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Abstract: This review provides a fresh overview of non-canonical amino acids and their applications
in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature
and are known to enhance the stability of specific secondary structures and/or biological function.
Contrary to the ubiquitous DNA-encoded amino acids, the structure and function of these residues
are not fully understood. Here, results from experimental and molecular modelling approaches
are gathered to classify several classes of non-canonical amino acids according to their ability to
induce specific secondary structures yielding different biological functions and improved stability.
Regarding side-chain modifications, symmetrical and asymmetrical α,α-dialkyl glycines, Cα to Cα
cyclized amino acids, proline analogues, β-substituted amino acids, and α,β-dehydro amino acids are
some of the non-canonical representatives addressed. Backbone modifications were also examined,
especially those that result in retro-inverso peptidomimetics and depsipeptides. All this knowledge
has an important application in the field of peptidomimetics, which is in continuous progress and
promises to deliver new biologically active molecules and new materials in the near future.

Keywords: non-canonical amino acids; side-chain modifications; backbone modifications;
peptidomimetics; foldamers; structure-function relationship

1. Introduction

This review focuses on the major differences between canonical and non-canonical
amino acids, which give the latter the ability to be successfully incorporated into peptides,
generating peptidomimetics for medical use and other applications [1,2]. To date, most of
the findings about non-canonical amino acids (ncAA) derive from experimental studies.
Driven by this fact, we also gather here predictions from molecular dynamics simulations
concerning the structure and function relationship of these molecules, along with the most
relevant results and applications from the experimental area.

Peptides and proteins have been exhaustively studied over time, as they are vital
molecules in most processes and body functions, providing the molecular machinery
of life as we know it. In addition, these entities also play a plethora of fundamental
functions, acting as hormones, neurotransmitters, inhibitors, etc., which are essential
for human life [3–5]. However, the general use of proteins and peptides as therapeutic
agents has major drawbacks in terms of bioavailability and biostability [6]. Degradation
by proteases and problems concerning nonselective molecular receptors are some of the
disadvantages of canonical peptide sequences [6–8]. In addition, the pharmacokinetics of
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peptides formed only by genetically encoded amino acids is also a process that does not
favour the use of these molecules as drugs; common problems are poor oral availability,
poor cell permeability, and rapid excretion through the liver and kidneys [9].

To overcome these problems, peptide-like molecules designed to mimic the function
of natural peptides, called peptidomimetics, have been designed and tested [10–12]. Partic-
ularly, the enzymatic stability of a peptide is related to several factors such as amino acid
composition, secondary structure, flexibility, and lipophilicity [13]. The most common and
simple way to generate peptidomimetics is through modifications of native amino acids
so that the new peptide shares a similar secondary structure but maintains or improves
biological function. For instance, the hydrolysis of peptide bonds by proteases can be
obstructed through the introduction of atypical moieties, such as D-amino acids, or by
introducing an N-alkyl group [11,14–16].

The second type of peptidomimetics is based on more refined changes in (poly)peptide
backbone, mainly by incorporating chemical foldamer moieties that will result in similar
structural profiles or by modifications to the backbone. Recently, Lenci and Trabocchi
reviewed peptidomimetics classes/types and classifications, which include chemical struc-
tures that drastically differ from the parent peptide but retain the scaffold, interactions, or
function [9]. Here, the focus lies on amino acids and backbone modifications, preserving
the peptide-like character.

The rational design of new peptidomimetics is highly dependent on our knowledge
of the structure-function relation of ncAA. In fact, very recent studies on the topic of
peptidomimetics have reinforced the significance of ncAAs [17–20]. Do and Link, for in-
stance, highlight their role with a focus on ribosomally synthesized and post-translationally
modified peptides (RiPPs).

We aim to create and update an ncAA library, suggesting amino acid alternatives
able to induce a specific secondary structure, i.e., with a foldamer profile, but also listing
their applicability as building blocks. Secondly, we also present the peptidomimetics’
applicability in medicinal chemistry, listing some designed, tested, or approved peptides
and pointing out the ncAA present. Lastly, we emphasize that computational tools have a
great role in the design of peptidomimetics and are gaining relevance as predictive tools in
peptide science [21–24].

Amino Acids and Peptides: Structural Features and Properties

α-amino acids are organic molecules presenting a carboxylic (COOH) and an amine
(NH2) group bonded to a common carbon atom, named alpha carbon (Cα). They are
the fundamental building units of peptides and proteins. There are 20 natural amino
acids encoded by the genetic code, widely recognized as the canonical amino acids, which
constitute the most known proteins and enzymes [25].

Exceptions to the 20 canonical amino acids of natural occurrence are well known, some
of them generated in post-translational processes and others found as free metabolites.
For example, hydroxyproline (Figure 1A) and hydroxylysine (Figure 1B) occur on the
protein collagen [26]. They are produced by hydroxylation of the amino acids proline
and lysine, respectively, by the correspondent hydroxylase enzyme, as a post-translational
modification [27,28]. The α-aminoadipic acid (Figure 1C) can be present in corn proteins or
appears as a metabolite/intermediate in the lysine metabolism [29]. Likewise, penicillamine
(Figure 1D) is an α-amino acid metabolite of penicillin, similar to cysteine, and it is used to
treat arthritis [30]. Ornithine (Figure 1E) participates in the urea cycle as one of the products
of the action of the enzyme arginase on L-arginine [31]. Citrulline (Figure 1F), naturally
found in watermelon, is an amino acid derived from arginine [32].
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as oligopeptides when short and are polypeptides when larger. The exact terminology, in 
accordance with the length, is quite variable. Some sources consider oligopeptide se-
quences of 2–10 amino acids, others consider sequences of 2–20, and in yet others, 2–40 
residues are also reported [39]. Representative classes of oligopeptides are aeruginosins, 
cyanopeptolins, microcystins, microviridins, microginins, anabaenopeptins and cycla-
mides, which were divided based on their molecular structure and/or in the presence of 
specific moieties or amino acid derivatives. [40,41]. Polypeptides are peptides that contain 
longer, continuous, and linear peptide chains. All proteins are polypeptides, but the re-
verse is not necessarily true, since a protein has a unique amino acid sequence encoded 
by a gene, which will fold in a specific way to perform a biological function. 

