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Abstract: Molecular recognition is fundamental in biology, underpinning intricate processes through
specific protein–ligand interactions. This understanding is pivotal in drug discovery, yet traditional ex-
perimental methods face limitations in exploring the vast chemical space. Computational approaches,
notably quantitative structure–activity/property relationship analysis, have gained prominence.
Molecular fingerprints encode molecular structures and serve as property profiles, which are essential
in drug discovery. While two-dimensional (2D) fingerprints are commonly used, three-dimensional
(3D) structural interaction fingerprints offer enhanced structural features specific to target proteins.
Machine learning models trained on interaction fingerprints enable precise binding prediction. Recent
focus has shifted to structure-based predictive modeling, with machine-learning scoring functions
excelling due to feature engineering guided by key interactions. Notably, 3D interaction fingerprints
are gaining ground due to their robustness. Various structural interaction fingerprints have been
developed and used in drug discovery, each with unique capabilities. This review recapitulates the
developed structural interaction fingerprints and provides two case studies to illustrate the power of
interaction fingerprint-driven machine learning. The first elucidates structure–activity relationships
in β2 adrenoceptor ligands, demonstrating the ability to differentiate agonists and antagonists. The
second employs a retrosynthesis-based pre-trained molecular representation to predict protein–ligand
dissociation rates, offering insights into binding kinetics. Despite remarkable progress, challenges
persist in interpreting complex machine learning models built on 3D fingerprints, emphasizing the
need for strategies to make predictions interpretable. Binding site plasticity and induced fit effects
pose additional complexities. Interaction fingerprints are promising but require continued research
to harness their full potential.

Keywords: molecular fingerprints; 3D structural interaction fingerprints; machine learning; drug
discovery; structure–activity relationships; protein–ligand interactions; predictive modeling

1. Introduction

Molecular recognition is a fundamental process in living organisms, involving spe-
cific and high-affinity interactions between biological macromolecules and various small
molecules, leading to the formation of specific complexes [1,2]. Among these macro-
molecules, proteins play a vital role as they carry out their functions by binding to them-
selves or other molecules [2]. Consequently, a comprehensive understanding of protein–
ligand interactions holds the key to unraveling the intricacies of molecular biology. Addi-
tionally, this knowledge about the mechanisms governing protein–ligand recognition and
binding serves as a valuable resource in drug discovery, design, and development. By delv-
ing into the specifics of these interactions, researchers can better advance their quest for new
therapeutic agents and foster scientific advancements in the field of drug development.
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Traditional experimental methods have long been employed to predict the binding
activity of small molecules [3]. These methods include isothermal titration calorimetry, flu-
orescence thermal shift assay, cellular thermal shift assay, and analytical ultracentrifugation,
among others [3]. However, the vastness of the chemical space allows for an astounding
number of approximately 1060 possible small molecules to be synthesized [4]. Despite
this immense potential, only a small fraction of the potential protein–ligand interactions
has yet to be explored [4]. Efficiently navigating through this vast search space poses
challenges for traditional experimental methods due to their inherent drawbacks: high
cost, time consumption, and labor intensiveness. Consequently, the increasing demand for
more efficient approaches to predict the biological activities of small molecules has driven
the development of computational methods. These computational approaches serve as
invaluable tools to streamline the search process, narrowing down the possibilities and
enabling researchers to focus on promising targets.

