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Abstract: Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first
line of defense as part of the innate immune system. Humans are known to express antimicrobial
precursor proteins, which are further processed to generate AMPs, including several types of α/β
defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs
is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites.
The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The
prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for
developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin
family of AMP in humans, has been the major focus for the past few decades of research. The host
defense activity of LL37 is likely underscored by its expression throughout the body, spanning from
the epithelial cells of various organs—testis, skin, respiratory tract, and gastrointestinal tract—to
immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts
several other host defense activities, including inflammatory response modulation, chemo-attraction,
and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides
are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to
develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known
biophysical, structural, and functional studies in recent years. We believe that this review will pave
the way for future research on the structures, biochemical and biophysical properties, and design of
novel LL37-based molecules.

Keywords: antimicrobial peptides; host defense peptides; LL37; structure; biophysical; human
antimicrobial peptides

1. Introduction

Since the discovery of penicillin, antibiotics have saved millions of lives from infectious
diseases. Antibiotics are still considered “magic bullets” and continue to serve as eminent
drugs to reduce mortality from bacterial infections. However, as we note from the current
affairs of antibiotics, these magic bullets are becoming less effective or sometimes even
ineffective in curing patients in hospitals and in intensive care facilities [1–3]. At present,
antibiotic resistance, or antimicrobial resistance (AMR), is increasing at a rapid rate across
the globe, revealing serious consequences to human and animal health [4–6]. Notably,
drug-resistant bacteria are responsible for most of the infections and deaths caused by
AMR (vide infra). The Centers for Disease Control and Prevention (CDC), USA, published
their first AMR threat report in 2013 that estimated that over 2 million people were infected
by antibiotic-resistant bacteria, causing 23,000 deaths in the USA alone. In a more recent
report, the CDC indicated that there are over 2.8 million antimicrobial-resistant infections
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and 35,000 human deaths every year [7]. In the year 2014, the government of the UK
and the Welcome Trust jointly commissioned a review exercise to analyze the global
economic impacts arising from AMR [8]. The landmark report of O’Neill made several vital
recommendations to the international governments to tackle global AMR challenges [8].
The report also suggested that AMR could cause over 10 million deaths each year by
2050. A recent comprehensive report from the Antimicrobial Resistance Collaborators
analyzed the worldwide occurrence of bacterial AMR for the year 2019 [9]. The study
estimated a staggering number of deaths, 4.95 million, associated with bacterial AMR in
that year. Notably, approximately 3.75 million mortalities associated with bacterial AMR
were caused by the six bacterial pathogens, Escherichia coli, Staphylococcus aureus, Klebsiella
pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. It
is noteworthy that these bacteria are also included in the WHO-listed drug-resistant group
of pathogens, ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) [10].

To distinguish their pattern of susceptibility, antibiotic-resistant bacteria are catego-
rized into three classes: multi-drug resistant (MDR), extremely drug resistant (XDR), and
pan-drug resistant (PDR). MDR bacteria demonstrate resistance to at least one drug in three
or more antimicrobial groups. The XDR group includes pathogens that are susceptible
to only one or two categories of antibiotics. PDR bacteria have acquired resistance to
all classes of antibiotics [11]. The AMR data analyses delineated that most of the deaths
were caused by methicillin-resistant S. aureus and several MDR strains of Gram-negative
bacteria, such as third-generation cephalosporin-resistant isolates of E. coli and K. pneu-
moniae, fluoroquinolone-resistant E. coli, and carbapenem-resistant strains of A. baumannii
and K. pneumoniae [10]. In addition to these MDR strains of bacteria, the CDC of the
USA has also indicated that drug-resistant strains of Clostridioides difficile, Neisseria gonor-
rhoeae, vancomycin-resistant Enterococcus (VRE), Pseudomonas aeruginosa, Mycobacterium
tuberculosis, and Salmonella sp. are either urgent or serious threats.

Despite the rise of resistant strains of bacteria, the launch of new antibiotics that can be
effective against multi-drug resistant pathogens from the major pharmaceutical industries
has been extremely limited [12–14]. As a matter of fact, the introduction of any antibiotic is
likely to be challenged by the development of resistance by the targeted bacteria. Therefore,
new antimicrobial agents must be constantly developed to mitigate the acquisition of
resistance among pathogenic bacteria [12–14]. For around four decades, the 1940s to the
1970s, pharmaceutical industries maintained a stable discovery pipeline in supplying
new antibiotics. In that golden era, antibiotics were developed that could overcome the
complications caused by bacterial resistance to earlier drugs. After that and in recent years,
fewer antibiotics (quinupristin-dalfopristin, linezolid, and daptomycin) became available
for the treatment of infections caused by MDR Gram-positive bacteria [15,16]. By contrast,
there are now limited treatment options available to treat infections of MDR Gram-negative
pathogens. In particular, infections caused by carbapenem-resistant Gram-negative bacteria
are hard to treat with any another antibiotic [17,18]. To tackle these infections, an apparently
nephrotoxic peptide antibiotic polymyxin B, or colistin, has been brought back for clinical
usage [19,20].

2. Antimicrobial Peptides (AMPs) as Potential Alternatives to Antibiotic Resistance

Antimicrobial peptides (AMPs) are promising molecules of high translational po-
tential against multi-drug resistant bacterial pathogens [21–24]. A PubMed search on
“antimicrobial peptide” showed 52,404 results (Figure 1).
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nisms, e.g., barrel stave, toroidal pore, or carpet [32–34]; the non-membrane targeting 
mechanisms include the inhibition of cell division, protease activity, and biosynthesis of 
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bacterial cell membranes over zwitterionic or neutral membranes of host cell membranes 
[25–27]. Gram-negative bacteria are intrinsically more resistant to several frontline antibi-
otics that are extremely effective in killing Gram-positive bacteria [34,35]. The lipopoly-
saccharide (LPS) outer membrane (or LPS-OM) of Gram-negative bacteria serves as a per-
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have demonstrated efficacy of several AMPs against MDR-resistant strains of Gram-neg-
ative bacteria in infected animal models with low host toxicity [47–50]. Notably, large-
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bial activities of AMPs derived from amphibians, insects, mammals, microorganisms such 
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Figure 1. Bar diagram summarizing publications vs. years with “antimicrobial peptide” as the search
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The increasing number of scientific publications over the years asserts that AMPs can
be valuable templates for the potential development of antibiotics. Ubiquitously found in
all life forms, AMPs serve as an integral component of host innate immunity in multicellu-
lar organisms, including humans [25–27]. Many AMPs exert a broad spectrum of activity,
killing bacteria, parasites, fungi, viruses, and cancer [28–31]. As a mode of action, amphi-
pathic AMPs lyse bacterial cells by disrupting membranes following distinct mechanisms,
e.g., barrel stave, toroidal pore, or carpet [32–34]; the non-membrane targeting mechanisms
include the inhibition of cell division, protease activity, and biosynthesis of proteins and
nucleic acids. Cationic AMPs preferentially interact with negatively charged bacterial
cell membranes over zwitterionic or neutral membranes of host cell membranes [25–27].
Gram-negative bacteria are intrinsically more resistant to several frontline antibiotics that
are extremely effective in killing Gram-positive bacteria [34,35]. The lipopolysaccharide
(LPS) outer membrane (or LPS-OM) of Gram-negative bacteria serves as a permeability
barrier that limits intra-cellular access of several antibiotics [35–38]. Interactions of cationic
AMPs with anionic phosphates of LPS or lipid A can cause an efficient permeabilization of
the LPS-OM barrier [39–42]. AMP-mediated disruption of the LPS-OM is pivotal in killing
Gram-negative bacteria [39–42]. The ability of AMPs in killing drug-resistant bacteria, both
Gram-positive and Gram-negative, has generated a strong interest in the development of
antibiotics with novel modes of action [43–46]. More recent studies have demonstrated
efficacy of several AMPs against MDR-resistant strains of Gram-negative bacteria in in-
fected animal models with low host toxicity [47–50]. Notably, large-scale genomic data
analyses have revealed that bacteria are less likely to develop resistance against AMPs
compared to the conventional antibiotics [51,52]. These attributes of AMPs need to be ex-
ploited for the development of anti-infective agents to treat infections of the drug-resistant
bacterial pathogens. Many studies have reported the antimicrobial activities of AMPs
derived from amphibians, insects, mammals, microorganisms such as fungi and bacteria,
and de novo design.