Several naturally occurring peptides present, alone, important biological functions, 
being fully functional entities [39]. Relevant examples of peptides and small proteins are 
the vertebrate hormones, insulin (51 residues), glucagon (29 residues), and corticotropin 
(39 residues), and many drugs have been developed on their basis, including by using D-
amino acids and other residue modifications [42]. Other examples of small naturally oc-
curring peptides are the endogenous hormones oxytocin [43] and thyrotropin [44] and the 

Figure 1. Two-dimensional structures of some non-canonical amino acids naturally found in nature
or post-translational processes. (A) L-hydroxyproline, (B) hydroxylysine, (C) L-α-aminoadipic acid,
(D) L-penicillamine, (E) L-ornithine, (F) citrulline, (G) selenocysteine, and (H) pyrrolysine.

Importantly, although by definition there are 20 L-amino acids encoded by the ge-
netic code, there are two other residues that are proteinogenic: selenocysteine (Sec) and
pyrrolysine (Pyl) (Figure 1G,H) [33,34]. Whereas Pyl appears only in proteins of Archaea
organisms and a few bacterial genera [35], on the contrary, Sec is found in all kingdoms
of life as the building block of selenoproteins. Sec, the 21st amino acid, is a cysteine (Cys)
residue analogue with a selenol group in place of the thiol group and has already been
found in 25 human selenoproteins and selenoenzymes [36].

Sec is encoded by a UGA codon, which is normally a stop codon but acts by perform-
ing a translational recoding; i.e., the mRNA reprograms the ribosome to read the message
in alternative ways [37,38]. Selenium displays quite different properties compared to sulfur.
It lowers Sec’s pKa and makes it a stronger nucleophile than Cys. While Pyl’s incorpo-
ration into polypeptides closely resembles the incorporation of canonical amino acids at
sense codons, it occurs in response to an in-frame amber stop codon. Pyl participates in
ribosomal translation because it is charged onto an amber suppressor tRNACUA by its own
pyrrolysyl-tRNA synthetase [35].

Peptides are composed of chains of linked amino acid residues, which are classified
as oligopeptides when short and are polypeptides when larger. The exact terminology, in
accordance with the length, is quite variable. Some sources consider oligopeptide sequences
of 2–10 amino acids, others consider sequences of 2–20, and in yet others, 2–40 residues are
also reported [39]. Representative classes of oligopeptides are aeruginosins, cyanopeptolins,
microcystins, microviridins, microginins, anabaenopeptins and cyclamides, which were
divided based on their molecular structure and/or in the presence of specific moieties or
amino acid derivatives [40,41]. Polypeptides are peptides that contain longer, continuous,
and linear peptide chains. All proteins are polypeptides, but the reverse is not necessarily
true, since a protein has a unique amino acid sequence encoded by a gene, which will fold
in a specific way to perform a biological function.
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Several naturally occurring peptides present, alone, important biological functions,
being fully functional entities [39]. Relevant examples of peptides and small proteins are
the vertebrate hormones, insulin (51 residues), glucagon (29 residues), and corticotropin
(39 residues), and many drugs have been developed on their basis, including by using
D-amino acids and other residue modifications [42]. Other examples of small naturally
occurring peptides are the endogenous hormones oxytocin [43] and thyrotropin [44] and
the neurotransmitter enkephalin [45], consisting of only 9, 3, and 5 amino acids, respectively
(Figure 2).
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Figure 2. The 3D structures of the peptides, oxytocin (PDB ID: 7OFG), thyrotropin (PDB ID: 7X1U),
and Met-enkephalin (PDB ID: 1PLW), with the respective sequences and backbone highlighted in
blue ribbon.

The biological function of a peptide is directly connected to the amino acid sequence
and, very often, to the resulting secondary structure (SS). That is why understanding the
role of an amino acid in the peptide structure and its interactions is the key to proposing a
rational design of more stable and functional analogues. Modifications in the amino acid
side chain or the peptide backbone can alter the normal configuration ofϕ andψ, stabilizing
a conformation or generating a new one. These dihedral angles are most important for
peptide conformation and will be different for ncAA [46,47].

Remarkable examples where the amino acid content induces a specific SS that imparts
function are the cell-penetrating peptides (CPP). This class comprises the family of antimi-
crobial peptides (AMP), which are membrane-active peptides. The CPPs present great
potential as drug-delivery peptides, and the AMPs are promising antibiotic candidates [48].
Many other examples can be cited, and, importantly, all of them can be optimized with the
insertion of ncAA to stabilize SS and enhance proteolytic stability.

2. Peptidomimetics Design

In order to analyze the main differences between canonical and non-canonical amino
acids and peptidomimetics design, this review is divided into a compilation of what
is known about amino acid side-chain modifications and then a review of the peptide
backbone modifications.

2.1. Structural Properties of Non-Canonical Amino Acids

Non-canonical amino acids are organic molecules also containing an amine and a
carboxylic acid group but are not directly encoded by the genetic code. Several residues are
found in nature, and a large array can be synthesized [16,49].

