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Abstract: During the last decade, substance use disorders (SUDs) have been increasingly recognized
as neuroinflammation-related brain diseases. Various types of abused drugs (cocaine, metham-
phetamine, alcohol, opiate-like drugs, marijuana, etc.) can modulate the activation status of microglia
and neuroinflammation levels which are involved in the pathogenesis of SUDs. Several neuroimmune
signaling pathways, including TLR/NF-kB, reactive oxygen species, mitochondria dysfunction, as
well as autophagy defection, etc., have been implicated in promoting SUDs. Recently, inflammasome-
mediated signaling has been identified as playing critical roles in the microglia activation induced
by abused drugs. Among the family of inflammasomes, NOD-, LRR-, and pyrin-domain-containing
protein 3 (NLRP3) serves the primary research target due to its abundant expression in microglia.
NLRP3 has the capability of integrating multiple external and internal inputs and coordinately
determining the intensity of microglia activation under various pathological conditions. Here, we
summarize the effects of abused drugs on NLRP3 inflammasomes, as well as others, if any. The
research on this topic is still at an infant stage; however, the readily available findings suggest that
NLRP3 inflammasome could be a common downstream effector stimulated by various types of
abused drugs and play critical roles in determining abused-drug-mediated biological effects through
enhancing glia-neuron communications. NLRP3 inflammasome might serve as a novel target for
ameliorating the development of SUDs.
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1. Introduction

Microglia, the brain-resident macrophages, generally account for 5-12% of all brain
cells, with varying density in the different brain regions of rodents [1]. Previous stud-
ies showed that microglia constitute 5% in the cerebral cortex and in the corpus callo-
sum, and around 12% in the substantia nigra of the mouse brain [1]. In the human
brain, the variability in microglia density in different regions is even wider, with about
0.3% in the gray matter of the cerebellum and 11% in the medulla oblongata [2], and
about 5% in cortical gray matter [3]. Microglia constitute the critical component in the
first-line-of-defense system and perform constitutional immune surveillance in the central
nervous system (CNS) [4,5]. Under physical conditions, microglia play essential roles
in regulating brain development, as well as maintaining the homeostasis of the adult
brain through interacting with neurons, astrocytes, and oligodendrocytes [6,7]. Mean-
while, microglia are sensitive to various types of stimuli and can be quickly changed to
activation status. Multiple pro- and anti-inflammatory neuroimmune signaling pathways
have been demonstrated to coordinately regulate the status of microglia activation [6,7].
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Abnormal microglia activation (neuroinflammation) has been implicated as a major risk
factor contributing to the pathogenesis of multiple neurodegenerative diseases including
Alzheimer’s diseases (ADs) [8,9], Parkinson’s diseases (PDs) [10,11], amyotrophic lateral
sclerosis (ALS) [12], as well as recently SUDs [13,14]. NLRP3 inflammasome belongs to
the superfamily of pattern-recognition receptors (PRRs) recognizing pathogen-associated
molecular patterns. The unique feature of NLRP3 activation is its two-step process: priming
and inflammasome assembly. NLRP3 could serve as a hub integrating multiple signals to
determine the intensity of microglia activation [15,16]. Accumulating evidence shows that
abused drugs, including cocaine, methamphetamine (Meth), alcohol, opiate-like drugs, and
marijuana, are capable of interacting with NLRP3 inflammasome through either signal 1 or
signal 2 pathways. The understanding of microglia biology, inflammasome signaling, and
the involvement of microglia in SUDs has advanced substantially during the last decade.
Here, we summarize these advances with a focus on the effects of abused drugs on NLRP3
inflammasomes from both in vitro and in vivo studies. The available findings suggest that
NLRP3 inflammasome might be the common downstream effector of most abused drugs, if
not all, and targeting NLRP3 inflammasomes might provide a novel therapeutic approach
for SUDs.

