50) 0.008

BL-W14 0.96 (0.57) 2.28 (1.00) <0.001

ASDAS-CRP score

Baseline 3.16 (0.75) 4.16 (0.76) <0.001

Week 14 2.46 (0.75) 1.56 (0.57) <0.001

BL-W14 0.70 (0.51) 2.59 (0.94) <0.001

Age at Diagnosis (years)

37.9 (11.3) 34.9 (11.6) 0.301

Disease duration (years)

14.8 (12.7) 13.7 (7.49) 0.869

HLA-B27 Status 0.010

Absent 10 (58.8%) 3 (16.7%)

Present 7 (41.2%) 15 (83.3%)

Gender 0.915

Female 5 (29.4%) 5 (27.8%)

Male 12 (70.6%) 13 (72.2%)

2.2. Data Analysis

Descriptive statistics were used to summarize baseline characteristics for responders
and non-responders. Two sample Wilcoxon tests (continuous variables) and chi-square
tests of association (categorical variables) were used to compare baseline characteristics
between responders and non-responders.

Differential gene and protein expression analysis used the limma R package (R version
4.1, Bioconductor 3.14) to apply a voom transformation for variance stabilization on normal-
ized expression values, and to obtain differentially expressed genes through an empirical
Bayes method, followed by multiple test correction with the Benjamini–Hochberg method.
Genes and proteins were considered differentially expressed if the adjusted p-value of the
test was less than 0.05.

Logistic regression models and plotting were performed using the R software as
above. Sparse partial least squares discriminant analysis (sPLS-DA) was performed using
the mixOmics R package. Random forest models were obtained using the randomForest
R package.

Further details can be found in Supplementary Materials.

3. Results
3.1. TNFi (Adalimumab) Leads to a Decrease in Disease Activity in the Majority of axSpA Patients

Of the 58 patients enrolled in the entire study (40 responders and 18 non-responders),
36 patients (the 18 responders with the best response and all the 18 non-responders) were
selected for transcriptome and proteome analysis (1 non-responder was later excluded due
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to the unavailability of high-quality biological samples). Table 1 briefly summarizes the
clinical characteristics of this cohort.

At BL, responders exhibited higher levels of C-reactive protein (CRP) (p = 0.011)
and ASDAS-CRP (p < 0.001). Additionally, responders also have a higher proportion
of HLA-B27 positivity (p = 0.01). Disease activity showed a decrease from BL to W14
in both responders (mean ∆ASDAS-CRP: 2.6, p < 0.001; mean ∆BASDAI: 4.6, p < 0.001)
and non-responders (mean ∆ASDAS-CRP: 0.7, p < 0.001; mean ∆BASDAI: 1.3, p = 0.006)
(Supplementary Figure S1A,B). Other clinical attributes were comparable between the
two groups.

This suggests, as expected, that treatment with adalimumab, with a few exceptions,
has lowered inflammatory markers and disease activity scores in most patients.

3.2. Treatment with Adalimumab Had a Significant Impact on the Expression of Blood Cell
Transcripts and Plasma Proteins of axSpa Patients

In an unsupervised principal component analysis (PCA), the expression levels of
blood cell transcripts and abundances of plasma proteins in axSpA patients did not clearly
separate responders from non-responders, at neither BL nor W14 (Figure 1A). Nonetheless,
plasma proteomics showed clear differences between BL and W14 in responders, suggest-
ing an effective impact of adalimumab treatment. Indeed, a sparse partial least squares
discriminant analysis (sPLS-DA) supports a separation between BL and W14, for both
responders and non-responders, not only in proteomics (Supplementary Figure S2), but
also in transcriptomics (p < 0.05, Figure 1B).

Permutational multivariate analysis of variance indicates that both time point (3%
and 17%) and response group (2% and 4%) can explain a small but statistically significant
(p < 0.05) part of the observed global variation in both transcript and protein levels, re-
spectively. Moreover, sPLS-DA analysis supports a separation between responders and
non-responders at baseline (p < 0.01, Figure 1C).