The incorporation of ncAA into peptides is one of the approaches to generating
peptidomimetics able to overcome the problems previously mentioned concerning the
pharmacokinetics and enzymatic stability of natural peptides as drugs. In fact, the re-
placement of natural amino acids often results in higher activity and increased biological
stability [6,10,14,50]. Figure 3 summarizes the most common natural and artificial modifi-
cations applied to encoded amino acids, used to generate peptidomimetics.
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Figure 3. General structure of an encoded L-amino acid (A) and of its D form (B). Symmetrical
α,α-dialkyl glycine (C), asymmetrical α,α-dialkyl glycine (D), cyclized amino acids (known as Acnc)
(E), proline analogues (F), β-substituted amino acid (G), general α,β-dehydroamino acid (H) with
N-cyclization (I) and N-alkylation (J). Below the structure, the section where the class of amino acids
is discussed is indicated.

α,α-Dialkyl glycines, hydroxyproline, and α,β-dehydro amino acids are represen-
tatives naturally found in peptides of several organisms [51,52]. Nature shows us that
animals and plants can fight against microbes using antimicrobial peptides [53,54]. Many
of these peptide sequences carry ncAA, showing that it is possible to translate this defense
mechanism from nature into the design, simulation, synthesis, and application of new
peptidomimetics [11,12,14,55].

2.1.1. Symmetrical and Asymmetrical α,α-Dialkyl Glycines

The most widely studied class of ncAA is probably the class of α,α-dialkyl glycines
(Figure 4). This type of residue is found in many naturally occurring peptides, especially in
antimicrobial peptides [56–58]. The Aib (α-aminoisobutyric acid) is the prototype of this class
and is known to restrict the dihedral angles to generate α-helical conformations [49,59,60].
Figure 4 shows reported symmetric and asymmetric disubstituted glycines.

Peptaibols are small–medium peptides that belong to the class of AMPs and have this
name because they are rich in the ncAA Aib. Many peptaibols interact with cell membranes
through a barrel-stave channel model. They are mostly helical entities, which allow the
optimal channel formation necessary for biological function. We reported the structural
properties of a series of ncAA amino acids inserted in different peptaibols: symmetrical
α,α-dialkyl glycines for Peptaibolin and Alamethicin [61,62] and asymmetrical α,α-dialkyl
glycines for Zervamicin II and Antiamoebin I [63].

The molecular dynamics simulations performed with this collection of ncAA indicate
that some residues are more capable of inducing α-helical conformations and promot-
ing spontaneous membrane permeation. In Peptaibolin, a Leu-Aib-based peptide, the
substitution of native Aib for Dhg or Ac6c is capable of maintaining the ideal α-helical
structure necessary for AMP function. However, all proposed peptidomimetics generated
by symmetrical α,α-dialkyl glycines are able to successfully permeate a POPC (1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine) membrane [61]. Experimentally, Peptaibolin ana-
logues bearing Ac6c and Deg are the peptides with higher permeating ability, evidencing
a correlation between the length and bulk of the α,α-dialkyl glycines side chain and the
ability of the corresponding peptides to permeate the membranes [64].
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In the case of Alamethicin, the bulky α,α-dialkyl glycines Dhg, Dφg, and Dbzg imposed
more helical-constrained structures, and in a medium simulating a membrane environment,
Deg, Ac6c, and Dhg were the amino acids that induced higher peptide helicity.

Molecular dynamics simulations and free energy calculations of Alamethicin sug-
gested an ideal peptide sequence based on the foldamer profile and energetics of each
tested ncAA. This computational study resulted in an Alamethicin peptidomimetic with
the following sequence: Ac-Dhg-Pro-Deg-Ala-Dhg-Ala-Gln-Dhg-Val-Aib-Gln-Leu-Dhg-
Pro-Val-Dhg-Deg-Glu-Gln-Phe [62].
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porated in peptides such as enkephalin (replacing both Gly), bradykinin (replacing Phe), 
and angiotensin II (replacing Asp in position 1) [65–69], generating active and constrained 
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Figure 4. Two-dimensional structures of α,α-dialkyl glycines: α-amino isobutyric acid (Aib), α,α-
diethyl glycine (Deg), α,α-dipropyl glycine (Dpg), α,α-di-isobutyl glycine (Dibg), α,α-dihexyl glycine
(Dhg), α,α-diphenyl glycine (DΦg), α,α-dibenzyl glycine (Dbzg), α,α-cyclohexyl glycine (Ac6c), and
α,α-dihydroxymethyl glycine (Dmg). The asymmetrical D-α,α-dialkyl glycines investigated were
D-Iva, MDL (α-methyl-D-leucine), MCP (2-amino-2-cyclopentylpropanoicacid), MDC (2-amino-2-(2-
cyclopentenyl)propanoic acid), MDP (α-methyl-D-phenylalanine), and MPR (2-amino-2-methyl-4-
pentenoic acid).
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Symmetrical α,α-dialkyl glycines are achiral disubstituted amino acids; thus, dihedrals
should be sampled that are typical of right-handed or left-handed helix configurations with
similar probability. In contrast, a tendency for L configuration was observed, probably due
to the encoded amino acids in the neighborhood, which influences the ncAA towards a
similar structural arrangement.

Aib has been under investigation for many years. This ncAA was successfully incor-
porated in peptides such as enkephalin (replacing both Gly), bradykinin (replacing Phe),
and angiotensin II (replacing Asp in position 1) [65–69], generating active and constrained
peptidomimetics. Furthermore, Ac6c (1-aminocyclohexane-1-carboxylic acid) has been
tested on enkephalin and endomorphin peptides to achieve peptidomimetics with large
activity in vivo [70,71]. Ac6c is both an α,α-dialkyl glycine (because it is alkyl disubstituted
at Cα) and a residue of Acnc residues, in which the chains attached to the Cα are involved
in a Cα to Cα cyclization.