One of the most widely used computational approaches in drug discovery is quantita-
tive structure–activity/property relationship (QSAR/QSPR) analysis [5]. This approach
operates on the assumption that similar molecules exhibit similar bioactivities or physico-
chemical properties [5,6]. Leveraging this assumption, QSAR/QSPR analysis predicts the
activities or properties of new molecules by establishing correlations between their chemi-
cal or structural features and their observed activities or properties [5,6]. This approach
significantly reduces the need for time-consuming and costly experimental assays. Central
to QSAR/QSPR analysis is the concept of molecular similarity, which is usually measured
based on various molecular descriptors and fingerprints [7,8]. Molecular descriptors are
numerical descriptions of the structural features of a chemical and are widely used in the
development of predictive models of predicting biological activity and chemical proper-
ties [9–14]. Fingerprints encode the structural features of a molecule. These fingerprints
serve as property profiles, typically presented in the form of vectors, where each vector ele-
ment represents the existence, degree, or frequency of a specific structural feature [15–17].
Molecular fingerprints play a fundamental role in various drug discovery processes, in-
cluding virtual screening, similarity-based compound searches, target molecule ranking,
drug ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction,
and more. Over the past few decades, different types of two-dimensional (2D) fingerprints
have been developed for molecular feature encoding [18–20]. These fingerprints can be
extracted from molecular connection tables without requiring three-dimensional (3D) struc-
tural information. The main categories of 2D fingerprints are as follows: substructure
key-based fingerprints, topological or path-based fingerprints, circular fingerprints, and
pharmacophore fingerprints [21–23]. Two-dimensional fingerprints are advantageous due
to their ease, speed, and convenience of generation, as they solely rely on 2D structures [5].
Consequently, they are extensively utilized as input for machine learning algorithms in var-
ious drug discovery applications, such as binding affinity prediction, toxicity assessment,
solubility analysis, and partition coefficient estimation [24]. A typical workflow for using
machine learning to predict the properties of molecules is shown in Figure 1.
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In recent years, there has been a notable shift in the extensive use of machine learn-
ing from QSAR studies to focus on structure-based predictive modeling [25–28]. The
availability of abundant structural and binding affinity data for protein–ligand complexes
has enabled the training of binding affinity prediction models, leading to a surge in the
development of machine-learning scoring functions [29]. These scoring functions exhibit
exceptional performance in scoring works and have proven to outperform classical scor-
ing functions, primarily due to their ability to handle large volumes of structural data
effectively [29,30]. A critical aspect of constructing a machine-learning scoring function
is feature engineering, which involves transforming complex structures into a series of
descriptors. This process is guided by biologically-relevant interactions, such as hydrogen
bonds, hydrophobic contacts, ionic interactions (salt bridges), π-stacking, and π-cation
interactions [31].

Figure 2 illustrates a conventional fingerprint that is generated based only on the 2D
structure of a small molecule and an emerging 3D interaction fingerprint that describes the
interactions between a small molecule and its interacting macromolecule in a 3D structure.
Recently, the focus of scoring function descriptors has shifted towards 3D interaction
fingerprints (IFPs) because of their simplicity in representation and elaborate profiles of
key interactions. IFPs are defined based on the interacting atoms between the protein and
ligand within a protein–ligand complex structure. They are stored as one-dimensional (1D)
vectors or matrices of Booleans, integers, or floating-point numbers, providing a concise and
informative representation of the interaction patterns between the two entities [30,32]. The
use of IFPs in machine-learning scoring functions holds significant promise in accurately
characterizing and predicting protein–ligand interactions, thereby advancing the field of
structure-based predictive modeling.
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Figure 2. Illustration of a 2D molecular fingerprint (left) and a 3D molecular fingerprint (right). The
dash circles in different colors indicate different structural features that are recorded in a bit string
(under the 2D structure) as the fingerprint of the molecule. In the right sub-figure, the small molecule
is represented by a stick model and the protein is drawn in a grey ribbon model. The interactions
between the small molecule and the protein are indicated with yellow dashed lines and are recorded
as the fingerprint of the small molecule in the protein.

2. Types of Structural Interaction Fingerprints

The development and application of various structural IFPs have been significant in
advancing the field of protein–ligand interaction analysis. One of the pioneering structural
IFP algorithms was introduced by Deng et al. in 2004, focusing on clustering kinase–
inhibitor complexes [33]. Their fingerprint encompassed seven bits per interacting amino
acid, representing predefined interaction types, including backbone, sidechain, polar,
hydrophobic, and H-bond donor/acceptor interactions [33]. Mordalski et al. later extended
this approach by adding two bits to encode aromatic and charged interactions, leading
to improved technical implementation [34]. Notably, structural IFP was instrumental
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in identifying the critical amino acids involved in interactions with antagonists within
serotonin 5-HT7 receptor homology models [35].