In humans, tissue-specific expressions of antimicrobial proteins and peptides constitute
the innate immunity to eliminate invading pathogens [53–55]. Based on the Antimicrobial
Peptide Database (APD), there are 153 host defense peptides in humans [56]. The well-
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characterized human AMPs include the defensins families, α and β, cathelicidin LL37,
histatins, and dermcidin. In addition, a number of human proteins, e.g., multiple types of
RNases, lysozyme, chemokines, and psoriasin, exhibit antimicrobial activities. Finally, pro-
teolytic fragments of certain native proteins are bestowed with host defense activity [57–59].
Table 1 shows a selected list of AMPs identified in humans.

Table 1. A representative list of human antimicrobial peptides (AMPs) with antibacterial activity.

Name Sequence Net Change Activity@ Ref.

LL37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES +6 (pI 10.6) G+/G− [60–62]
α-Defensin HNP-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC +3 (pI 8.68) G+/G− [63]
α-Defensin HNP-2 CYCRIPACIAGERRYGTCIYQGRLWAFCC +3 (pI 8.67) G+/G− [63]
α-Defensin HNP-3 DCYCRIPACIAGERRYGTCIYQGRLWAFCC +2 (pI 8.33) G+/G− [63]
α-Defensin HNP-4 VCSCRLVFCRRTELRVGNCLIGGVSFTYCCTRV +4 (pI 8.98) G+/G− [64]
α-Defensin HD-5 ATCYCRTGRCATRESLSGVCEISGRLYRLCCR +4 (pI 8.96) G+/G− [65]
Histatin 3 DSHAKRHHGYKRKFHEKHHSHRGYRSNYLYDN +5 (pI 9.9) G+/G− [66]
β-Defensin HBD-1 DHYNCVSSGGQCLYSACPIF TKIQGTCYRGKAKCCK +4 (pI 8.87) G+/G− [67]
β-Defensin HBD-2 GIGDPVTCLKSGAICHPVFCP RRYKQIGTCGLPGTKCCKKP +6 (pI 9.3) G+/G− [68]

β-Defensin HBD-3 GIINTLQKYYCRVRGGRCAVLSCLPKEEQ
IGKCSTRGRKCCRRKK +11 (pI 10) G+/G− [69]

β-Defensin HBD-4 FELDRICGYGTARCRKKCRSQEYRIGRCPNTYACCLRKW
DESLLNRTKP +7 (pI 9.45) G+/G− [70]

Dermcidin SSLLEKGLDGAKKAVGGLGKLGKDAVEDLESVGKGAVHD
VKDVLDSV −2 (pI 5.07) G+/G− [71]

Granulysin GRDYRTCLTIVQKLKKMVDKPTQRSVSNAATRVCRTGRSR
WRDVCRNFMRRYQSRVTQGLVAGETAQQICEDLR +11 (pI10.83) G+/G− [72]

Ubiquicidin KVHGSLARAGKVRGQTPKVAKQEKKKKKTGRAKRRMQY
NRRFVNVVPTFGKKKGPNANS +19 (pI12.15) G+/G− [73]

Thrombocidin-1 AELRCMCIKTTSGIHPKNIQSLEVIGKGTHCNQVEVIATLKD
GRKICLDPDAPRIKKIVQKKLAGDES +4 (pI 9.05) G+/G− [74]

Hepcidin 25 (LEAP-1) DTHFPICIFCCGCCHRSKCGMCCKT +2 (pI 8.22) G+/G− [75]
Neuropeptide α-MSH SYSMEHFRWGKPV +1 (pI 8.33) G+ [76]
PACAP Neuropeptide HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK +9 (pI 10.41) G+/G− [77]
KDAMP RAIGGGLSSVGGGSSTIKY +2 (pI 9.99) G− [78]
DEFB114 DRCTKRYGRCKRDCLESEKQIDICSLPRKICCTEKLYEEDDMF 0 (pI 6.37) G+/G− [79]

@G+ and G− represent Gram-positive and Gram-negative bacteria, respectively.

3. Cathelicidin-Derived AMPs

Mainly found in higher organisms, including vertebrates and mammals, cathelicidin
AMPs exert a broad spectrum of activity within the innate and adaptive host defense
systems [80,81]. The cathelicidin family of AMPs are typically recognized by the presence
of a conserved “cathelin” domain, ~14 KDa, in their precursor proteins [80,81]. The cathelin
domain was first identified from analyses of proteolytic digestion of peptide fragments
from pig leukocytes and was determined to be an inhibitor of the cysteine proteinase
cathepsin L [82]. Structurally, the cathelin domain belongs to the cystatin superfamily
of protease inhibitors, including cystatin (cysteine proteinase inhibitor), kininogen, and
stefin proteins [82–85]. The cathelicidin protein is expressed as a precursor protein or a
pre-protein that contains an N-terminal signal sequence followed by the cathelin domain
and the C-terminus antimicrobial region [82–85]. The pre-protein undergoes multiple steps
of proteolytic processing before cathelicidin AMP can be functionally activated [80,81]. The
signal peptide is cleaved off, giving rise to the “holo-protein” during the translocation to
an extra-cellular space or in zymogen granules. Further processing of the holo-protein to a
pro-protein entails stabilization of the cathelin domain by the formation of two disulfide
bonds. At the final stage of processing, the holo-protein is proteolytically cleaved, releasing
the active forms of the antimicrobial region and the cathelin domain [80,81]. Although the
cathelin domain is well conserved, the AMPs derived from cathelicidin proteins demon-
strate great diversity in their amino acid sequence structure and activity [82–85]. The
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secondary structures of cathelicidin AMPs encompass amphipathic α-helix stabilized in
the lipid membrane, disulfide bonded β-sheets, and AMPs rich in specific amino acid
types [86–90]. In general, cathelicidin AMPs exhibit a broad spectrum of antimicrobial
activity, although toxicity to cells and tissues in animal models has been observed [86–90].
Chicken cathelicidin AMPs or fowlicidins are extremely hemolytic although highly potent
in killing wide-ranging pathogenic bacteria, including drug-resistant strains [91,92]. Table 2
summarizes a list of representative cathelicidin AMPs and their amino acid sequences,
secondary structures, and activity profiles [86,87,89,93–107].

Table 2. A representative list of cathelicidin-derived AMPs across several species and structural classes.

Source Name Sequence Net
Charge Sec. Structure Antibacterial

Activity@ Toxicity References

Human LL37
1LLGDFFRKSKEKIGKEFKRIV

QRIKDFLRNLVPRTES37 +6 Helix (NMR) G+/G– Hemolytic [86]

Rhesus
Monkey RL37

1RLGNFFRKVKEKIGGGLKKV
GQKIKDFLGNLVPRTAS37 +8 Helix (CD) G+/G− Hemolytic [93]

Rabbit CAP18
1GLRKRLRKFRNKIKEKLKKIG

QKIQGFVPKLAPRTDY37 +12 Helix (CD) G+/G− Non-
Hemolytic [87]

Mice CRAMP
1GLLRKGGEKIGEKLKKIGQKI

KNFFQKLVPQPEQ34 +6 Helix (NMR) G+/G− Hemolytic [94]

Guinea Pig CAP11
1GLRKKFRKTRKRIQKLGRKI

GKTGRKVWKAWREYGQIPYPCRI43-dimer
-disulfide-linked

+16 ND G+/G− Hemolytic [95]

Pig Tritrpticin 1VRRFPWWWPFLRR13 +4 b-strand (NMR) G+/G− Hemolytic [96]

Pig Protegrin-1 1RGGRLCYCRRRFCVCVGR18 +7 b-sheet (NMR) G+/G− Hemolytic,
cytotoxic [97]

Pig PMAP37
1GLLSRLRDFLSDRGRRLGE

KIERIGQKIKDLSEFFQS37 +4 Helix (CD) G+/G− Hemolytic [98]

Pig PR39
1RRRPRPPYLPRPRPPPFFP

PRLPPRIPPGFPPRFPPRFP39 +11 ND G+/G− ND [99]

Bovine Bactenecin 1RLCRIVVIRVCR12 +4 b-turn2 G+/G− Non-
Hemolytic [100]

Cattle Indolicidin 1ILPWKWPWWPWRR13 +4 b-strand (NMR) G+/G− Non-
Hemolytic [89]

Sheep SMAP29
1RGLRRLGRKIAHGVKKY

GPTVLRIIRIAG29 +10 Helix (NMR) G+/G Hemolytic [101]

Bovine BMAP27
1GRFKRFRKKFKKLFKKL

SPVIPLLHLG27 +10 Helix (NMR) G+/G− Non
Hemolytic [102]