Ross and co-workers reported in 1993 the synthesis of α-amino acids, including three
asymmetrical α,α-dialkyl glycines [72]. Mendel and co-workers [49] reported protein
biosynthesis with conformationally restricted residues, addressing different classes of
amino acids, which included Iva and other asymmetrical disubstituted amino acids. This
approach successfully generated peptides with well-defined secondary structures.

Recently, Das and co-workers [55] cited the symmetrical Deg, Dpg, Dibg, Dhg, DΦg,
and Dbzg as foldamers inspired by peptaibols. The success in the application of these amino
acids can inspire the design of a great variety of symmetrical and asymmetric glycines, as
well as their synthesis and screening through MD simulations.

Peptaibol research is still a growing field, with synthetic peptides being designed for
novel applications such as agrochemicals, as recently reported by Zotti and colleagues [73].

As for asymmetricalα,α-dialkyl glycines, they are chiral molecules and were simulated
in D configuration, based on the D-Iva (isovaline) naturally present in the peptaibols Zer-
vamicin and Antiamoebin. The D-amino acids studied induced the helical conformations
required for the antibiotic function, but they importantly increase overall stability against
proteolysis [63,74,75]. We highlight the residues MDL and MDP as the most promising
helical inducers, regardless of the position in which they are inserted.

2.1.2. Cα to Cα Cyclized Amino Acids—Acnc Residues

Cyclized Acnc residues (Figure 5) have been widely studied over the past decades
through experimental and computational methods [76–83]. The conformational preferences
of these residues vary according to the cycle.
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(R,R)-Ac5cdOM.
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Previous experimental and modelling findings indicate that Acnc cycles with more
than 3 atoms (n = 4–12) explore, mostly, the main chain geometry similar to
Aib (ϕ, ψ ≈ ±60◦, ±30◦) which is typical of α-helix or 310-helix SS [76,83–88]. The residues
Ac5c (1-aminocyclopentane-1-carboxylic acid) and Ac6c (1-aminocyclohexane-1-carboxylic
acid) have been found to yield γ-turn conformations in small peptides [78,89–91]. On the
other hand, Ac3c (1-aminocyclopropane-1-carboxylic acid) is the only member of Acnc
family that prefers molecular geometries in the bridge region (ϕ, ψ ≈ ±90◦, 0◦), and this
particularity has been the subject of several studies in recent decades [92–96].

This class of amino acids has been investigated to control secondary structures and
generate new bioactive peptides [76,81]. The Ac6c residue has been incorporated, for
instance, in helical AMP [62] or neurotransmitters [70].

Bulkier side chains, such as Ac9c, Ac10c, Ac11c, and Ac12c, have been frequently
addressed in the past regarding their role as stronger helix formers [83,86–88] but also to
increase peptide hydrophobicity to improve biological activity as agonists or antagonists
towards a specific target [97].

2.1.3. Proline Analogues

Proline analogues (Figure 6) represent a class with unique conformational features,
since the natural Pro residue is known to disrupt or prevent α-helix SS and favors the
formation of β-turn structures. Amino acid analogues of proline have been studied experi-
mentally and computationally to understand structure preference and applications [98–102].
Pro derivatives have been found in proteins of microbial and marine species [6].
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Figure 6. Two-dimensional structures of the encoded amino acid Pro and proline analogues. From
left to right: L-Pro, cis-4-hydroxy-L-proline (Hyp), cis-4-methyl-L-proline (MLP), cis-3-amino-L-proline
(ALP), trans-3-hydroxy-L-proline (HLP), and 2,4-methano-L-proline (methanoPRO).

We reported the incorporation of proline analogues into the peptaibols Antiamoebin I
and Zervamicin II [63], which were studied by MD simulations. The ncAA cis-3-amino-L-
proline (ALP) presented a foldamer profile, increasing the content of amino acids in α-helix in
both peptaibols. These peptides naturally carry Hyp; therefore, we tested if another proline
analogue would be able to increase the stability of helical conformations. The findings indicate
that ALP and trans-3-hydroxy-L-proline (HLP) also act as good helical inducers.

Although proline is known to bend helical conformations, β-turn structures can be
accommodated into helical backbones (with a hydrogen-bonding pattern i→ i + 3) [98].
One proof of this is the structure of collagen, in which consecutive Pro and Hyp residues
generate a helix [103].

2.1.4. β-Substituted and Planar Amino Acids

β-substituted amino acids (Figure 7) have been used to generate more potent pep-
tidomimetics of naturally occurring peptide hormones, such as opioid peptides, angiotensin,
or somatostatin [6,104]. Natural amino acids such as Phe, Trp, and Tyr are found in the
pharmacophore of many peptide hormones. The addition of alkyl groups to the β posi-
tion proved to be a powerful strategy to rigidify the residue, by constraining the rotation
between Cα and Cβ, and to enhance the activity [11,105–109].
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Figure 7. Structures of selected examples of non-canonical β-substituted amino acids. From left
to right and top to bottom: β-MePhe, β-MeTyr, β-MeTrp, Tmt (trimethyltyrosine; β-methyl-2′,6′-
dimethyltyrosine), TmmTyr (trimethyl-metoxytyrosine; β-methyl-2′,6′-dimethyl-4′metoxytyrosine),
Tic (1,2,3,4-tetrahydroisoquinoline).

The insertion of this type of amino acid in peptidomimetics hormones should consider
multiple factors, as the conformational state should match the target interaction partner
(receptors, enzymes, membranes) [110]. The main goal will be to gain prolonged biological
activity, due to the presence of an alkyl group [105]. Hruby and co-workers gathered
inputs from pharmacology, computational chemistry, and biophysical analysis to better
understand and apply this class of ncAA and found out that the Tic amino acid not only
was able to maintain the β-turn related to the activity of somatostatin peptide but resulted
in more potent and selective peptidomimetics for µ-opioid receptors [111].