Another widely used variant, developed by Marcou and Rognan in 2006, employs
a seven-bit fingerprint encoding hydrophobic, aromatic face-to-face and edge-to-face, H-
bond donor/acceptor, and cationic/anionic interactions [36]. Importantly, the geometric
definitions in this variant can be customized, allowing for the inclusion of less common
interaction types like weak H-bonds, cation-pi, and metal complexation [36]. This flexibil-
ity has enhanced the versatility of the fingerprinting approach. Later, the Rognan group
devised a method to encode protein–ligand interactions into a 1D binary IFP string repre-
sented by an array of 11-bit substrings [37,38]. This novel approach effectively describes
how each amino acid within the binding pocket interacts with the ligand. Specifically,
every amino acid is encoded into one 11-bit substring, corresponding to 11 distinct types of
interactions: hydrophobic interaction, aromatic interaction (face-to-face), aromatic interac-
tion (edge-to-face), hydrogen bond interaction (protein atom as acceptor), hydrogen bond
interaction (protein atom as donor), ionic interaction (protein atom with positive charge),
ionic interaction (protein atom with negative charge), weak hydrogen bond interaction
(protein atom as acceptor), weak hydrogen bond interaction (protein atom as donor), π-
cation interaction, and metal ionic interaction with the ligand [37,38]. This encoding system
provides a comprehensive representation of the intricate interactions between amino acids
and the ligand, enabling a detailed analysis of their binding patterns.

The Rognan group also introduced triplet IFPs, where interaction points forming
triangles are encoded into a fixed-length fingerprint of 210 bits [30]. The protein–ligand
interaction is characterized by two interacting atoms and an interaction pseudoatom for
ionic interaction, hydrogen bonding, and metal complexation. The interaction pseudoatom
can be in three positions: the geometric center of the interacting atoms, near the interacting
protein atom, and near the interacting ligand atom [30]. Interaction pseudoatoms can be
computed using any of these three positions, allowing for mapping the interaction either
on ligand atoms, protein atoms, or naturally at the mid-distance between the interacting
atoms [30]. For hydrophobic interactions, when a ligand atom interacts with more than
one protein atom, the interaction with the shortest distance is used to define the interaction
pseudoatom. For aromatic interactions, an aromatic interaction pseudoatom is placed in
the middle between the aromatic ring centroids. Although primarily designed for binding
site comparison, triplet IFPs showed comparable performance to IFP in the post-processing
of docking results [30].

Python-based protein–ligand interaction fingerprint (PyPLIF), an open-source Python
tool developed by Radifar et al., aims at improving the accuracy of molecular docking
results in virtual screening [39]. PyPLIF converts 3D interaction data from molecular dock-
ing into 1D bitstring representations, where each bit encodes the presence or absence of
specific interaction types with binding site residues [39]. The similarity between these
fingerprints and a reference ligand fingerprint is then evaluated using metrics like the
Tanimoto coefficient [39]. Selecting top docking poses based on interaction fingerprint simi-
larity, rather than relying solely on docking scores, significantly improves the identification
of true binders [39].

Atomic pairwise interaction fingerprint (APIF) offers a binding site size-independent
encoding of protein–ligand interactions. It achieves this by considering the relative position
and interaction type of all pairs of interacting atoms between the ligand and protein [40].
Each interacting atom pair is categorized by its interaction type, such as the hydrophobic-
acceptor, and sorted into discrete distance ranges between the ligand and protein atoms [40].
Consequently, a 294-bit fixed-length binary fingerprint is generated, encompassing various
combinations of interaction pairs and distances. APIF’s utilization of relative geometry
rather than absolute positions allows for a comparison of binding modes across diverse
binding sites [40]. This 1D fingerprint retains essential 3D information, making it valuable
for virtual screening and docking pose selection. However, one limitation is the reduced
precision in capturing geometric details, which may make interpreting interactions from
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APIF challenging [40]. Despite this, APIF stands out for providing a concise representation
of conserved interaction patterns, independent of the binding site size, although it may
lack the intuitive interpretability found in residue-specific interaction fingerprints.