Bovine BMAP28
1GGLRSLGRKILRAWKKY

GPIIVPIIRIG28 +7 Helix (NMR) G+/G− Hemolytic [102]

Bovine BMAP34
1GLFRRLRDSIRRGQQKIL

EKARRIGERIKDIFRG34 +8 Helix (CD) G+/G− Non
Hemolytic [103]

Pig PMAP23
1RIIDLLWRVRRPQKPKFV

TVWVR23 +6 Helix (NMR) G+/G− Non
Hemolytic [98]

Pig PMAP36
1VGRFRRLRKKTRKRLKK

IGKVLKWIPPIVGSIPLGCG37 +13 ND G+/G− Hemolytic [98]

Sheep SMAP34
1GLFGRLRDSLQRGGQKIL

EKAERIWCKIKDIFR33 +5 ND G+/G− Hemolytic [104]

Equine e-CATH1
1KRFGRLAKSFLRMRILLP

RRKILLAS26 +9 Helix (CD) G+/G− Non
Hemolytic [105]

Chicken Fowlicidin-1
1RVKRVWPLVIRTVIAGY

NLYRAIKKK26 +8 Helix (NMR) G+/G− Hemolytic [91]

Chicken Fowlicidin-2
1RFGRFLRKIRRFRPKVTI

TIQGSARFG27 +9 Helix (NMR) G+/G− Hemolytic [91]

Chicken Fowlicidin-3
1RVKRFWPLVPVAINTVAA

GINLYKAIRRK29 +7 Helix (NMR) G+/G− Hemolytic [91]

Hagfish HFIAP-1
1GFFKKAWRKVKHAGRRV

LDTAKGVGRHYVNNWLNRYR37 +10 ND G+/G− ND [106]

Hagfish HFIAP-3
1GWFKKAWRKVKNAGRRV

LKGVGIHYGVGLI30 +8 ND G+/G− ND [106]

Crocodile As-CATH7 1KRVNWRKVGRNTALGASYVLSFLG24 +6 Helix (CD) G+/G− ND [107]

Crocodile As-CATH8 1KRVNWAKVGRTALKLLPYIFG21 +6 Helix (CD) G+/G− ND [107]

Crocodile Gg-CATH5 1TRRKWWKKVLNGAIKIAPYILD22 +6 Helix (CD) G+/G− ND [107]

Crocodile Gg-CATH7 1KRVNWRKVGLGASYVMSWLG20 +5 Helix (CD) G+/G− ND [107]

@G+ and G− represent Gram-positive and Gram-negative bacteria, respectively.
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LL37 is the only cathelicidin-derived AMP in humans [86,108]. The 37-residue LL37
is linear in its amino acid sequence, without any disulfide bond, and helical in its struc-
ture [109–111]. These characteristics are widely different from disulfide-bonded β-sheet
human defensin AMPs [112–114]. Towards the discovery of LL37, two independent studies
were aimed to identify the cathelicidin gene(s) in humans using cDNA probes obtained
from the homologous genes of pigs and rabbits [60,61]. Analyses of cDNA probes of pigs
reported the existence of a human gene that may code for a putative 39-residue long peptide
(or FALL39) as a part of a cathelin-like precursor protein [60]. The chemically synthesized
FALL39 peptide demonstrated helical conformations and inhibited growth of bacterial
strains of E. coli D21 and B. megaterium [60]. On the other hand, a cDNA probe based
on the rabbit CAP18 gene has led to the characterization of the human CAP18 gene [61].
Western blot experiments have demonstrated the expression of CAP18 or 18 KDa precursor
protein in granulocytes [61]. The 37-residue synthetic peptide of the C-terminus of CAP18
demonstrated high-affinity LPS binding and protected mice from LPS-induced endotoxic
shock [62]. Another study isolated the LL37 precursor protein from human neutrophils
and obtained its c-DNA clone from human myeloid cells [115]. Furthermore, analyses of
total genomic DNA revealed the existence of only one cathelicidin gene in humans [115].
The 37-residue mature form of AMP of hCAP18 was isolated from granulocytes and was
termed LL37, based on its first two Leu residues [115].

4. Importance of Structures of AMPs

AMPs are pivotal sources of natural arsenals that can be utilized to combat MDR
infections [43–46]. Thus, the rational development of potent and selective antimicrobials
from AMPs would require in-depth structure–activity relationship (SAR) studies. Tradi-
tionally, based on amphipathicity, AMPs are categorized as α-helix, β-sheet/β-hairpin, and
non-random (no typical secondary structures). However, atomic-resolution structures of
AMPs in a complex with bacterial targets are essential to generate SAR for novel antibiotics.
Notably, three-dimensional structures of several AMPs are known to vary significantly
when determined in cell membranes or membrane-mimicking environments [32,41,42]. In
this regard, the atomic-resolution structures of several potent AMPs as a complex with an
LPS outer membrane could be correlated with Gram-negative specific activity [116–123].
Cathelicidin-derived AMPs are found to be structurally diverse (Table 2). Atomic-resolution
structures of several members of AMPs in the cathelicidin family have been determined
in membranes or in membrane mimics (Table 2). NMR-derived structures of α-helical
cathelicidin AMPs include LL37 [109–111], mice [124], pig [125], sheep [126], bovine [127],
and fowlicidins [128–130]. The helical AMPs appear to be unstructured in a free solution
and assume largely monomeric helical conformations in the solutions of membrane envi-
ronments, e.g., detergent micelles, bicelles, nanodiscs, vesicles, or helix-promoting organic
solvents. Interestingly, an oligomeric structure of fowlicidin-1, chicken cathelicidin, was
determined in a solution of zwitterionic DPC detergent micelles [130]. Although the in-vivo
concentrations for all AMPs are very low, the local population density is very high, enough
to cause damage to the cell membrane. The lipids of the membrane have been shown
to assist the self-assembly of the peptides to form an aggregate/oligomer, which is more
potent in lysing bacterial cells. The oligomeric structure of fowlicidin-1 indicates membrane
pore formation and cytotoxicity. The oligomerization and structures of protegrin-1, β-sheet
cathelicidin from porcine, in membranes demonstrated mechanistic insights, cell selective
activity, and SAR-based designs of analogs [131].

5. Biological Properties of LL37

LL-37, the only human cathelicidin-derived antimicrobial peptide, has long been a
popular research subject because of its special abilities and vast applications. In the past
15 years, hundreds of papers have been published with LL-37 being their primary focus.
Although minimal progress has been made on certain areas related to LL-37, such as the
correlation between its high-resolution structure and activity, many multidisciplinary stud-
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ies have shown LL-37 to be one of the most promising AMPs with a variety of applications.
LL37’s functional properties are summarized below.

5.1. Antimicrobial and Antiviral Activities of LL-37

LL-37, though it has been proven to be useful in many ways, is, in essence, an antimi-
crobial peptide that is primarily used by the body to fight microorganisms like bacteria
and fungi. On top of that, the antiviral ability of LL-37 has also long been a popular
topic. In the past 15 years, LL-37 has been considered as a promising candidate for the
treatment of a number of diseases, with the majority of them being bacterial and some
being viral. Table 3 summarizes some of the diseases that have been studied with LL-37. In
the majority of the cases, treatments using LL-37 were found to have a positive effect, while
in others, resistance to LL-37 was reported. Apart from the specific diseases, LL-37 has
also been studied extensively with certain bacteria, especially the ones under the genera
Burkholderia, Neisseria, Pseudomonas, Staphylococcus, and Streptococcus. The potential
possibilities to treat diseases caused by microorganisms without leading to resistance make
LL-37 a promising replacement for conventional antibiotics, which has been demonstrated
in some cases. However, the resistance to LL37 noticed in some diseases points to the need
for further studies before progressing to the next step towards drug development.

Table 3. Bacterial and viral diseases that have been studied with LL-37 in the past 15 years.

Disease Studied General Conclusion Ref.