2. Microglia, Inflammasomes, and SUDs
2.1. Updates on Microglia Biology

After the first discovery of microglia in 1919, there had been not much progress on
microglia biology in the following sixty years due to technical limitations. However, in the
last twenty years, the basic understanding of microglia has been significantly advanced
for their functions and heterogeneity in vivo [4]. Microglia are traditionally believed to
be immunocompetent cells and to maintain quiescent state under basal conditions. Mi-
croglia are sensitive to various types of internal and external stimuli. Upon stimulation,
microglia quickly adopt activation status and produce and secrete a plethora of cytokines
and chemokines leading to increased neuroinflammation levels [4,5]. Microglia are also
crucial for maintaining the normal function of neurons. In the development stage, microglia
actively interact with neurons for synapse pruning (synapse elimination) to ensure proper
neuroplasticity and brain development. In adult brains, even at basal levels, microglia are
still very active in patrolling around and surveying microenvironments through their long
and thin processes. Basically, microglia function in multiple roles as housekeepers, guards,
and warriors to maintain brain homeostasis and ensure normal brain functions [7,17].
The understanding of microglia activation status has also been greatly revised. Microglia
were previously assumed to fall into three different functional statuses: MO (inactive),
M1 (pro-inflammatory), and M2 (anti-inflammatory); however, such a classification is
too simple or arbitrary to explain the roles of microglia in physiological or pathological
conditions. Currently, microglia are believed to exist more in a continuum of states from
pro-inflammatory to anti-inflammatory status with many intermediate states. Based on
the presence/absence of stimulation, microglia can be grouped into at least four functional
statuses based on their gene-expression profile and morphological changes: quiescence,
priming, partial activation, and full activation. As for their heterogeneity, microglia are
now well-recognized as having differences throughout the brain. The numbers, sizes,
morphology, and immune responses of microglia have substantial differences based on
their brain location [18,19]. For example, the degradation ability of microglia in the cortex
and cerebellum is different due to their different lysosome functions [20,21]. In the past
five years, microglia have been identified as belonging to novel subsets based on their tran-
scriptional profiles (single-cell RNA sequencing) under various physiological / pathological
conditions. A novel subset called disease-associated microglia (DAM) or microglial neu-
rodegenerative phenotype (MGnD) has been identified in the brains of mouse models with
Alzheimer’s diseases and Parkinson’s diseases [22,23]. In addition, proliferation-associated
microglia (PAM), neurodegeneration-associated microglia, lipid-droplet-accumulation mi-
croglia, etc., have been identified in various disease models [24-26]. Such subsets play critical
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roles (either bad or good) in the pathogenesis of various types of brain diseases [24-26].
The main discoveries about microglia during the past hundred years have been summa-
rized in Figure 1.

Year
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1919: microglia discovery
1986: MHCII expression microglia (activated microglia)
2007: self-renewal of microglia
2010: synaptic pruning by microglia
2010-2013: microglia in neurodegeneration diseases
2014-2016: microglia specific signature and new microglia markers
2016: microglia responses in Alzheimer’s diseases by TREM2
iPSC-derived microglial-like cells
2017: transcriptome and epigenome of human microglia
2017-2018: single-cell signature of murine microglia and definitions of DAM and MGnD
2018: environment determine distinct fates of microglia in the mouse CNS
2018: memory function in primed mouse microglia in vivo
2019: first human microglia single-cell signatures

Figure 1. The main discoveries about microglia biology during the last one hundred years.

2.2. NLRP3 Inflammasome Pathway

Multiple neuroimmune signaling pathways have been shown to participate in mi-
croglia activation. Among them, the CX3CR1/CX3CL1 axis, CD200/CD200R, TGEp,
NF-xB pathway, toll-like receptors (TLRs), and inflammasome signaling have been well-
investigated and shown to restrain or promote microglia activation, and they have been
well-reviewed elsewhere [27-29]. These pro- and anti-inflammatory signaling pathways
mutually interact and determine the intensity of microglia activation in a concerted manner.

The superfamily of inflammasomes, particularly NLRP3 inflammasome, have been
occupying the central stage for research on inflammation-related diseases in the past
decade [15,16]. Briefly, NLRP3 inflammasome activation needs two different signals: signal
1 is for increasing the expression of NLRP3 as well as prolL18 and proIL1p (priming).
The most well-known signal 1 is the TLR/NF-xB pathway. Signal 2 is for the assembling
of NLRP3 inflammasome, which includes NLRP3, ASC (apoptosis-associated speck-like
protein), and procaspase-1 (pCasp1). The whole complex together leads to the self-cleavage
of pCaspl to release mature caspase 1 (mCasp1l). Then, mCasp 1 processes pro-IL1{3 and
pro-IL18 into mIL1f and mIL18, respectively. Numerous signals have been identified as
signal 2, including reactive oxygen species (ROS), K* influx, P2Y receptors, mitochondrial
defection, and lysosomal disruption, etc., to increase the formation of NLRP3 inflamma-
some [30]. The mCasp1 also cleaves gasdermin d (GADMD) to form GADMD pores in the
membrane, allowing the release of mIL18 and mIL1{ (pyroptosis). This is called the NLRP3
canonical pathway for NLRP3. There is also a non-canonical pathway: lipopolysaccharide
(LPS) activates caspase 11, leading to the formation of NLRP3 inflammasome. A schematic
of signal 1 and signal 2 and the canonical and non-canonical pathways of NLRP3 is shown
in Figure 2.