2.1.5. α,β-Dehydroamino Acids

α,β-dehydroamino acids (Figure 8) are ncAA amino acids naturally found in pep-
tides [52,112,113]. The lack of asymmetry, due to the planar hybridization sp2 of the Cα
carbon, structurally separates this class of amino acids from the canonical ones. In addition,
these residues can present β-substituents, such as isomers Z and E, and the possibility of
π-electron conjugation. All these properties contribute to a very specific constraint that
influences the bioactivity and applications of these dehydropeptides.

The conformational properties of peptides carrying α,β-dehydroamino acids have
been extensively reviewed in the past [112–118] but remain a hot topic today [119–121].
The residues dehydroalanine (∆Ala), dehydrobutyrine (∆Abu), and dehydrophenylalanine
(∆Phe) are the most investigated [122–128]. ∆Phe has been intensively studied computa-
tionally [129,130].
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Figure 8. Two-dimensional structures of non-canonical α,β-dehydroamino acids: dehydroalanine
(∆Ala), dehydrobutyrine (∆Abu), dehydroleucine (∆Leu), dehydrophenylalanine (∆Phe), dehy-
drotryptophan (∆Trp), and dehydrovaline (∆Val). Those that present Z/E forms are ∆Abu, ∆Leu,
∆Phe, and ∆Trp.

This type of residue favors the formation of β-turns. In small peptides, when the
dehydroamino acid is placed in the second position, especially ∆Phe, β or γ turns are
the most probable arrangements. In intermediate or long peptides, sequential placement
or sequential repeats of ∆Phe induce repeated β-turns that can be accommodated in a
310-helix or even in an α-helix [131,132].

Applications for this class of amino acids were studied by us, combining experimental
and computational approaches. In 2015, peptide hydrogelators carrying α,β-dehydroamino
acids were evaluated computationally to assess their ability to self-assemble as a hydro-
gel [133]. This type of hydrogel can be used for drug delivery purposes. We proved that the
aggregation process occurs due to the non-canonical ∆Phe, which interacts with the Npx
(naproxen) group also present in our model peptides, through π–π interactions. We also
investigated the affinity of dehydropeptides with αvβ3 integrin receptors using molecular
docking methods [134]. Here, ∆Phe was inserted in the peptide construct Npx-L-Ala-
Z-∆Phe-Gly-Arg-Gly-Asp-Gly-OH, where the hydrogelator module Npx-L-Ala-Z-∆Phe
seems not to hinder the molecular recognition between RGD epitope and the αvβ3 integrin
receptor. Thus, combining the hydrogelator module with other targeting epitopes is a
feasible strategy for producing hydrogels with tailor-made cell specificity. Furthermore,
recently, dipeptides carrying dehydroamino acids were addressed as new supergelators for
drug delivery [119]. Again, the preferable interaction mode among the dipeptide units is
π-stacking interactions.

Regarding ∆Abu, Elisidepsin represents a synthetic, marine-derived peptide that is
active in a wide variety of cancer cell types. This peptide is also a depsipeptide [135].
Elisidepsin is a derivative from the kahalalide family [136], i.e., a family of natural dehydro-
aminobutyric acid-containing peptides.

2.1.6. N-Cyclization and N-Alkylation

N-Alkylated-α-amino acids are widespread in nature. The most abundant repre-
sentatives are the N-methyl forms. In fact, N-methyl-glycine, also known as sarcosine;
N,N-dimethylglycine; and betaine are well-studied ncAA (Figure 9) that can be found as
monomers, embedded into complex peptides or within non-peptide natural substances [137].
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Another example, N-methyl-leucine, is present in the first position of the glycopeptide
antibiotic vancomycin. This N-terminal is responsible for potency and binding to the pepti-
doglycan wall of Gram-positive bacteria [138,139]. The immunosuppressant cyclosporine A
is rich in this same ncAA, but it also contains an N-methyl-valine. Actinomycin D is a
chemotherapeutic drug that also contains N-methyl-valine and N-methyl-glycine. All of
these three examples are depsipeptides, a class of peptidomimetics also presenting changes
in the backbone and further discussed in Section 2.2.

The industrial production of N-methyl-L-alanine or N-methylantranilate through fermen-
tative routes has been established by using engineered Corynebacterium glutamicum. Recently,
the metabolic engineering of C. glutamicum for de novo production of N-methyl-phenylalanine
was described, based on the reductive methylamination of phenylpyruvate [140].

N-alkylated and N-cyclized ncAA affects the conformational flexibility and interaction
pattern of the peptide backbone. The absence of the typical hydrogen bond donor NH
disturbs the expected intramolecular hydrogen bonds, giving space to other arrangements
and interactions. However, peptides containing these types of amino acids present higher
proteolytic stability, improved pharmacokinetics, and increased membrane permeability,
given the higher lipophilicity [141].

Regarding unusual N-cyclization derivatives, in 2019, the Vassiliki Magafa group [142]
developed new stable analogues of Neurotensin (NT; pGlu–Leu–Tyr–Glu–Asn–Lys–Pro–
Arg–Arg–Pro–Tyr–Ile–Leu) containing non-canonical amino acids. The NT analogues with
the residue AOPC (Figure 10), at position 8 of the peptide, are the ones with the best
performance regarding enzymatic stability and binding to NT receptor 1. This peptide
plays a dual role as a neurotransmitter/neuromodulator in the central nervous system and
as a hormone/cellular mediator in the periphery [142].