Bacterial pneumonia Possible candidate for treatment [132–139]

COPD Candidate for treatment, though it may also
play a role in the pathogenesis process [140–144]

Infected segmental bone
defects Possible candidate for treatment [145]

Influenza A Possible candidate for treatment [146–151]
Gonorrhea Possible candidate for treatment [152,153]
Keratitis Possible candidate for treatment [154,155]
Leptospirosis Bacteria inhibits LL-37 [156]
Lupus Possible candidate for treatment [157–160]

Meningitis Candidate for treatment, though resistance to
LL-37 has been reported [161–163]

Periodontitis Possible candidate for treatment [164–168]

Psoriasis LL-37 plays a role in the pathogenesis process
but may still be used for therapeutic purposes. [158,160,169–189]

Rheumatoid arthritis LL-37 plays a role in the pathogenesis process
but may still be used for therapeutic purposes. [158,172–175]

Sepsis Candidate for treatment, though significant
possible side effects have been noted [176–179]

Tuberculosis Possible candidate for treatment [134,180–183]
Ulcerative colitis Possible candidate for treatment [184]

Starting in 2008, a particular aspect of the antimicrobial activity of LL-37 has been
investigated, which is its ability to inhibit the formation of bacterial biofilms [185]. A
biofilm is an aggregate of bacterial cells that is covered by an extracellular polymeric
substance (EPS) matrix. By forming biofilms, bacterial cells are able to protect themselves
from harmful substances, such as attacks from the immune system and antibiotics. Like
other antimicrobial agents, LL-37 is also prevented by bacterial biofilm from attacking
the bacterial cells, which is why some bacteria exhibit resistance against LL-37. However,
Overhage et al. noted that LL-37 is able to prevent the formation of biofilms through a
series of mechanisms that have not yet been well understood [186]. Such mechanisms
include biofilm gene suppression, bacteria adhesion inhibition, biofilm matrix degradation,
bacteria cells elimination, and several other major or minor functions [185]. On the other
hand, bacterial biofilms also have a variety of mechanisms that mediate the interference
from LL-37, explaining why LL-37 has not yet been the solution to overcome biofilm-related
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challenges. That being said, certain ways to improve the antibiofilm ability of LL-37 have
been proposed, such as using its synergy with other antimicrobial agents, indicating a
possible therapeutic application in the future. Studies have also reported LL-37 degradation
by the metalloprotease aureolysin, produced by S. aureus strains, suggesting the resistance
of this pathogen correlating with the loss of LL-37’s antibacterial activity. On the other
hand, the fragment LL-17-37 produced due to the glutamyl endopeptidase V8 protease,
exhibited antibacterial activity against S. aureus [187,188]. There are other studies that
reported the inactivation of LL-37 [156,189–191].

5.2. Anticancer Activity of LL-37

Antimicrobial peptides have also been shown to exhibit anticancer activities [28,30,31,192–195].
Since cancer cells are anionic, the cationic AMPs exhibit selectivity in targeting cancer cells
in a similar manner to their selective targeting of bacterial cells. While there is significant
interest in designing anticancer peptides using AMPs, the LL-37 peptide has received
special attention, as it is the only cathelicidin-derived human peptide. Although the
chemotactic potential of LL-37 was noticed almost immediately upon its discovery, it was
only beginning around 2005 that the anticancer potential became a noteworthy aspect of
this AMP [196]. In recent years, more and more research has become oriented towards
the influence of LL-37 on cancer, along with the rise of research interest in cancer in the
biology field in general [197–199]. LL-37 has been found to have contrasting effects on
different types of cancers: for certain cancers, such as breast, lung and ovary cancer, LL-37
is tumorigenic and facilitates the cancer formation process, while in other cancers, like
colon and gastric cancer, LL-37 has been proven to be anticancer. Verjans et al. suggest
that this result may be explained by the difference in receptors that respond to LL-37 in
different cells [200]. Even though LL-37 is tumorigenic in some cases, it can still be used to
help treat such cancer by acting as a biomarker [197]. In ovarian cancer, LL-37 has been
found to be over-expressed, and it is able to facilitate cancer spread in many ways, like
inducing cell proliferation and cell invasion. Similar results were found for lung, breast,
and pancreas cancer and malignant melanoma, while the tumorigenic effect of LL-37 can
also be extrapolated for prostate cancer and skin squamous cell carcinoma. In all these
types of cancers, treatment of recombinant LL-37 has shown a positive correlation with
tumor development. On the other hand, the over-expression of LL-37 is also observed in
colon cancer, but it was also found in this case that LL-37 can lead to a decrease in cancer
tissues. For gastric cancer, hematologic malignancy, and oral squamous cell carcinoma, a
lower expression of LL-37 was found, and it has also been proven to down-regulate cancer
development, showing an anticancer effect. More studies are needed to fully understand
the mechanism behind LL-37’s involvement in cancer growth, but current results do suggest
some possible therapeutic applications of LL-37 in cancer treatments.

5.3. Other Functional Properties of LL-37

Another noteworthy aspect of LL-37 is its role in the human immune system [201–203].
LL-37 has been shown to be able to attract immune cells to fight microbial infection. The
first group of cells attracted is the neutrophils, which form the first line of defense against
infection. These cells can also produce more LL-37, leading to a positive feedback loop.
Recent research has also noted that in the case of serum amyloid A inflammation and sepsis,
LL-37 performs immunoregulatory functions by inhibiting neutrophil migration, which is
another novel aspect of the immune activity of LL-37. In addition to neutrophils, LL-37 is
also able to modulate monocytes, macrophages, and dendritic cells. Monocytes, sometimes
referred to as adult stem cells, are able to differentiate into macrophages and dendritic
cells, which are important components of the immune system that fights off infection. A
crucial role of LL-37 in modulating the differentiation process, as well as regulating the
immunological functions of macrophages and dendritic cells, has also been proven. Further
immunoregulatory functions of LL-37 on lymphocytes, mast cells, and MSCs have also
been noted, though minimal discoveries have been made. Another important function of
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LL-37 in the immune system is its ability to neutralize lipopolysaccharides (LPSs), which
can be crucial in bacterial infections.

The wound healing and angiogenesis ability of LL-37 has also been recognized for a
long time [204]. This aspect of LL-37 may also act as a contributing factor in the curing of
microbial diseases and cancer. Recently, Chinipardaz et al. also discovered a potentially
important role of LL-37 in bone and periodontal regeneration [165]. This, combined with
the wound healing ability of LL-37, may point to a potential application in treating oral
cavity diseases. Furthermore, connections of LL-37 with amyloid proteins have also been
reported in recent studies. Certain connections between LL-37 and beta-amyloid, which
is a possible cause of Alzheimer’s disease, have been proven, and the hypothesis that
LL-37 may be involved in the pathogenesis of Alzheimer’s disease has been proposed, with
a need for further examination [205,206]. Similar connections between LL-37 and IAPP,
which is linked with type 2 diabetes, have also been found, and follow-up studies in this
area are also needed [207]. Overall, the vast function of LL-37 opens it up to a variety of
therapeutic applications in many different fields, while an increasing number of studies
are forthcoming.

6. Structures of LL-37

Ever since its discovery, LL-37 has been studied not only in its original monomeric form
but also in more complex structures obtained under different conditions. Studies have found
that when treated with detergents under certain conditions, LL-37 can form monomers as
well as oligomerize into dimers and tetramers [111,208,209]. Furthermore, derivatives of
LL-37, such as the core peptide (LL-3717-29) and KR-12 (LL-3717-29), have also been studied
extensively [210,211]. These structures, each with unique features, can become useful for
research purposes to better understand the different functional properties of LL-37 and its
derivatives and also for further development towards pharmaceutical applications.

6.1. Monomeric Structures of LL-37

LL-37 has been shown to undergo a structural transition from an unstructured monomer
in solution to a helical structure in any of the following conditions: (i) at high peptide con-
centrations, (ii) in the presence of salt, and (iii) in the presence of detergents or lipids [212].
Atomic-resolution three-dimensional structures of the LL-37 monomer have been reported
under different environments with different detergents. A solution NMR study reported a
helix-break-helix conformation for LL-37 reconstituted into dodecylphosphocholine (DPC)
micelles [109]. This study also found that the unstructured N- and C-termini are solvent
exposed, while the structured C-terminal helix is protected from the solvent, and the N-
terminal helical domain is more dynamic. The peptide is bound to the surface of DPC
micelles with the hydrophobic I13, F17, and I20 residues and a salt bridge between E16 and
K12 stabilizing the break between the two helices.