This suggests that treatment with TNFi had a significant impact in the expression of
blood cell transcripts and plasma proteins of axSpA patients undergoing treatment with
adalimumab. Moreover, it also suggests the existence of detectable differences between
responders and non-responders at baseline.

3.3. Transcripts and Proteins Varying between Baseline and Week 14 Were Associated with a
Decrease in Innate Immune Activity

In responders, 2120 (of 21438) genes (103 genes with fold change (FC) greater than 2)
and 41 (of 129) proteins (7 with FC > 2) were differentially abundant between BL and W14,
of which 1096 genes (41 with FC > 2) and 25 proteins (4 with FC > 2) were upregulated at
W14 (Figure 2A, Supplementary Tables S1 and S2). Genes associated with inflammation,
particularly neutrophil-driven (such as DOK3, LRG1, and MMP9), tended to be significantly
less expressed in blood cells at W14 in comparison to BL, while upregulated genes were
associated mostly with translation and other metabolic processes (e.g., EEF1A1, RPL7,
MRPL1, Figure 2B). In agreement with this, plasma proteins less abundant at W14 were
associated with the activation of the complement system and innate immunity, including
the complement factors CFB and CFH and complement components C3, C8B, and C8G
(Figure 2B, Supplementary Table S2). Plasma proteins more abundant at W14 were linked
with vitamin metabolism, including the apolipoproteins APOA1, APOA2, and APOA4.
Given the consistent decrease in expression of neutrophil and innate immunity markers,
we also compared estimated frequencies of different white blood cells between BL and W14.
In agreement with the gene expression results, we observed in responders a significant
decrease in neutrophil frequency at week 14 and an increase of B cell frequency (Figure 2C),
with a similar pattern observed for other adaptive immune cell populations such as CD4+
T-cells (Supplementary Figure S7A).
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transcriptomics and proteomics data for responders (R) and non-responders (NR) at baseline (BL) 
and week 14 (W14). For visual clarity two outliers are out of view in the transcriptomics PCA, but 
all data were used to generate the plot. (B) Sparse partial least squares discriminant analysis (sPLS-
DA) of transcriptomics data, using time as a variable of interest, in responders (AUC = 0.99, permu-
tation test p < 0.001) and non-responders (AUC = 1, p < 0.001). (C) The sPLS-DA of transcriptomics 
(AUC = 1, p < 0.001) and proteomics (AUC = 1, p < 0.001) data at baseline, using response group as a 
variable of interest. In all cases, AUC and p-value correspond to the two best components of the 
sPLS-DA. In all graphs, ellipses represent 95% confidence intervals. 

Figure 1. Response to TNFi has a significant impact on the relative abundance of blood cells
transcripts and serum proteins of patients. (A) Principal component analysis (PCA) of the blood cell
transcriptomics and proteomics data for responders (R) and non-responders (NR) at baseline (BL) and
week 14 (W14). For visual clarity two outliers are out of view in the transcriptomics PCA, but all data
were used to generate the plot. (B) Sparse partial least squares discriminant analysis (sPLS-DA) of
transcriptomics data, using time as a variable of interest, in responders (AUC = 0.99, permutation test
p < 0.001) and non-responders (AUC = 1, p < 0.001). (C) The sPLS-DA of transcriptomics (AUC = 1,
p < 0.001) and proteomics (AUC = 1, p < 0.001) data at baseline, using response group as a variable of
interest. In all cases, AUC and p-value correspond to the two best components of the sPLS-DA. In all
graphs, ellipses represent 95% confidence intervals.
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baseline samples versus week 14 samples in responders. In grey are non-significant (NS) genes/pro-
teins; in green are genes/proteins that are not statistically significant (FDR > 0.05) but have an esti-
mated fold change greater than 2; in blue are genes/proteins that are statistically significant but have 