The simple ligand–receptor interaction descriptor (SILIRID) is an innovative fixed-
length vector representation that derives from protein–ligand interaction fingerprints,
serving to characterize binding sites. It condenses the interactions between ligand atoms
and binding site residues into a concise 168-dimensional vector [41]. This is achieved
by summing the binary fingerprint bits for identical amino acids and capturing their
corresponding interaction types (such as hydrophobic, hydrogen bond donor/acceptor,
etc.) [41]. SILIRID’s distinct feature lies in its ability to merge residue-specific fingerprints
into a binding site-independent summary, facilitating the comparison of interactions across
binding sites of varying sizes [41]. As a result, SILIRID offers a compact representation of
conserved interaction patterns that find applications in tasks like binding site comparison,
virtual screening, and the visualization of chemogenomic space. One limitation to consider
is the reduction in per-residue details, which may limit the granularity of interpretation [41].
Overall, SILIRID excels in encoding essential interaction features within a size-independent
vector, although it may not possess the same level of interpretability found in residue-
specific fingerprints.

Another unique approach to structural protein–ligand interaction fingerprints (SPLIF)
was proposed by Da and Kireev [42]. It was designed to describe and compare protein–
ligand interactions in a manner that is independent of the binding site. Unlike other
approaches, SPLIFs explicitly encode the 3D structures of interacting ligand and protein
fragments, capturing the nuances of the interaction modes and implicitly considers various
contacts, such as π-π stacking [42]. The generation of SPLIF involves expanding contacting
ligand and protein atoms to include neighboring atoms within a defined radius [42]. These
circular fragments are assigned identifiers, and their 3D coordinates are retrieved [42].
The SPLIF then encodes the matching circular fragments between a docking pose and the
reference complex, assessing similarity through a normalized score based on the fraction
of matched fragments [42]. The evaluation involves both 2D fragment identity and 3D
structural alignment, providing a comprehensive representation of the interaction patterns.
A notable advantage of SPLIFs is their implicit inclusion of diverse interaction types in
the 3D structure description [42]. However, the trade-off is the loss of precise geometric
details. Overall, SPLIFs offer a robust platform for the quantitative comparison of conserved
interaction patterns across binding sites of varying sizes.

Recently, Wojcikowski et al. introduced the protein–ligand extended connectivity
fingerprint (PLECFP) [43], based on the atomic environment concept of the extended con-
nectivity fingerprint initially proposed by Rogers and Hahn in 2010 [18]. PLECFP captures
the local atomic environments between the interacting protein and ligand molecules. Its
construction involves identifying contacting atom pairs and characterizing the neighbor-
hood surrounding each atom within a specified bond depth. These ligand and receptor
environments are paired, and their hashed bit positions create the final folded fingerprint.
PLECFP’s parameterization and evaluation on binding affinity prediction tasks using
linear regression, random forest, and neural network models showcased its impressive
descriptive capabilities. Surprisingly, the simple linear model performed similar with more
complex methods, underscoring the richness of PLECFP’s representation. Notably, PLECFP
outperformed other interaction fingerprints like SILIRID and SPLIF, yielding Pearson corre-
lation coefficients exceeding 0.8 on benchmark datasets [43]. Such exceptional performance
suggests PLECFP’s potential for diverse drug discovery tasks, including lead optimization
and scaffold hopping, thanks to its implicit capacity to capture relevant interactions. A
summary of different types of protein–ligand interaction fingerprints is listed in Table 1.
A list of currently available software for calculating interaction fingerprints is shown in
Table 2.
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Table 1. Different types of protein–ligand interaction fingerprints and their characteristics.

Types of Protein–Ligand
Interaction Fingerprints Characteristics and Pattern Types Length Reference

Structural IFP
Uses well-defined interaction types

such as hydrogen bond, halogen
bonds, and π-π stacking

Each residue is represented by a
seven-bit long bit string [33,34]

Python-based protein–ligand
interaction fingerprint

(PyPLIF)

Uses well-defined interaction types
such as hydrogen bond, halogen

bonds, and π-π stacking

Seven bits represent seven
different interactions for each

residue
[39]

Triplet IFP

Uses two interacting atoms and an
interaction pseudoatom positioned

at three potential locations: the
geometric center of the interacting

atoms, the interacting protein atom,
and the interacting ligand atom to
encode different interaction types

(7 types) at defined distance ranges
(6 ranges)

210 integers [30]

Atom-pairs-based interaction
fingerprint (APIF)