Wang et al. reported a standard LL-37 monomer structure (PDB number 2K6O),
obtained using a three-dimensional triple-resonance NMR technique [111]. The conditions
used were 303 K and pH 5.4, and deuterated SDS (sodium dodecyl sulfate) detergent
micelles were used. The structure that they determined, as shown below, is a curved alpha
helix with a well-defined helical region covering residues 2–31, while the residues at the
C-terminus appear to be disordered (Figure 2A). The structure also contains a notable bent
located between residues 14–16, which is consistent with the helix-break-helix structure
predicted in other publications. In addition, the LL-37 helix appears to be amphipathic,
with about half of the residues, namely residues L2, F5, F6, I13, F17, I20, V21, I24, F27, L28,
and L31, being hydrophobic and located on the concave side (Figure 2B). The hydrophilic
residues are located on the other side, with the exception of residue S9, which is on the
hydrophobic side and divides that region into two parts. The author also proposed that the
helix-break-helix structure may be a result of the hydrophobic packing between residues
I13 and F17, which are located next to each other with a bend in between.
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In another study, an LL-37 structure determined from a different detergent, dioc-
tanoylphosphatidylglycerol (D8PG) micelles, was reported, using the same technique and
experimental conditions as described above. The obtained structure appears to be simi-
lar, if not identical, to the above-mentioned LL-37 structure determined for SDS micelles.
However, because D8PG has the same head structure as many anionic phosphatidylglyc-
erols, the author also used it to investigate the interaction between LL-37 and anionic PGs.
Direct evidence for interactions between the aromatic rings of the phenylalanine residues
as well as the arginine residues of LL-37 and the PGs was found. Sancho-Vaello et al.
reported a monomeric LL-37 structure (5NMN), obtained with DPC micelles using X-ray
crystallography, which also has similar features to the other structures determined from
detergent micelles (Figure 2C) [208]. This structure is less bent compared to the structure
determined in SDS micelles, with residues 35–37 missing on the model, possibly because
they are disordered and cannot be detected by the X-ray diffraction technique.

6.2. Oligomeric Structures of LL-37

In addition to the structure of the LL-37 monomer, the structures of the oligomers of
LL-37 are important to better understand the stability of the peptide against enzymatic
degradation. LL-37 has been shown to form aggregates at high peptide concentrations
in solution [212–215]. Sancho-Vaello et al. also explored the structure of LL-37 dimers
in a detergent-free environment (5NNM), as well as in DPC (5NNT) and LDAO (5NNK)
micelles [208]. When there is no detergent present, the dimeric LL-37 appears to be an
antiparallel dimer made from two alpha helices without supercoiling (Figure 3A). The
two monomers are similar to the monomer obtained in DPC (5NMN), especially since there
is very little bending compared to the SDS and D8PG ones. Each helix in this dimer extends
to around 5 nm, with approximately two turns shifted at each terminus, leading to a 3.5 nm
interface. The hydrophilic interactions that link the two dimers are formed by the residues
S9, K12, and E16 of the two monomers, whereas intermolecular stabilization is mainly
provided by the H-bond and four salt bridges. In addition, the hydrophobic residues at
the interface form a hydrophobic core in the dimer that extends to the C-terminus, which
also contributes to the high stability of the dimer. The authors also noted a discontinuity in
the hydrophobic region, which is the positively charged residue K10. The opposite side
of the dimer is dominated by the hydrophilic residues, with 20 of those being positively
charged and eight being negatively charged, leading to a +12 overall charge. Another point
worth noting is that like the DPC monomer described above, eight of the 74 residues are
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not present in the structure, indicating a disordered region at the C-terminus. The same
applies for the two other dimers made in detergents.
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The dimer structures obtained in DPC and LDAO micelles are highly similar antipar-
allel dimers, but they differ strongly from the one obtained in a detergent-free environment
(Figure 3B,C). The authors found that only the core region of the two dimers can align
with the detergent-free dimer as a result of the structural remodeling caused by detergents.
Specifically, the remodeling at the N-terminus shortens each monomer to about 4 nm and
the interface to 2.5 nm. The residues L1 to R7 at the N-terminus, unlike in the dimer ob-
tained without detergents, appear to be randomly coiling. This remodeling allows residues
F5 and F6 to be exposed so that they can form hydrophobic contacts with the alkyl chains
of the detergents, which is assisted by residues I24 and F27 of the second monomer. This
conformation is further stabilized by the H bond between residue K10 and residues G3 and
F5. Further conformational changes at residues L1, I13, and I17 can also be attributed to
the influence of the detergent. The residues at the C-terminus also experience a shift in
conformation, though not as significant as the remodeling at the N-terminus. Because of
the change in structure, the bond that connects the two monomers in this case is formed by
residue S9 on one monomer and residue E16 on the other. The authors also found that these
dimer structures can also form tetramers and other fiber-like oligomers with a head-to-tail
arrangement. The oligomers are primarily stabilized by residues F5, F6, and F27, which
form hydrophobic scaffolds to embed detergent molecules. The exact structure of the
tetramer (7PDC) is documented in another paper written by the same group of authors.

The LL-37 tetramer structure was also obtained with DPC micelles and modeled
using a crystallization technique (7PDC) [209]. The tetramer is made by two asymmetric
dimers, each containing two antiparallel monomers (Figure 4A). This structure is a narrow
tetrameric channel with a 4 nm length, and its monomers are similar to those in the DPC
dimers (5NNT) and the DPC monomer (5NMN). Disordered residues are observed at both
termini, leaving a well-defined helical region between residues 6 and 30. However, the
dimer structure seen in this tetramer is very different from the dimers described above,
and the new structure seems to provide a better structural fit. The tetramer appears to
be asymmetrical, but the structure does form a continuous and positively charged inner
cavity. As a result of this asymmetric structure, there exist three interfaces, with one
being hydrophobic and the others being charged and polar (Figure 4B). These interfaces
are stabilized by salt bridges and hydrophilic contacts. The authors also suggested that
the influence of the three interfaces might be the cause of this unique conformation, as
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opposed to being caused by detergents like the dimers described above. In the center of
the tetramer, there is a chlorine ion trapped by two R23 residues and coordinated by two
water molecules. The core itself is stabilized by many hydrogen bond interactions as well
as 15 water molecules that are also found within the channel, while no water molecules are
present in the surrounding of the tetramer. The authors also noted two aromatic grindles on
the tetramer, each formed by two F17 and two F27 residues, which indicate the membrane
integration potential of this structure. With follow-up tests, the presence of this tetramer in
membrane-like environments is confirmed in the paper, as well as the conductivity of the
channel to pass molecules into cells.
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7. LL-37 Derivatives
7.1. Core Peptide and Related Fragments

Because LL-37 has been studied extensively in the past two decades, its original
structure and the structures of its many derivatives have been explored in great detail.
One of the first derivatives that draws a lot of attention is its core peptide, LL-3717-29.
The core peptide is 13 residues long, and it is referred to in such a way because it was
thought at the time to be the smallest fragment that exhibits AMP properties [210]. Li
et al. studied the structure of the LL-37 core peptide with solution NMR under a 298 K
temperature 5.4 pH and using both D8PG and deuterated SDS as detergents (2FBS). The
structure obtained is an amphipathic alpha helix, which appears to be the same under the
two detergent environments (Figure 5A). The authors found that about half of the residues
are located on the hydrophobic surface, while the other half are on the hydrophilic one.
For the hydrophilic surface, it is evident that the positively charged residues dominate the
region, just like in many other LL-37 structures, and this suggests that the peptide is more
ideal for targeting negatively charged membranes. The authors also noted an analogical
structure to the core peptide, aurein 1.2, which also has antimicrobial and anticancer
properties. By studying these two peptides along with a bacterial membrane anchor, the
authors proposed that hydrophobic clusters that involve aromatic rings might be crucial
for membrane binding. Apart from the core peptide, the article also reported two other
derivatives of LL-37, which are the N-terminal fragment (LL-371–12) and the C-terminal
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fragment (LL-3713–37). The N-terminal fragment (2FBU) obtained appears to be disordered
for the most part, with only a one-turn helix covering residues 3–7 present (Figure 5B). For
this peptide, only 62% of the backbone angles are located in the most favored region, in
contrast to the result of 100% for the core peptide. The backbone angles in the less favored
region are located in the disordered region, namely residues 8–12. The authors also focused
on the hydrophobic clusters that involve aromatic–aromatic interaction, just like that noted
in the core peptide. It was found that a single hydrophobic cluster created by the aromatic
rings on P5 and P6 as well as the side chain of L2 leads to the poor hydrophobicity of the
peptide, which could be the reason for this fragment’s poor AMP and anticancer ability.
In addition to that, this cluster may also play a role in the oligomerization of LL-37, as
described in the last section. The C-terminal fragment (2FCG) contains a well-defined
alpha-helical structure between residues 17–29, corresponding perfectly to the core peptide
(). The rest of the fragment, residues 13–16 and 30–37, appears to be disordered, and their
backbone angles are also located in less favored regions similar to that of the N-terminal
fragment. A weaker AMP ability of this fragment compared to the core peptide and the
whole peptide was also noted, which may as well be a result of the interference of this
poorly defined region with membrane binding.