Figure 2. Response to TNFi has a significant impact in the relative abundance of the blood cell
transcripts and plasma proteins of patients. (A) Volcano plots (log2 of the fold change versus
−log10 of the false discovery rate (FDR)) comparing the levels of blood cell transcripts and plasma
proteins in baseline samples versus week 14 samples in responders. In grey are non-significant (NS)
genes/proteins; in green are genes/proteins that are not statistically significant (FDR > 0.05) but have
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an estimated fold change greater than 2; in blue are genes/proteins that are statistically significant but
have a milder fold change (less than 2); and in red are genes/proteins that are statistically significant
and have a fold change greater than 2. The identifiers of all the red proteins and some of the red
genes are displayed in the plot. (B) Barplots displaying the Normalized Enrichment Score (NES) of
representative significant pathways resulting from a gene set enrichment analysis (GSEA) comparing
the gene expression or protein abundances of W14 (green) against BL (blue) responder samples.
(C) Boxplot displaying estimated relative frequencies of neutrophil and naive B-cell in BL and W14
samples. In C, the p-value is from a paired Wilcoxon rank-sum test; samples of the same patient are
connected with a grey line.

In non-responders, no significant differences in blood cell gene expression were
identified between BL and W14. However, a rank-based gene set enrichment analysis
(GSEA) of the transcriptome data revealed the same pathways as those observed in re-
sponders (Supplementary Figure S4). Sixteen plasma proteins were found to be differen-
tially expressed (none with FC > 2), with eleven of them upregulated at W14. Notable
examples include Apolipoprotein A1 (APOA1), C-Type Lectin Domain Family 3 Mem-
ber B (CLEC3B), Complement Factor H (CFH), and Retinol Binding Protein 4 (RBP4)
(Supplementary Figure S3A,B and Tables S3 and S4). Based on proteomic data, no path-
ways were found significantly different regulated. Also, although there is a similar tendency
to decrease neutrophil frequency between BL and W14 in non-responders, it does not reach
statistical significance in neutrophils or other immune cell populations (Supplementary
Figure S7A).

The levels of transcripts and proteins that were differentially abundant between BL
and W14 in responders were more similar at W14 (p < 0.05) than they were at BL, suggesting
preexisting differences at baseline that were attenuated due to treatment (Supplementary
Figure S5). In agreement with this observation, we did not find any genes or proteins
displaying significantly different behavior between time and response group, suggesting
that the action of adalimumab in responders and non-responders is similar.

Overall, these results suggest that the transcripts and proteins that varied during
adalimumab treatment were associated with a decrease in innate immune activity.

3.4. Markers of Inflammation Exhibited a Decrease in Plasma Levels as Early as 3 Days after
Adalimumab Treatment, Observed in Both Responders and Non-Responders

To refine our understanding of the temporal response to adalimumab, we also per-
formed plasma proteomics analysis at 3–5 days (D3) and 2 weeks (W2) after beginning
of treatment.

In responders, several plasma proteins that were significantly downregulated at W14
compared to BL, including Haptoglobin (HP), Haptoglobin receptor (HPR), and CRP, exhibited
a tendency to decrease already at D3 (p = 0.07, 0.2, and 0.02, respectively), with further
reduction until W2 (p < 0.001 for all; Figure 3A, Supplementary Tables S5 and S6). In non-
responders these proteins also showed a similar decreasing trend at D3 and W2, although not
reaching statistical significance (Supplementary Figure S6A–C and Tables S7 and S8).

In responders, among the proteins significantly increasing at W14 compared to BL,
there was greater heterogeneity. However, some proteins, such as ApolipoproteinD (APOD),
Apolipoprotein A2 (APOA2), and a recombinant protein of human pro-platelet basic
protein (chemokine (C-X-C motif) ligand 7) (PPBP), displayed a tendency to increase their
abundance already at W2 (p = 0.3, 0.01, and 0.03). Interestingly, the average level of change
of these upregulated proteins was much milder (maximum FC of 2) when compared to
the downregulated proteins HP, HPR, and CRP (FC of 3–5). A similar trend of increased
abundance at W2 of APOD, APOA2, and PPBP was observed in non-responders (p = 0.002,
<0.001, 0.1; Figure 3B, Supplementary Figure S6D).