Diketopiperazine-based (DKP) amino acids are other examples of modifications via
cyclization at the main chain N. This scaffold was used to design both linear and cyclic
CPPs containing DKP1 and DKP3 moieties (Figure 10), and computational as well as
experimental conformational studies revealed well-defined helical structures in a micellar
medium for the non-cyclic peptides, while cyclic peptidomimetics were more flexible [143].
Furthermore, the cyclic ones were particularly resistant to proteolytic degradation when
compared with linear peptide chains and are, therefore, reliable templates for the design and
biological modulation of new peptide therapeutics, including peptide carriers. Biological
investigations showed higher membrane activity of cyclic derivatives, allowing their use
as shuttles for anticancer drugs. The DKP moiety was also used to enhance integrin
binding and tumor cell uptake, via a DKP-RDG ligand for prospective use in imaging
and drug delivery [144].
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2.1.7. Other Side-Chain Modified Amino Acids

The amino acids and applications already mentioned show that ncAA have acquired
considerable importance in the design of bioactive peptidomimetics. Figure 11 shows
selected examples of ncAA residues that differ from the classes addressed above.
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1,3-diene-6-amino-6-carboxylic acid), Bin (1,1′-binaphthyl-substituted α-aminoisobutyric acid), Daf
(9-amino-4,5-diazafluorene-9-carboxylicacid), AHMOD ((2S)-amino-(6R)-hydroxy-(4S)-methyl-8-
oxodeca-noic acid), and AMD ((2S)-amino-(4S)-methyldecanoic acid). Pip (4-aminopiperidine-4-
carboxylic acid), Ind (aminoindane carboxylic acid), Nva (norvaline or 2-Aminopentanoic acid), Nle
(norleucine or (2S)-2-aminohexanoic acid), Tle (tert-leucine or tert-butylglycine), and the unsaturated
aliphatic amino acids.

The amino acids Bin and Bip (1,1′-binaphthyl-substituted α-aminoisobutyric acid and
2′,1′:1,2;1′′,2′′:3,4-dibenzcyclohepta-1,3-diene-6-amino-6-carboxylic acid, respectively) are
reported to combine structural features of both Dbzg and Ac7c residues [145–147]. In fact,
these ncAAs can be considered turn/helix inducers, and since they are rigid structures,
they diminish peptides’ physiological vulnerability by making them difficult to access by
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proteases or peptidases [145–148]. Additionally, the ‘Bip method’ refers to the application
of this amino acid as a probe for circular dichroism techniques [149].

Daf (9-Amino-4,5-diazafluorene-9-carboxylic acid) is another example of a rigid amino
acid that imposes geometrical constraints when inserted into a peptide. This residue
possesses the unique property of also being a ligand that can coordinate metal atoms.
This fact is very important, allowing a broad spectrum of applications: metal-binding
sites on proteins, peptide-based electronic devices, and molecular switches [150,151]. The
expected conformations for Daf would be β-bends and α/310-helix forms, since this residue
can be classified as an α,α-disubstituted glycine, similar to Aib or Ac7c. However, a C5
conformation (fully extended form) was characterized experimentally, with a tendency to
form a helical structure [150].

AHMOD ((2S)-amino-(6R)-hydroxy-(4S)-methyl-8-oxodeca-noic acid) and AMD ((2S)-
amino-(4S)-methyldecanoic acid) are ncAA naturally found on culicinin peptaibols.
Culicinins are peptides isolated from the fungus Culicinomyces clavisporus [152]. Impor-
tantly, culicinin D was found to exhibit potent antitumor activity [152,153]. The spatial
structure of Culicinins is a right-handed helix, with a tighter N-terminus, forming a
310-helix conformation [152]. The helical propensity of these residues should reflect the fact
that these peptides also carry Aib.

The non-canonical amino acids norvaline (Nva), norleucine (Nle), and tert-leucine
(Tle) are hydrophobic residues. Nva and Nle proved to be helical-stabilizing amino
acids [154,155]. Nva and Nle are found in small amounts in some bacterial strains [156].
Nva is known to promote tissue regeneration and muscle growth [157], while Nle can act as
a methionine isostere [158]. In contrast, Tle does not induce the same constraint observed
for Nva and Nle, varying with the environment and amino acid content of the peptide in
which is inserted [159,160].

Pip (4-aminopiperidine-4-carboxylic acid) is a naturally occurring amino acid found on
Efrapeptin peptides, which are produced by fungi of the species Tolypocladium [161]. This class of
peptides has antifungal, insecticidal, and mitochondrial ATPase inhibitory activities [161,162].
The right-handed α-helical structure cannot be adopted by Pip-rich peptides. For Efrapeptin,
the dominant structure is a 310-helix [161]. Pip was also reported to increase the water
solubility of peptides [159,163]. The non-canonical residue Ind (aminoindane carboxylic
acid) has a stabilizing effect on the formation of α/310-helices [159,164,165].

Another review by Rogers and Suga shows that genetic code reprogramming meth-
ods can generate functional peptides containing diverse non-canonical amino acids [166].
Selected examples of ncAA/modifications incorporated are Phe-like residues, Lys-like,
peptoids, D-stereochemistry, and N-alkylated polycyclic.

Unsaturated aliphatic amino acids or olefinic amino acids occur in nature, especially in
mushrooms, and have several bioactive roles. Vinylglycine, for instance, is an irreversible
inhibitor of a variety of enzymes, and (S)-ethynylglycine possesses antibiotic activity [167].
Structurally, β-turn and β-hairpin were mentioned, but more relevance was given to their
biological applications.

Lastly, the incorporation of a fluorine-containing motif in an amino acid side-chain
functions as a modulator of lipophilicity and solubility [168]. In fact, the -CF3 moiety is
known to be active, as a wide number of commercial drugs incorporate this fluoroalkyl
group [169,170]. Therefore, the inclusion of the trifluoromethyl group in peptides has
risen in the last years, and the addition of this group to Cys, His, Trp, and Tyr has been
successfully achieved. It preserved the native peptide structure and improved the metabolic
stability, bioavailability, and cellular membrane permeability [171].