Biomolecules 2024, 14, x FOR PEER REVIEW 15 of 32 
 

 
Figure 5. The structures of LL-37 core peptide and other fragments. (A) LL-37 core peptide structure 
in D8PG and deuterated SDS (2FBS). (B) LL-37 N-terminal fragment structure in D8PG and deuter-
ated SDS (2FBU). (C) LL-37 C-terminal fragment structure in D8PG and deuterated SDS (2FCG). 

Li et al. also reported the structure of the retro core peptide of LL-37 (2F3A) [216], 
which was investigated as an analog of aurein 1.2. Obtained in the presence of SDS and 
D8PG, the structure appears to be alpha-helical with a well-defined helix covering resi-
dues 2–12 (Figure 6A). Similar to all LL-37 related peptides, the retro core peptide is also 
amphipathic with hydrophobic residues on one side and hydrophilic residues on the 
other. One interesting feature of this peptide is that the aromatic rings on residues F3 and 
F13 are located in the same chemical environment in SDS and D8PG. Because F13 pene-
trates the micelles deeper than F3 and the NOE pattern of F3 is similar to what is found in 
bacterial membrane anchors, it was concluded that F3 might also be serving the same pur-
pose in this case. Engelberg and Landau further explored the structure of fibrils formed 
by LL-37 core peptides (6S6M) using crystallization techniques [7,217]. In a detergent-free 
environment with sodium acetate used as salt, the core peptides assemble into a densely 
packed hexameric fibrous structure with a central pore, composed of numerous four-helix 
bundles as the building unit (Figure 6B,C). These bundles, each containing a hydrophobic 
core that provides stabilization for the structure, are highly positively charged. The polar 
interactions between the bundles, especially the salt bridge formed by adjacent helices, 
allow the formation of the hexameric fibrils. The resulting fibrils are found to be highly 
stable and are capable of interacting with bacterial membranes. In another article, Engel-
berg et al. also reported a mutant of the core peptide, I24C (7NPQ) (Figure 6D) [8,218]. 
This mutant is found initially as dimers connected by a disulfide bond at the C24 residue, 
but they can further assemble to form fibrils using a network of interaction, particularly 
salt bridges, as a stabilizing factor. The fibrils contain a hydrophobic core, which extends 
through the structure. 

Figure 5. The structures of LL-37 core peptide and other fragments. (A) LL-37 core peptide structure
in D8PG and deuterated SDS (2FBS). (B) LL-37 N-terminal fragment structure in D8PG and deuterated
SDS (2FBU). (C) LL-37 C-terminal fragment structure in D8PG and deuterated SDS (2FCG).

Li et al. also reported the structure of the retro core peptide of LL-37 (2F3A) [216],
which was investigated as an analog of aurein 1.2. Obtained in the presence of SDS
and D8PG, the structure appears to be alpha-helical with a well-defined helix covering
residues 2–12 (Figure 6A). Similar to all LL-37 related peptides, the retro core peptide is
also amphipathic with hydrophobic residues on one side and hydrophilic residues on the
other. One interesting feature of this peptide is that the aromatic rings on residues F3
and F13 are located in the same chemical environment in SDS and D8PG. Because F13
penetrates the micelles deeper than F3 and the NOE pattern of F3 is similar to what is found
in bacterial membrane anchors, it was concluded that F3 might also be serving the same
purpose in this case. Engelberg and Landau further explored the structure of fibrils formed
by LL-37 core peptides (6S6M) using crystallization techniques [7,217]. In a detergent-free
environment with sodium acetate used as salt, the core peptides assemble into a densely
packed hexameric fibrous structure with a central pore, composed of numerous four-helix
bundles as the building unit (Figure 6B,C). These bundles, each containing a hydrophobic
core that provides stabilization for the structure, are highly positively charged. The polar
interactions between the bundles, especially the salt bridge formed by adjacent helices,
allow the formation of the hexameric fibrils. The resulting fibrils are found to be highly
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stable and are capable of interacting with bacterial membranes. In another article, Engelberg
et al. also reported a mutant of the core peptide, I24C (7NPQ) (Figure 6D) [8,218]. This
mutant is found initially as dimers connected by a disulfide bond at the C24 residue, but
they can further assemble to form fibrils using a network of interaction, particularly salt
bridges, as a stabilizing factor. The fibrils contain a hydrophobic core, which extends
through the structure.
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7.2. KR-12 Based Peptides

KR-12 (LL-3718-29) is one of the most important derivatives of LL-37 because of its
outstanding AMP properties and low toxicity to human cells. Gunasekera et al. studied the
structure of KR-12 (2NA3) and retro KR-12 (2NAL) using solution NMR with lysophos-
phatidylglycerol and SDS as the detergents [211]. KR-12 is in the form of an alpha helix,
with a clear helical structure between residues 3–11 (Figure 7A). Like the other peptides,
KR-12 has the charged and hydrophilic residues on one side and the hydrophobic ones on
the other, while having a net positive charge. The overall structure is not much different
from the core peptide, which is only one residue more than KR-12. However, it was noticed
that KR-12 can form cyclic dimers that possess enhanced AMP ability, although the dimer
structure was not reported on the PDB. The retro KR-12, being simply the reverse of KR-12,
shows a very similar structure to the KR-12 structure (Figure 7B). The only noticeable
difference between the two is the marginally decreased AMP ability seen in retro KR-12
compared to KR-12. Yun et al. also found an analog of KR-12 (6M0Y) in another article,
which may have the potential to become a cosmetic product [219].
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8. Solid-State NMR Studies on the Mechanism of Membrane Disruption by LL-37

A complete understanding of the function of an antimicrobial peptide can only be
accomplished by determining the atomic-resolution three-dimensional structure, dynamics,
and membrane folding/topology of the peptide in a lipid membrane environment. A
detergent micelle is not a suitable membrane mimetic to study antimicrobial peptides
because of the following reasons: (i) it does not have an appropriate hydrophobic membrane
core to enable native folding of the hydrophobic domains (like the transmembrane domain)
of the peptide, and (ii) its curvature can distort the overall shape of the amphipathic
structural regions, such as by bending the helix. In addition, the absence of native-like lipid–
peptide interactions both with the head groups and hydrophobic acyl chains is unlikely
to allow the self-assembly of peptides and oligomer formation to occur. Therefore, it is
essential to use a better membrane mimetic. A lipid bilayer is considered to be a better
mimetic, and the feasibility to alter the lipid/membrane composition to mimic bacterial
versus mammalian cell membrane is an added advantage. Since lipid bilayers are fluid
and dynamic but an isotropic phase, they pose challenges for atomic-resolution structural
studies. On the other hand, solid-state NMR techniques are well-suited to studying such
dynamic systems [220–225].

Solid-state NMR is a technique used to determine the structure and dynamics of a
variety of solids and semi-solids (examples include liquid crystalline systems), and it is
an ideal approach to investigate biological membranes that are difficult to study with
other biophysical techniques like solution NMR or crystallization techniques [226–230].
In the case of LL-37, solid-state NMR experiments were used to determine the backbone
conformation, dynamics, and membrane orientation in order to determine the mechanism
of lipid membrane disruption by LL-37. The cell membrane disruption process by a peptide
or protein has been broadly defined using three possible mechanisms: the barrel-stave,
detergent-like, and toroidal-pore mechanisms. Henzler-Wildman et al. used synthetic LL-37
peptides selectively labeled with 15N and/or 13C isotopes and model membranes composed
of a combination of synthetic lipids [212]. The backbone conformation of LL-37 associated
with a lipid bilayer was found to be helical using 13C CP-MAS (cross-polarization magic
angle spinning) solid-state NMR experiments, which was found to be in excellent agreement
with CD experiments. Then, using static cross-polarization solid-state NMR experiments
performed on mechanically aligned lipid bilayers containing site-specifically 15N-labeled
LL-37, the helix was found to be oriented nearly parallel to the bilayer surface (or nearly
perpendicular to the bilayer normal) (Figure 8). This observation ruled out the barrel-stave
mechanism of membrane disruption for which the peptide should be assembled to form
channel-like structures with the helical axis oriented parallel to the bilayer normal (or
transmembrane topology). Then, to measure the LL-37-induced perturbation of the lipid
bilayer structure, static 31P NMR experiments were carried out on mechanically aligned
lipid bilayers and also on multilamellar vesicles. The observed 31P NMR spectra revealed
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the absence of isotropic peaks that would arise from the peptide-induced fragmentation and
formation of any small “micellar-like” lipid aggregates, which ruled out a detergent-like
membrane of membrane disruption. The observed aligned, anisotropic 31P NMR spectral
line shapes were consistent with a carpet/toroidal-type mechanism in which the bilayer
surface association of LL-37 disrupted the head group region of lipids. Differential scanning
calorimetry (DSC) experiments revealed LL-37’s ability to induce positive curvature on
the lipid bilayer, which is indicative of a toroidal pore-type mechanism. Taken together,
these NMR and DSC experimental results indicated that a toroidal pore-type membrane
disruption is the likely possibility. Mechanisms of membrane interaction and disruption by
LL-37 have also been investigated by other approaches [86,110,214,231–236].
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Figure 8. Cartoon showing the orientation of helical LL-37 peptide with respect to the lipid bilayer.
As mentioned in the text, magic angle spinning (MAS) solid-state NMR of LL-37 reconstituted in a
lipid bilayer, solution NMR of LL-37 in detergent micelles, and circular dichroism (CD) experiments
on micelles or lipid vesicles containing LL-37 revealed the amphipathic helical structure of LL-
37 [109,207] The use of static solid-state NMR experiments on mechanically aligned lipid bilayers
containing 15N-labeled LL-37 rendered the in-plane orientation of the peptide [212]. The figure is
reprinted with copyright permission from Ref. [212].