2.3. SUDs and Neuroinflammation

SUDs have been traditionally believed to be a neuroplastic brain disorder, and great
effort has been put into exploring the mechanisms responsible for the changes in neuronal
plasticity as well as brain circuitry during the pathogenesis of SUDs in the past three
decades. However, the neuron-centered hypothesis has not produced any breakthroughs in
the treatment of SUDs, and no FDA-approved drugs are available to block the development
of SUDs, especially for cocaine-use disorders. This dilemma has resulted in a hypothesis
that other types of brain cells, such as glial cells and glia—neuron communications, could
contribute equally to SUDs. Recently, SUDs have been increasingly appreciated to be
neuroinflammation-related brain disorders. Increased microglia activation has been identi-
fied in the brains of rodents exposed to multiple types of abused drugs [31-33]. Human
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studies also showed aberrant expression profiles for cytokines in the serum, as well as
microglia dysregulation in the postmortem brains, of addicts. For example, increased mi-
croglia activation, increased IL6, and decreased IL10 levels in serum were found in human
addicts [34]. Increased levels of brain-derived neurotrophic factor, IL13, and tumor necrosis
factor o (TNFx) were revealed in serum obtained from cocaine addicts [35]. Microglia inhi-
bition is capable of blocking abused-drugs-mediated behavioral changes relevant to reward
effects. Furthermore, targeting microglia and modulating the strength of neuroimmune
signaling have been suggested as novel therapeutic approaches for SUDs [36,37].
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Figure 2. A schematic diagram of signal 1 and signal 2 for NLRP3 inflammasome activation. The
grey area is the NLRP3 non-canonical pathway.

3. The Effects of Abused Drugs on Microglia and Inflammasomes
3.1. The Effects of Cocaine on Neuroimmune Signaling and NLRP3 Inflammasome

Cocaine is a potent psychostimulant and one of the most abused drugs in the United
States. According to the 2021 National Survey on Drug Use and Health, it has been esti-
mated that in the past 12 months, 5.2 million individuals in the USA aged 12 and older
have used cocaine, and approximately 20,000 people have died from a cocaine-related over-
dose (https:/ /nida.nih.gov/publications/research-reports/cocaine/what-scope-cocaine-
use-in-united-states, access on 24 April 2023).

In addition to the effects on the dopamine system in the brain, cocaine is known to
dysregulate inflammation levels in both the CNS and peripheral systems. In a chronic
cocaine abuser, there is a significant increase in IL6 and decrease in IL10 levels in the
serum, indicating peripheral inflammation [34]. In the CNS, multiple pathways have
been identified as being responsible for cocaine-mediated microglia activation. Cocaine
is capable of increasing the expression of toll-like receptor-2 (TLR2) and ROS levels in
BV2 cells [38]. Cocaine upregulates endoplasmic reticulum (ER) stress, evidenced by the
increased expression levels of phosphorylated protein kinase R-like endoplasmic reticulum
kinase (pPERK), phosphorylated eukaryotic initiation factor 2« (pelF2«), and activating
transcription factor 4 (ATF4) [38]. TLR4 and its downstream signaling NF-xB are implicated
in cocaine-mediated microglia activation [39,40]. Besides these classical neuroimmune
signaling pathways, microRNA (miRNA) dysregulation has been implicated as another
mechanism responsible for microglia activation induced by cocaine. Mir-124, the most
abundant brain miRNA, is decreased in microglia with cocaine exposure, and overexpres-
sion of miR-124 mitigates cocaine-mediated TLR4 signaling strength, resulting in microglia
inhibition [41]. Mechanically, an increased level of miRNA-124 promoter methylation is re-
sponsible for cocaine-mediated downregulation of miR-124 [42]. Autophagy dysregulation
is also involved in cocaine-mediated microglia activation. Cocaine increases the expression
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levels of autophagy-related proteins, including beclinl, ATG5, and LC3II, and autophagy
inhibition could partially block cocaine-mediated microglia activation [43].