2.2. Backbone Modifications

The peptide backbone plays an important role in peptide stabilization. Modifications
on the peptide backbone are another approach to generating peptidomimetics that are more
conformationally constrained and thus more stable. Many types of backbone modifications
have been performed and tested [6,11,12,50,172,173]. Very recently, strategies such as
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backbone extension, retro-inverso design, and bioisosterism were found to enhance the
metabolic stability of a radiopharmaceutical peptide [174].

Basically, a backbone can suffer alteration by isosteric or isoelectronic substitutions,
resulting in several types of mimetics. The isosteric modification consists in maintaining
the same number of valence electrons but can differ in the number and type of covalently
bound atoms: for example, N2 and CO, N2O and CO2, and N3

− and NCO−. Meanwhile,
an isoelectronic substitution refers to two atoms, ions, or molecules sharing the same
electronic structure and/or the same number of valence electrons but also the same structure
(number of atoms and connectivity), as demonstrated in Figure 12 for serine, cysteine,
and selenocysteine [6,10,12,173,175]. The bioisosterism strategy is used to reduce toxicity,
change bioavailability, or modify the activity of a lead compound and may alter the
metabolism of the lead.
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Figure 13 summarizes the most important peptide backbone modifications: for in-
stance, the replacement of Cα, backbone extension, and carbonyl replacement. In detail,
we have azapeptides, in which an N atom replaces isoelectronically the Cα, yielding pep-
tides that may be therapeutically applied as inhibitors of cysteine proteases [11,176,177].
Azapeptides presented as β-turn conformations, due to the lone-pair–lone-pair repulsion
of the adjacent hydrazide nitrogen atoms [177].

Depsipeptides are relevant and active against several cancers [178–180]. Typically
cyclic, they are the result of the replacement of an amide with an ester bond; in a peptide
main chain, amide and ester bonds alternate. This modification has aroused great interest,
since peptide esters have a lower propensity for intramolecular hydrogen bonding and
therefore quite different molecular structure, which arises from the cyclic structure that
confers proteolytic resistance, in place of the typical amide’s hydrogen bonds [181]. Thus,
it is a target of investigation both computationally and experimentally, as pointed out by
Thakkar and Engh and references therein [182]. Remarkable examples are the depsipeptides
extracted from marine invertebrates, Didemnin B, Plitidepsin (dehydrodidemnin B) [183],
and Kahalalide F [179]. In addition, Romidepsin, from a bacterium source, has shown relevant
anticancer activity [178].

Didemnin B has remarkable biological activity, showing strong antiviral effect through
the inhibition of the DNA and RNA synthesis; moreover, this peptide was one of the
first to enter clinical trials to treat small-cell lung cancer and prostatic cancer [184–186].
Plitidepsin is a depsipeptide that carries a β-hydroxy-γ-amino acid, another example of a
non-canonical residue. This peptide presents potent activity against antimyeloma in vitro
and in vivo [187].

Retro-inverso peptides are generated when the amino acid sequence is reversed and
the α-center chirality of the amino acid subunits is inverted as well, substituting the
L-amino acids with their D forms. The use of these peptides is another approach to
designing peptidomimetics that are more resistant to proteolytic degradation, but it does
not always increase the pharmacological potency [11,188,189].

Retro-inverso peptides with regular terminal groups are able to either link to native
peptides or be embedded in a large peptide generating potent peptidomimetics. One
example of this is the peptide Tuftsin, which in its normal state is completely degraded
in vivo in about 8 min. However, in retro-inverso peptide form, only 2% of hydrolysis is
observed after 50 min, with the retention of its bioactivity [190].
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A recent review reported novel applications for retro-inverso peptides, from immunol-
ogy to antimicrobials [191]. Structurally, extended conformations will be less affected
by the inversion, and the side chains will be well accommodated. However, for folded
conformations, the maintenance of the original conformation can be more challenging and
some strategies for ending groups, for instance, must be adopted to better mimic helical
conformations [192,193].
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Another family, peptoids, are formed by N-substituted glycines and have been consid-
ered a relevant motif for the design of novel molecules for decades [194,195]. This type of
oligomer may result in stable synthetic polymers that also conserve natural biopolymers’
structure and function. Furthermore, peptoids will present properties consistent with
the above explained N-alkylated ncAA (2.1.6). A comprehensive series of functionalized
oligomers can be generated by adding groups to N. Peptoids are not able to form hydrogen
bonds, as they lack the amide proton. Furthermore, the glycine core has no handedness
and lacks a chiral center. These characteristics bring distinct conformational features in
comparison to peptides. However, peptoids can be arranged in helical secondary structures,
being applied in the design of antimicrobial peptides [196]. Simulation studies proved the
application of peptoids in the design of nanosheets, where the peptoids adopt a linear back-
bone organization [197]. This type of N-substituted peptidomimetic has gained attention in
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both experimental and theoretical fields, being studied for multiple applications, such as
drug carriers, cancer treatments, antibiotics, and antimicrobials [198,199].

Triazole-based peptidomimetics (Figure 13) have also emerged as interesting peptide-
like compounds for several reasons, such as easy synthesis, conformational flexibility,
and bioactive profile [200,201]. The small units 4Tzl and 5Tzl (1,4- and 1,5-substituted
1,2,3-triazole peptides, respectively) were addressed computationally via quantum chem-
istry calculations to predict their structural properties, and four different theoretical meth-
ods were compared regarding their robustness in describing these systems and helpfulness
in the design of novel peptidomimetics [200].