To investigate the mechanism by which LL-37 perturbs the hydrophobic core of the
lipid bilayer, a series of static 2H solid-state NMR and DSC experiments were carried out
on lipid vesicles [237]. The 2H quadrupole couplings measured from 2H-labeled lipids
were used to determine an LL-37-induced disorder of the acyl chains of lipids. The peptide-
induced disorder of the hydrophobic core of the lipid bilayer was found to be maximal
for the lower-order carbons of the lipid acyl chains. These results along with the above-
mentioned NMR findings confirmed that amphipathic helices of LL-37 associate with the
lipid bilayer surface through electrostatic interactions and inserts into the hydrophobic
region of the membrane stabilized via hydrophobic interactions with lipid acyl chains.
These interactions act together to cause membrane disruption (Figure 9). Further evidence
showed that LL-37 insertion also alters the material properties of the membrane and that
the order of the bilayer influences the depth of the insertion, as well as the effectiveness of
the disruption.
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Figure 9. Cartoon showing the insertion of LL-37 helices into the lipid membrane bilayer with
the hydrophobic region of the helix shown as shaded [237]. In addition to the solid-state NMR
experiments used to determine the membrane orientation of LL-37 (see Figure 8), 2H solid-state
NMR experiments on vesicles containing deuterated lipids and LL-37 were used to determine the
peptide-induced disorder of the acyl chains of lipids, as shown [237]. The figure is reprinted with
copyright permission from Ref. [237].

9. Influence of LL-37 on Amyloid Aggregation

With many properties of LL-37 being uncovered over the past decades, its interactions
with amyloid β (Aβ) have also been investigated. Studies have reported the misfolding,
aggregation, oligomer formation, and fibril formation of an intrinsically disordered peptide
Aβ [238]. These properties of Aβ have been shown to be associated with the pathogenesis
of Alzheimer’s disease (AD). Studies have reported the aggregation-induced oligomer
formation and membrane-disrupting properties of Aβ peptides [239–250]. Studies have
also reported the interaction between beta-amyloid and LL-37 peptides [205]. In addition,
recent studies have also reported neuroinflammation and a variety of in vivo properties of
LL-37 [251,252]. De Lorenzi et al. explored the possible influence of LL-37 on the amyloid
aggregation of the Aβ42 isomer [205]. Through surface plasmon resonance imaging (SPRi)
in vitro experiments, De Lorenzi et al. found evidence showing that LL-37 binds specifically
to Aβ. Transmission electron microscopy (TEM) analysis of the aggregates showed that
LL-37 inhibits Aβ42’s ability to form amyloid fibril structures, which is associated with the
pathogenesis of AD. Circular dichroism (CD) spectroscopy also showed that LL-37 directly
interacts with Aβ42 to prevent the formation of a β-sheet secondary structure and therefore
the fibril formation. It was also found that when allowed to interact with each other, the
toxicities of LL-37 and Aβ42 to neurons were both significantly reduced. Based on these
findings, it is proposed that the AD pathogenesis may be associated with the expression of
LL-37 and its balance with Aβ42. As De Lorenzi et al. pointed out, this finding only marks
the starting point of research regarding the interaction between LL-37 and Aβ42. More
investigations and evidence are needed to fully understand this relationship between the
two peptides (Figure 10).
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A 37-residue human hormone amylin (also called IAPP, islet amyloid polypeptide)
aggregates to form amyloid fibrils in the pancreatic islet cells [253–256]. The self-assembly
of IAPP results in the formation of oligomeric intermediates that are shown to exhibit
major cell toxicity. Therefore, there is significant interest in the development of inhibitors of
IAPP’s aggregation [257–261]. Remarkably, nanomolar affinity of LL-37 binding with IAPP
(islet amyloid polypeptide) has been shown to effectively suppress the amyloid aggregation
of IAPP and its cell toxicity [207].

10. Summary and Future Directions

There is considerable interest and an urgent need for the development of novel com-
pounds to overcome the increasing bacterial resistance. While antimicrobial peptides
have been thought to be promising candidates, and significant research progress has been
reported towards understanding their mechanisms of action, there are very few peptide-
based compounds that have successfully become pharmaceutical compounds. On the other
hand, studies have explored other types of biological activities for AMPs. For example, the
only type of cathelicidin-derived AMP in humans, LL-37, has drawn much attention due
to its numerous biological activities, including antimicrobial activities, LPS-neutralizing
activities, and modulation of immune and inflammatory pathways [262–266]. While LL-
37’s mechanisms of antibacterial activity have been reasonably well investigated through
biophysical studies, further studies to better understand its other biological roles, such as
its effects on immune system function, are essential to fully exploit its potential therapeutic
applications and side effects. In addition, LL-37’s interference with other biological pro-
cesses such as protein misfolding and aggregation and biocondensation is an exciting area
for future research. In particular, further studies to fully understand the effects of LL-37 on
the molecular processes underlying amyloid aggregation, membrane disruption, oligomer
formation, and neuronal cell toxicity associated with the pathology of Alzheimer’s disease
would be useful.
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resistant Bacteria Show Widespread Collateral Sensitivity to Antimicrobial Peptides. Nat. Microbiol. 2018, 3, 718–731. [CrossRef]

53. Gschwandtner, M.; Zhong, S.; Tschachler, A.; Mlitz, V.; Karner, S.; Elbe-Bürger, A.; Mildner, M. Fetal Human Keratinocytes
Produce Large Amounts of Antimicrobial Peptides: Involvement of Histone-methylation Processes. J. Investig. Dermatol. 2014,
134, 2192–2201. [CrossRef]

54. Underwood, M.; Bakaletz, L. Innate Immunity and the Role of Defensins in Otitis Media. Curr. Allergy Asthma Rep. 2011, 11,
499–507. [CrossRef]

55. Jones, D.E.; Bevins, C.L. Defensin-6 Mrna in Human Paneth Cells: Implications for Antimicrobia Peptides in Host Defense of the
Human Bowel. FEBS Lett. 1993, 315, 187–192. [CrossRef]

56. Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Res.
2016, 44, D1087–D1093. [CrossRef] [PubMed]

57. Ibrahim, H.R.; Thomas, U.; Pellegrini, A. A Helix-loop-helix Peptide at the Upper Lip of the Active Site Cleft of Lysozyme
Confers Potent Antimicrobial Activity with Membrane Permeabilization Action. J. Biol. Chem. 2001, 276, 43767–43774. [CrossRef]
[PubMed]

58. Pane, K.; Sgambati, V.; Zanfardino, A.; Smaldone, G.; Cafaro, V.; Angrisano, T.; Pedone, E.; Di Gaetano, S.; Capasso, D.;
Haney, E.F. A New Cryptic Cationic Antimicrobial Peptide from Human Apolipoprotein E with Antibacterial Activity and
Immunomodulatory Effects on Human Cells. FEBS J. 2016, 283, 2115–2131. [CrossRef]

59. Sinha, S.; Harioudh, M.K.; Dewangan, R.P.; Ng, W.J.; Ghosh, J.K.; Bhattacharjya, S. Cell-selective Pore Forming Antimicrobial
Peptides of the Prodomain of Human Furin: A Conserved Aromatic/cationic Sequence Mapping, Membrane Disruption, and
Atomic-resolution Structure and Dynamics. ACS Omega 2018, 3, 14650–14664. [CrossRef]