The TLRs/NF-xB axis, ROS, and autophagy defection could contribute to NLRP3
inflammasome activation, which implies that cocaine has the ability to modulate NLRP3
inflammasome activity [44]. Indeed, emerging evidence suggests that cocaine could upreg-
ulate NLRP3 inflammasome activity. In human macrophages, cocaine increased NLRP3
levels, and cocaine and HIV infection exerted synergistic upregulation effects on the
levels of NLRP3 and IL1§ [45]. Cocaine also upregulated NLRP3 inflammasome activ-
ity in microglia (BV2 cells and mouse primary microglia), and both a genetic approach
(siRNA NLRP3) and a pharmacological approach (MCC950) mitigated cocaine-mediated
microglia activation [46]. Mechanically, increased ROS production and sigma 1 receptor
seemed to be involved in cocaine-mediated upregulation of NLRP3 [46]. The upregulation
of NLRP3 inflammasome activity seems also important in cocaine-mediated reward effects.
CX3CR1-deficiency mice showed greater enhancement in cocaine-mediated hyperlocomo-
tion and conditional place preference than WT mice did [47]. The CX3CR1/CX3CL1 axis
maintains microglia in quiescence and CX3CL1 was capable of inhibiting NLRP3 inflamma-
some [48]. Indeed, there was increased NLRP3 inflammasome activity in CX3CR1-deficiency
mice compared to WT mice with cocaine administration. These results implied that NLRP3
inflammasome activity is positively associated with cocaine-mediated reward effects [47].
However, such assumptions about the roles of NLRP3 in cocaine addiction need further
investigation and verification by using NLRP3-conditional knockout (KO) mice (microglial-
specific KO). Unlike NLRP3 inflammasome, the effects of cocaine on the other inflamma-
somes, including NLRP1, NLRP6, NLRC4, and AIM2, have not been reported till now.

3.2. The Effects of Meth on Neuroimmune Signaling and NLRP3 Inflammasome

Meth is another addictive psychostimulant commonly abused. Over 14.7 million
people tried Meth at least once between the years of 2015 and 2018, with the death toll
rising each year [49].

The effects of Meth on microglia activation and neuroinflammation have been well-
addressed [50-53]. Similar to cocaine, Meth can activate microglia through multiple path-
ways, including the increased production of ROS/ER stress and the TLRs/MyD88/NF-«B
axis. Pellino 1 (Pelil) is highly abundant in microglia and plays critical roles in inducing
microglia activation by strengthening the TLRs pathway [54,55]. Recently, the role of the
TLR4-TRIF-Pelil axis has been revealed in Meth-mediated microglia activation [56]. The
brain-blood barrier (BBB) is crucial for maintaining brain homeostasis through control-
ling the crosstalk between the central and peripheral immune systems. Meth is capable
of inducing damage to the BBB through decreasing the levels of tight junction proteins
Z0-1, occludin, and claudin-5, which ultimately increases neuroinflammation levels [57].
Epigenetic regulation is also involved in Meth-mediated microglia activation [58]. Two
miRNAs, miR-142a-3p and miR-155-5p, were found decreased in Meth-exposed microglia,
and correspondingly their target Pelil was increased. Overexpression of these two miRNAs
could decrease Pelil levels and protect Meth-mediated immune responses [58]. In addition,
sigma 1 receptor seems also to be involved in this process since its ligand SN79 blocks
Meth-mediated microglia activation [59].

NLRP3 inflammasome was also involved in Meth-mediated microglia activation. Meth
potentiates the assembly of NLPR3 inflammasome (NLRP3/ASC/pro-caspase protein
complex) and increases the production of mIL1 [60]. The blockade of capase-1 activity
and lysosomal cathepsin B activity, or inhibition of mitochondrial ROS production, reverse
the effects of Meth on immune response and further consolidate the roles of NLRP3
inflammasome in Meth-induced microglia activation [60]. Another investigation showed
that NLRP3 inflammasome was implicated in Meth-mediated microglia activation, probably
through the miR-143/PUMA axis, although the details of the mechanisms remain very
much unclear [61]. Inflammasome upregulation was also found in chronic Meth users.
Upregulation of NLRP1 and NLRP3 levels was revealed in the postmortem brain of Meth
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addicts [62]. Mouse models showed that NLRP3 inhibition could prevent motor deficits and
cerebellar degeneration induced by chronic Meth administration, implying the potential
therapeutic roles of NLRP3 inflammasome on neurological symptoms in chronic Meth
users [63]. NLRP3 inflammasome was suggested to be involved in Meth-mediated intestinal
inflammatory injuries [64]. There is a gut-brain axis mediating the crosstalk between gut
and brain, and upregulation of intestinal immune responses probably has deleterious effects
on neuroinflammation, another route that peripheral NLRP3 inflammasome increases
central immune responses [64].