Lastly, the backbone extension generates so-called β-amino acids (when there is an ad-
ditional methylene between the amine and the acid), which constitutes a powerful foldamer
strategy, generating unique helices, especially when cyclic or sugar-derivative side chains
are present. However, γ-amino acids also display versatility and helical propensity, as
reported by Martinek and Fulop [202], who also reviewed the structural properties of
oligoureas and azapeptides (Figure 13) in the formation of stable helices. In addition,
these authors characterized the combination of α, β, and γ amino acids in helical forma-
tion according to their explored dihedrals. This last strategy was also used to generate
Endomorphin-2 peptidomimetics by replacing the Phe with the homologues β-hPhe. MD
simulations and docking were performed to fully address the structural properties of the
mimetics and their impact on inhibitory activity [203].

3. Conclusions

This review focused on four important topics: the difference between canonical and
non-canonical amino acids, the relation between peptide secondary structure and biological
function, the most relevant non-canonical amino acid classes, and the most common peptide
backbone structure modifications.

Table 1 summarizes the conformational preferences of the non-canonical amino acids
that stand out within their class, illustrating different ways to generate peptidomimetics.

Table 1. Conformational preferences and applications of the non-canonical amino acids addressed in
this study.

ncAA Class Highlights Conformational
Preferences Characteristics Application

symmetric α,α-dialkyl
glycines

Aib 310-helix or α-helix increased proteolytic resistance
helical foldamers

antimicrobial/antibiotic
peptidomimeticsDhg α-helix

asymmetric
α,α-dialkyl glycines

(D-amino acids)
Iva, MDL and MDP 310-helix or α-helix increased proteolytic resistance

helical foldamers
antimicrobial/antibiotic

peptidomimetics

Cα to Cα cyclized
(Acnc residues)

Ac3c bridge region
foldamers

neurotransmitters
antimicrobial/antibiotic

peptidomimetics
Ac6c 310-helix or α-helix

(R,R)Ac5cdOM 310-helix or α-helix

proline analogues Hyp β-turn, bend foldamers antimicrobial
peptidomimetics

β-substituted
amino acids

β-MePhe
Tmt, Tic Side-chain constraint increased proteolytic resistance

hormones mimetics
antinociceptive

activity (opioids)
α,β-dehydroamino

acids
∆zPhe
∆Abu

β-turn or γ-turn
310-helix or α-helix

increased proteolytic resistance
hydrogels

drug delivery
cancer treatment

N-alkylated sarcosine cyclic peptides increased lipophilicity
improved pharmacokinetics

antibiotic
immunosuppressant

N-cyclization DKP1
DKP3 helix increased proteolytic resistance

neurotransmitter
neuromodulator drug

delivery
anticancer

other Bip
Bin turn/helix inducers increased proteolytic resistance circular dichroism probe

other (S)-Ethynylglycine β-turn
β-hairpin foldamers antibiotic activity
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Incorporating non-canonical amino acids into known peptides proves that this is a
feasible and simple path to optimize the characteristics of native peptides, improving their
activity and stability.

A few more examples of peptidomimetics incorporating the reviewed ncAAs that are
applied in very distinct processes and diseases are as follows: Saralasin, an angiotensin II
analogue, has been effectively employed in the treatment of hypertension. Its sequence in-
corporates sarcosine at position 1, enhancing resistance to degradation by aminopeptidase
and resulting in improved bioactivity of the compound [18,204]. Icatibant is a competi-
tive antagonist of the bradykinin 2 receptor, utilized for the treatment of acute attacks of
hereditary angioedema in patients with C1-esterase inhibitor deficiency. For this therapeu-
tic peptidomimetic, the resistance to degradation is achieved through the incorporation
of non-natural amino acids, such as hydroxyproline, L-2-thienylalanine, tetrahydroiso-
quinolinecarboxylic acid, and octahydroindolecarboxylic acid [205]. Lastly, Carbetocin is a
peptidomimetic consisting of a cyclic eight-amino-acid sequence derived from oxytocin. It
is employed to effectively manage postpartum hemorrhage, especially during caesarean
sections, by targeting peripheral oxytocin receptors. Notably, carbetocin incorporates methyl-
tyrosine at position 2 and replaces the disulfide bond with a more stable thioether linkage.
This modification significantly enhances the compound’s metabolic stability compared to
previous generations of lead compounds [206].

Regarding the backbone modifications strategy, we summarized here some mimetics
with relevant biological functions, namely the azapeptides, depsipeptides, retro-inverso
peptides, peptoids, and χ or β-amino acids, as shown in Table 2.

Table 2. Biological application and preferable secondary structure of peptidomimetics based on
backbone modifications.

Backbone
Modification Highlights Conformational

Preferences Characteristics Application

azapeptides
Ac-L-Phe-azaAlaOiB

Ac-L-Phe-azaGlyOMe
Boc-(Phe-azaPhe-Ala)2-OMe)

β-turn
extended

increased proteolytic
stability

inhibitors of
cysteine proteases

depsipeptides

Didemnin B
Plitidepsin

Kahalalide F
Romidepsin

cyclic increased flexibility antiviral
cancers treatments

retro-inverso Amytrap
BMAP-28D(LPR); D(RGD)

extended
helix

resistant to
proteolytic

degradation

anticancer
immunology

neurodegenerative
diseases

antimicrobial
diagnosis

peptoids Triazole-peptidomimetics helix
sheets

stable synthetic
polymers

antimicrobial
drug carrier
anticancer
antibiotics

We believe that peptidomimetics have the potential for a large variety of applica-
tions for biodevices, biosensors, and biomaterials able to capture specific interactions
with physiological environments relevant in several fields, such as medicinal chemistry
and biotechnology.
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