Considers the relative positions of
the atom pairs instead of the

absolute locations of the individual
interactions

294 bits [40]

Simple ligand–receptor
interaction descriptor

(SILIRID)

Groups interactions by residue type,
the interactions included are

hydrophobic, aromatic face to face,
aromatic edge to face, H-bond

donated by the protein, H-bond
donated by

the ligand, ionic bond with protein
cation and protein anion, and

interaction with metal ion

168 integers (corresponds to the
product of 20 amino acids and 1
co-factor and 8 interaction types

per amino acid)

[41]

Structural protein–ligand
interaction fingerprint (SPLIF)

Encodes interacting ligand and
protein fragments by representing
them as circular fingerprints using
Extended Connectivity Fingerprints

(ECFP2) and generates integer
identifiers to represent each

substructure fragment

Length depends on the number of
interacting fragments identified [42]

Protein–ligand extended
connectivity fingerprint

(PLECFP)

Pairs and hashes the ECFP
environment from the interacting

ligand and protein atoms to
represent contacts and interactions

between the molecules

The raw folded fingerprint
consists of integers

between 0 and 232 (32 bits)
[43]

Table 2. Available software for calculating structural interaction fingerprints.

Software/Web Server Types of Input Complex Input Format MD Trajectory
Analysis Reference

Arpeggio
All combinations between
ligand, protein, DNA and

RNA molecules
PDB N/A [44]
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Table 2. Cont.

Software/Web Server Types of Input Complex Input Format MD Trajectory
Analysis Reference

fingeRNAt
All combinations between
ligand, protein, DNA and

RNA molecules
PDB and SDF N/A [45]

getContacts
All combinations between
ligand, protein, DNA and

RNA molecules
VMD N/A

getcontacts.github.io
(accessed on 2

November 2023)

Ichem Protein ligand complex only Mol2 N/A [37]

LUNA Protein ligand and
protein–protein complex

PDB, Mol, Mol2, and
RDKit N/A [46]

MD-IFP Ligand protein complex only MDAnalysis Yes [47]

ODDT Ligand protein complex only OpenBabel and RDKit N/A [48]

PLIP
All combinations between
ligand, protein, DNA and

RNA molecules
PDB N/A [49]

ProLIF
All combinations between
ligand, protein, DNA and

RNA molecules
MDAnalysis and RDKit Yes [50]

PyPLIF HIPPOS Ligand protein complex only PDBQT and Mol2 N/A [39]

Schrodinger Ligand protein complex only SDF, PDB, and MAE N/A [51,52]

3. Case Study of Structural Interaction Fingerprint Application

In this section, we highlight two case studies that incorporated structural interaction
fingerprints into machine learning. The first case study demonstrated that molecular dock-
ing and machine learning can be combined to reveal key structure–activity relationships
for drug targets [53]. The researchers compiled a dataset of approximately 2700 known
ligands for the β2 adrenoceptor (β2AR). They computationally docked these ligands to
β2AR structures to generate approximately 75,000 poses and calculated atomic interaction
fingerprints describing receptor–ligand interactions. Machine learning models were trained
on these fingerprints to predict whether ligands act as agonists or antagonists. Figure 3
shows the detailed workflow of this work. The models identified specific hydrophobic
and polar contacts with receptor residues that differentiate agonists and antagonists. Ag-
onists were found to preferentially interact with residues K97, F194, S203, S204, S207,
H296, and K305 while antagonists were found to favor residues W286 and Y316. This
structure–activity relationship modeling approach achieved high accuracy in predicting
ligand pharmacological activity and provided molecular insights into β2AR activation and
inhibition. This study demonstrates the power of interaction fingerprint-driven machine
learning for elucidating ligand binding mechanisms and guiding rational drug design. The
results from this case study revealed that structural interaction fingerprints derived from
docking poses offer insights into the environment surrounding the ligand, which can be
useful for differentiating the potential biological activities of ligands.
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pharmacological activity on β2 receptors.