Thus, our results indicate that some markers of inflammation elevated at baseline
were already lowered in the plasma of some patients after just 3–5 days of adalimumab
treatment, with similar patterns observed in both responders and non-responders.
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Figure 3. Markers of inflammation are already lowered in the plasma after 3–5 days of adalimumab
treatment in both responders and non-responders. (A) Log2 fold change of proteins between a given
time point and the baseline. Only proteins significantly downregulated at W14 in responders were
represented. (B) Same as (A) but with upregulated proteins. Proteins with similar temporal behavior
were clustered using the dtwclust R package. Only the names of a set of representative proteins
are displayed.

3.5. Blood Transcriptome Data at Baseline Suggest That Response to Adalimumab Stems from an
Interplay between Innate and Adaptive Immunity

At BL, no proteins (of 112) were found to be significantly differentially abundant
between responders and non-responders, but we could identify 92 genes (of 18,688, 12 with
FC > 2) that were differentially expressed between responders and non-responders. Among
these, 16 (0 with FC > 2) were more expressed in responders, while 76 (12 with FC > 2)
were more expressed in non-responders (Figure 4A, Supplementary Tables S9 and S10).
Genes with higher expression in responders were associated with inflammation, including
processes such as neutrophil degranulation and interferon signaling. On the other hand,
genes more expressed in non-responders were linked to lymphocyte activation, particularly
B-cell activity, and metabolism, specifically translation (Figure 4B). Notably, among the
top differentially expressed genes were PAX5, CD20 (MS4A1), FCRLA, and BANK1, all
associated with B-cell activity and all significantly more expressed in non-responders at BL
(Figure 4C).

Supporting this observation, the estimation of lymphocyte population frequencies
using RNA-Seq indicated significantly higher frequencies of B-cells in non-responders at BL
(Figure 4D). Genes associated with B-cells exhibited the most pronounced overall difference
between responders and non-responders at BL, and between BL and W14 in responders
(Supplementary Figure S8A), with a similar pattern to that observed for other adaptive
immune cell populations. In contrast, neutrophil-associated genes showed an opposing
pattern, being significantly downregulated between BL and W14. Moreover, a significant
positive correlation was found between disease activity and neutrophil frequencies, while
a negative correlation was observed with B-cells and T-cells (Supplementary Figure S7B).

Thus, our results suggest that response to adalimumab derives from alterations in the
balance between innate and adaptive immunity, indicating an opposing role, particularly
between neutrophils and B-cells.
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Figure 4. Blood transcriptome data at baseline suggest that the response to adalimumab derives
from an interplay between innate and adaptive immunity. (A) Volcano plot (log2 of the fold change
versus −log10 of the false discovery rate (FDR)) comparing the transcript levels of responder versus
non-responder samples at baseline. In grey are non-significant (NS) genes; in green are genes that are
not statistically significant (FDR > 0.05) but have an estimated fold change greater than 2; in blue
are genes that are statistically significant but have a milder fold change (less than 2); and in red are
genes that are statistically significant and have a fold change greater than 2. The names of all the
red genes and AFF3 are displayed in the plot. (B) Barplot displaying the Normalized Enrichment
Score (NES) of representative significant pathways resulting from a gene set enrichment analysis
(GSEA) comparing the gene expression of responder (blue) versus non-responder (red) samples at
baseline. (C) Heatmap representation of the expression profile of the top 40 differentially expressed
genes comparing responder versus non-responder samples at baseline; for visualization purposes,
expression values of each gene were scaled towards a standard distribution (z-score), and rows and
columns were clustered by correlation. Z-scores of the expression values are presented in a scale from
blue (relatively less expressed) to red (relatively more expressed). Sample metadata is presented at
the top: ASDAS-CRP score; C-Reactive Protein (mg/L); Disease duration (years); Age at Diagnosis
(years); HLA-B27 Status (F—Absent; T—Present); HLA-B27 Status (F—Absent; T—Present); Gender
(F—Female; M—Male); Response Group (R—Responders; NR—Non-responders). (D) Estimated
relative frequencies of B-cell and neutrophil in responder and non-responder samples at baseline.