60. Agerberth, B.; Gunne, H.; Odeberg, J.; Kogner, P.; Boman, H.G.; Gudmundsson, G.H. FALL-39, a Putative Human Peptide
Antibiotic, Is Cysteine-free and Expressed in Bone Marrow and Testis. Proc. Natl. Acad. Sci. USA 1995, 92, 195–199. [CrossRef]
[PubMed]

https://doi.org/10.1016/j.mib.2017.10.028
https://www.ncbi.nlm.nih.gov/pubmed/29154024
https://doi.org/10.1038/nrd4675
https://www.ncbi.nlm.nih.gov/pubmed/26493767
https://doi.org/10.1038/nrd2201
https://www.ncbi.nlm.nih.gov/pubmed/17159923
https://doi.org/10.1038/nature.2017.21550
https://www.ncbi.nlm.nih.gov/pubmed/28252092
https://doi.org/10.1128/MMBR.67.4.593-656.2003
https://doi.org/10.1021/acsinfecdis.5b00097
https://doi.org/10.2174/1568026615666150703121943
https://doi.org/10.3390/ijms23094558
https://doi.org/10.1038/s41586-019-1665-6
https://doi.org/10.1371/journal.pbio.3000337
https://doi.org/10.1016/j.copbio.2022.102718
https://doi.org/10.1093/jac/dkl495
https://www.ncbi.nlm.nih.gov/pubmed/17213266
https://doi.org/10.1073/pnas.1821410116
https://www.ncbi.nlm.nih.gov/pubmed/31209048
https://doi.org/10.1126/sciadv.adg3683
https://www.ncbi.nlm.nih.gov/pubmed/37224246
https://doi.org/10.3390/ijms22041522
https://doi.org/10.3390/pharmaceutics15051506
https://doi.org/10.1038/s41467-019-12364-6
https://doi.org/10.1038/s41564-018-0164-0
https://doi.org/10.1038/jid.2014.165
https://doi.org/10.1007/s11882-011-0223-6
https://doi.org/10.1016/0014-5793(93)81160-2
https://doi.org/10.1093/nar/gkv1278
https://www.ncbi.nlm.nih.gov/pubmed/26602694
https://doi.org/10.1074/jbc.M106317200
https://www.ncbi.nlm.nih.gov/pubmed/11560930
https://doi.org/10.1111/febs.13725
https://doi.org/10.1021/acsomega.8b01876
https://doi.org/10.1073/pnas.92.1.195
https://www.ncbi.nlm.nih.gov/pubmed/7529412


Biomolecules 2024, 14, 320 21 of 29

61. Larrick, J.W.; Hirata, M.; Balint, R.F.; Lee, J.; Zhong, J.; Wright, S.C. Human CAP18: A Novel Antimicrobial Lipopolysaccharide-
binding Protein. Infect. Immun. 1995, 63, 1291–1297. [CrossRef]

62. Cowland, J.B.; Johnsen, A.H.; Borregaard, N. Hcap-18, a Cathelin/pro-bactenecin-like Protein of Human Neutrophil Specific
Granules. FEBS Lett. 1995, 368, 173–176. [CrossRef]

63. Selsted, M.E.; Harwig, S.S.; Ganz, T.; Schilling, J.W.; Lehrer, R.I. Primary Structures of Three Human Neutrophil Defensins. J. Clin.
Investig. 1985, 76, 1436–1439. [CrossRef]

64. Wilde, C.G.; Griffith, J.E.; Marra, M.N.; Snable, J.L.; Scott, R.W. Purification and characterization of human neutrophil peptide 4, a
novel member of the defensin family. J. Biol. Chem. 1989, 264, 11200–11203. [CrossRef]

65. Jones, D.E.; Bevins, C.L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 1992, 267,
23216–23225. [CrossRef]

66. Oppenheim, F.G.; Xu, T.; McMillian, F.M.; Levitz, S.M.; Diamond, R.D.; Offner, G.D.; Troxler, R.F. Histatins, a novel family of
histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on
Candida albicans. J. Biol. Chem. 1988, 263, 7472–7477. [CrossRef]

67. Bensch, K.W.; Raida, M.; Mägert, H.-J.; Schulz-Knappe, P.; Forssmann, W.-G. Hbd-1: A Novel B-defensin from Human Plasma.
FEBS Lett. 1995, 368, 331–335. [CrossRef]

68. Harder, J.; Bartels, J.; Christophers, E.; Schröder, J.-M. A Peptide Antibiotic from Human Skin. Nature 1997, 387, 861. [CrossRef]
[PubMed]

69. Harder, J.; Bartels, J.; Christophers, E.; Schröder, J.-M. Isolation and Characterization of Human M-defensin-3, a Novel Human
Inducible Peptide Antibiotic. J. Biol. Chem. 2001, 276, 5707–5713. [CrossRef] [PubMed]

70. García, J.R.; Krause, A.; Schulz, S.; Rodríguez-Jiménez, F.J.; Klüver, E.; Adermann, K.; Forssmann, U.; Frimpong-Boateng, A.; Bals,
R.; Forssmann, W.G. Human beta-defensin 4: A novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial
activity. FASEB J. 2001, 15, 1819–1821. [CrossRef] [PubMed]

71. Schittek, B.; Hipfel, R.; Sauer, B.; Bauer, J.; Kalbacher, H.; Stevanovic, S.; Schirle, M.; Schroeder, K.; Blin, N.; Meier, F. Dermcidin:
A Novel Human Antibiotic Peptide Secreted by Sweat Glands. Nat. Immunol. 2001, 2, 1133–1137. [CrossRef] [PubMed]

72. Stenger, S.; Hanson, D.A.; Teitelbaum, R.; Dewan, P.; Niazi, K.R.; Froelich, C.J.; Ganz, T.; Thoma-Uszynski, S.; Melián, A.; Bogdan,
C.; et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998, 282, 121–125. [CrossRef] [PubMed]

73. Hieshima, K.; Ohtani, H.; Shibano, M.; Izawa, D.; Nakayama, T.; Kawasaki, Y.; Shiba, F.; Shiota, M.; Katou, F.; Saito, T.; et al.
CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J. Immunol. 2003, 170,
1452–1461. [CrossRef] [PubMed]

74. Krijgsveld, J.; Zaat, S.A.J.; Meeldijk, J.; Van Veelen, P.A.; Fang, G.; Poolman, B.; Brandt, E.; Ehlert, J.E.; Kuijpers, A.J.; Engbers,
G.H.M. Thrombocidins, Microbicidal Proteins from Human Blood Platelets, Are C-terminal Deletion Products of CXC Chemokines.
J. Biol. Chem. 2000, 275, 20374–20381. [CrossRef] [PubMed]

75. Krause, A.; Neitz, S.; Mägert, H.-J.; Schulz, A.; Forssmann, W.-G.; Schulz-Knappe, P.; Adermann, K. LEAP-1, a Novel Highly
Disulfide-bonded Human Peptide, Exhibits Antimicrobial Activity. FEBS Lett. 2000, 480, 147–150. [CrossRef] [PubMed]

76. Cutuli, M.; Cristiani, S.; Lipton, J.M.; Catania, A. Antimicrobial Effects of A-msh Peptides. J. Leukoc. Biol. 2000, 67, 233–239.
[CrossRef] [PubMed]

77. Lee, E.Y.; Chan, L.C.; Wang, H.; Lieng, J.; Hung, M.; Srinivasan, Y.; Wang, J.; Waschek, J.A.; Ferguson, A.L.; Lee, K.-F. PACAP Is a
Pathogen-inducible Resident Antimicrobial Neuropeptide Affording Rapid and Contextual Molecular Host Defense of the Brain.
Proc. Natl. Acad. Sci. USA 2021, 118, e1917623117. [CrossRef]

78. Tam, C.; Mun, J.J.; Evans, D.J.; Fleiszig, S.M.J. Cytokeratins Mediate Epithelial Innate Defense Through Their Antimicrobial
Properties. J. Clin. Investig. 2012, 122, 3665–3677. [CrossRef]

79. Tollner, T.L.; Yudin, A.I.; Tarantal, A.F.; Treece, C.A.; Overstreet, J.W.; Cherr, G.N. Beta-defensin 126 on the Surface of Macaque
Sperm Mediates Attachment of Sperm to Oviductal Epithelia1. Biol. Reprod. 2008, 78, 400–412. [CrossRef]

80. Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.;
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