The second case study introduced a machine learning strategy employing an innova-
tive molecular representation termed RPM (retrosynthesis-based pre-trained molecular)
representation to predict protein–ligand dissociation rates (koff) [54]. The RPM repre-
sentation was constructed through training on retrosynthesis reaction data, enabling the
encapsulation of molecular reactivity and functional group information. Subsequently,
these RPM features were fed into a partial least squares regression model to predict the
koff values for 501 inhibitors spanning 55 proteins. Impressively, the RPM-based model
demonstrated superior performance compared to other pre-trained representations such as
the molecular pre-training graph-based deep learning framework and geometry-enhanced
molecular representation, achieving a noteworthy Pearson correlation coefficient of 0.76
on this specific dataset. To exemplify its application, the model was further evaluated
using 38 novel inhibitors targeting the N-terminal domain of the heat shock protein 90α
(HSP90), yielding a commendable correlation of 0.73 with experimental koff values. In-
depth mechanistic insights into the kinetics were sought through accelerated molecular
dynamics simulations, which obtained data on relative retention times and protein–ligand
IFPs along the dissociation trajectory. Figure 4 illustrates the detailed workflow of this case
study. The simulated koff values exhibited reasonable agreement with experimental results,
with the IFPs elucidating important residues like N51, S52, and L107 that significantly
influence the dissociation process. In an additional validation, the machine learning model
coupling with molecular dynamics simulation was extended to two new HSP90 inhibitors
absent from the training set. Encouragingly, the model accurately predicted their relative
koff values, which were aligned with experimental observations. Furthermore, the IFP
analysis offered detailed insights into how substituents modulated binding kinetics. This
case study combined different approaches and offered a comprehensive exploration of the
molecular attributes and interactions that govern binding kinetics, thereby underlining its
potential utility for kinetics-focused drug design endeavors.
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4. Future Perspective

Molecular fingerprints have become indispensable cornerstones in the realm of com-
putational drug discovery, offering informative representations of ligands for property
prediction and activity modeling. In this landscape, the realm of molecular fingerprints
stands at an exciting crossroads, with 2D fingerprints providing simplicity and ease of
use, while 3D structural interaction fingerprints hold the tantalizing potential to intricately
encapsulate the minutiae of interactions within protein–ligand complexes. The future
trajectory of this field is poised for further advancement, driven by the synergy of hybrid
fingerprint design and technological progress. The amalgamation of 3D structural interac-
tion descriptors with other properties, such as physicochemical attributes, has the potential
to elevate the accuracy of ligand bioactivity predictions. By encompassing both struc-
tural intricacies and physicochemical subtleties, hybrid fingerprints extend the horizons of
molecular characterization, and the application of advanced machine learning techniques
holds the key to their optimal integration. As computational methodologies advance and
resources expand, the landscape for harnessing the potential of 3D fingerprints in drug
discovery grows even more fertile. The interplay of refined machine learning algorithms,
augmented structural datasets, and enhanced computational power opens new possibilities
and opportunities in interaction fingerprint design, training, and prediction, with deep
learning strategies poised to unveil profound insights from intricate 3D interaction patterns.

Yet, as the future of molecular fingerprints shines brightly, it is not without its chal-
lenges. One such limitation lies in the dependency of 3D fingerprints on the accessibility of
protein–ligand complex structures. Nonetheless, the ongoing advancements in structural
determination techniques contribute to an increasing abundance of structures, facilitating
the progress of molecular fingerprint development. Another drawback is the insufficient in-
corporation of the energy terms necessary to comprehensively characterize the interactions
occurring between proteins and ligands. Recent deep learning-based scoring functions
may potentially solve this problem. Decoding complex machine learning models con-
structed on 3D fingerprints is another challenge. The process of unraveling the pivotal
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interacting features driving a model’s predictions remains an active area of exploration.
Novel strategies are essential to deconstruct model outputs into interpretable interaction
insights, which in turn can illuminate pathways for molecular optimization. Moreover,
the intricacy of binding site plasticity and induced fit effects introduces complexities in
accurately characterizing interactions solely from static structural data. Another limitation
is the reliance on the availability of known ligand–protein interaction information. In both
case studies, the target has a large number of known ligands that can be used for model
training. However, for targets that have few or no known ligands, for which the discovery
of new ligands is in higher demand, this method would not be as applicable.

Overall, interaction fingerprints hold immense promise but require continued research
to fully harness their potential and overcome existing limitations, unlocking new vistas of
discovery and application.
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