3.6. The Blood Transcriptome Data Enhance the Ability to Differentiate between Responders and
Non-Responders at Baseline

In our cohort, ASDAS-CRP at BL showed a significant association with TNFi response
in a multivariate logistic model (Figure 5A). HLA-B27 status approached a borderline
p-value of 0.07, while biological gender, age at diagnosis, and disease duration did not
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reach statistical significance. Responders exhibited a higher ASDAS-CRP, with an optimal
threshold of 4.15 (100% sensitivity and 50% specificity), identified using the ROC curve
(area under the curve (AUC) = 0.83, Figure 5B). A model that incorporated ASDAS-CRP,
gender, and HLA-B27 achieved an AUC of 0.9. Notably, a model replacing HLA-B27 with
the ratio between neutrophils and lymphocytes reached an AUC of 0.87.
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Figure 5. Blood transcriptome data improve the ability to differentiate responders versus non-
responders at baseline. (A) Forest plot displaying the logarithm of the odds, 95% confidence interval,
and p-value of response to adalimumab for different variables from a logistic regression model.
(B) Receiver operating characteristic (ROC) curve displaying specificity and sensitivity depending
only on values for ASDAS-CRP, a logistic regression model incorporating ASDAS-CRP, gender, and
HLA-B27 status, a model incorporating ASDAS-CRP, gender, and the expression value of AFF3, and a
model incorporating ASDAS-CRP, gender, AFF3, and HLA-B27.

The gene AFF3, a tissue-restricted nuclear transcriptional activator preferentially
expressed in lymphoid tissue, emerged as the top differentially expressed gene between
responders and non-responders at BL. Integrating the gene expression values of AFF3 into
a logistic regression model, along with gender and ASDAS-CRP, elevated the AUC to 0.97
(Figure 5B). Additionally, a random forest model utilizing the same variables achieved a
predicted accuracy of 80–85%, surpassing the performance when using ASDAS-CRP alone
(60%) or when relying solely on clinical variables (70–75%).

Our results suggest that blood transcriptome data can improve our ability to differ-
entiate responders from non-responders at baseline, and that simple hemogram data may
have valuable clinical application.

4. Discussion

Our findings indicate that TNFi leads to a reduction in inflammatory markers in the
majority of axSpA patients, aligning with observations from prior studies [4]. Both our
transcriptome and proteome data consistently suggest a global decrease in inflammatory
markers 14 weeks after initiating TNFi, corroborating changes in clinical markers of inflam-
mation and disease activity scores. Specifically, genes showing reduced expression between
BL and W14 of treatment are linked to inflammation and immune-related pathways. The
proteome analysis further supports this observation, indicating a decreased expression
of proteins associated with inflammation, innate immunity, and the complement system.
In contrast, genes exhibiting increased expression at W14 are associated with metabolic
processes, particularly gene translation and lipid metabolism.

Our transcriptome results closely align with previous findings in axSpA: TNFSF14
(LIGHT), IL17RA, EPOR, and IFNAR1, the genes highlighted by Haroon et al. [26], exhibited
significantly reduced expression after TNFi treatment in our cohort. Moreover, 58 (16%) of
360 genes upregulated after TNFi in the study by Wang et al. [27] were also upregulated in
our investigation, and 88 (31%) of the 285 downregulated genes were similarly identified in
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our study. This suggests that, despite the heterogeneity in clinical manifestations of axSpA,
the molecular response to TNFi appears consistent across different studies, at least at the
level of blood cell transcriptome.

In addition, among the 103 significantly differentially expressed genes (DEGs) between
BL and W14 with higher fold changes (FC > 2), 10 had been previously identified as associ-
ated with axSpA in genome-wide association studies (GWAS) [28]. Of these, TNFRSF1A,
TBKBP1, HHAT, and LTBR, all exhibiting lower expression at W14, are involved in the TNF
pathway, mediating apoptosis through nuclear factor-κB [29], and serving as regulators
of inflammation. Notably, IL1R, IL6R, and TYK2, more associated with innate immunity,
were downregulated, while IL7R and ICOSLG, more associated with the adaptive immune
system, particularly the stimulation and differentiation of T- and B-cells, were upregulated.
FCGR2A, also downregulated, encodes a cell surface receptor found on phagocytic cells
such as macrophages and neutrophils [28]. We opted for AFF3 for our model as the most
differentially expressed gene in our cohort, even though it was not identified in previous
GWAS analyses. Future studies should aim to elucidate the physiopathologic role of these
genes in the response to TNFi.

We also have identified several plasma proteins that undergo significant changes in
abundance with TNFi treatment. In general, we observed a decrease in the abundances of
HP, HPR, CRP, and complement factors, along with an increase in several apolipoproteins,
CLEC3b, and RBP4. Notably, in responders, we observed an early (since days 3–5) and per-
sistent decrease in HP and CRP, which correlated with observed clinical improvement. The
decrease in complement factors was milder and occurred later (after W2). The subsequent
increase in apolipoproteins APOA1, APOA2, and APOD, known for their involvement in
lipid clearance from circulation and anti-inflammatory properties, has been demonstrated
in previous studies [30].

Interestingly, APOD, which lacks marked similarity to other apolipoprotein sequences,
shows a high degree of homology to plasma retinol-binding protein (Rbp), which is also
overexpressed. Both proteins are believed to influence bone metabolism, with RBP4 found
in a restricted population of epiphyseal chondrocytes and perichondral cells, likely correlat-
ing with future regions of secondary ossification [31]. Additionally, CLEC3B, a plasminogen-
binding protein induced during the mineralization phase of osteogenesis, is also more
abundant [32]. These findings shed light on the molecular mechanisms underlying the
resolution of inflammation while also suggesting that osteoproliferation may be induced
under TNFi therapy, as documented in recent studies [33–35].

The primary objective of our study was to identify molecular predictors, at baseline
(BL), of the response to TNFi. Our findings support ASDAS-CRP as an effective measure
for promptly determining TNFi as a therapeutic option in axSpA. However, for cases with
moderate disease activity, additional variables are necessary for accurate prediction. The
inclusion of AFF3, the top differentially expressed gene at BL between responders and non-
responders, in a logistic regression model with ASDAS-CRP and gender enabled precise
prediction of the response to adalimumab in a high proportion of patients (AUC = 0.97).
Moreover, robust machine learning methods, including cross-validation, suggest a predictive
capacity exceeding 80% accuracy.

The identification of an interplay between innate and adaptive immunity, consistent
with findings in previous studies in rheumatoid arthritis (RA) [21], implies similar mech-
anisms in both diseases. Our analysis suggests that ratios between innate and adaptive
immune populations, such as neutrophil/lymphocyte ratios, merit further exploration as a
clinical marker of interest for TNFi therapeutic decisions.

To our knowledge, this study is the first to utilize a multi-omic approach to address
the challenging task of predicting therapeutic response to TNFi in the context of axSpA,
involving a significant number of participants followed for 14 weeks, which is the minimum
time required to evaluate response in clinical practice. In addition, this work contributes to
validate results from previous studies. Nonetheless, we acknowledge limitations in our
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study, such as the involvement of patients from only one country, the use of only one TNFi,
and the short period of follow up.

In conclusion, we have documented a significant impact of adalimumab treatment on
transcript expression and protein abundances during the initial 14 weeks of treatment. Our
results suggest an interplay between innate and adaptive immunity under TNFi therapy,
with lymphoid markers emerging as the most differentially expressed between groups and
enabling highly accurate predictive models within our cohort. Taken together, our findings
indicate that molecular data can not only provide mechanistic insights into the genesis and
progression of the disease, but also suggest novel biomarkers for evaluating the potential
response to adalimumab and probably other TNFi before initiating treatment.
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Transcriptomic and proteomic differences detected between BL and W14 in responders are attenuated
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lowered in the plasma after 3–5 days of adalimumab treatment, in both responders and non-responders;
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