Unlike cocaine, Meth has been reported to have effects on other inflammasomes.
NLRP1 inflammasome was involved in Meth-mediated cognitive impairment in rats [65].
However, the effects of Meth on other inflammasomes such as NLRP6, NLRC4, and AIM2
have not been reported till now.

3.3. The Effects of Alcohol on Neuroimmune Signaling and NLRP3 Inflammasome

Alcohol is a legally abused substance in most places around the world including
the USA. Alcohol abuse/alcohol use disorders (AUDs) have quickly risen as one of the
leading causes of death in the United States. According to the 2020 National Survey on
Drug Use and Health, about 50% of the population (138.5 million people) aged 12 or older
reported drinking alcohol within the past month. Around 22.2% of those individuals
(61.6 million people) reported that they had engaged in binge alcohol drinking within the
last month and 6.4% (17.7 million people) were heavy alcohol users.

The effects of alcohol on microglia activation and the contributing roles of microglia
activation on AUDs have been well-addressed [66—68]. Numerous neuroimmune pathways
have been revealed in alcohol-induced microglia activation invitro, including
TLR/NF-kB, ROS, high mobility group box 1 (HMICROGLIABI1), etc. Alcohol could
also regulate miRNAs, including miR-155, miR-339, and let-7, to modulate microglia
activation [69-71]. In alcohol-dependent and withdrawal rodents, miR-124 had decreased
levels in the limbic forebrain [72]. In addition, alcohol could induce mitochondrial im-
pairment, which further exaggerates neuroinflammation and the subsequent neuronal
injuries [73]. More recently, extracellular vehicles (EVs) have been implicated in mediating
ethanol-induced inflammatory signaling in microglia [74].

The relationship between alcohol and NLRP3 inflammasome has been well-recognized
in the CNS [75,76], and NLRP3 inflammasome inhibition can provide a novel therapeutic
approach for the treatment of AUDs [77]. Alcohol is capable of interacting with NLRP3
inflammasome in multiple types of cells including macrophages, peripheral blood mononu-
clear cells (PBMCs), neurons, and microglia. However, the effects of alcohol on NLRP3
inflammasome seem cellular-context dependent. Alcohol followed with LPS priming could
increase the levels of mature IL13, TNF, and IL6 in human PBMCs [78], whereas in murine
macrophage cell line J774, alcohol increased the levels of mature IL13 and IL6 even without
LPS priming. Long-term alcohol exposure amplified the release of IL13 upon NLRP3
agonists, but not NLRP1 or AIM2 agonists, indicating the specific effects of alcohol on the
NLRP3 inflammasome pathway [78]. The mitochondrial ROS-scavenger MitoQ inhibited
the elevated levels of ROS and IL1p induced by chronic alcohol exposure, suggesting
that NLRP3 activation is a downstream effector following mitochondrial damage and
ROS increase [78]. In neurons, alcohol could act as both signal 1 and signal 2, leading to
NLRP3 activation which promotes the pathogenesis of AUDs [79]. Interestingly, alcohol
can also induce HMICROGLIABI release through NOX2/NLRP1 inflammasome in neu-
rons [80]. In microglia, chronic alcohol treatment enhances TLR4-mediated activation of
NLRP3 inflammasome, which is involved in leucocyte infiltration through the brain-blood
barrier [81].

In addition to the CNS, the interactions between alcohol and inflammasomes are
also evident in peripheral organs including the liver. Alcohol-mediated liver diseases
are involved in various types of inflammasome including NLRP3, NLRP6, and NLRC4
inflammasomes [82]. NLRP3 inflammasome plays critical roles in alcohol-mediated steato-
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hepatitis [83]. Intriguingly, NLRP6 inflammasome plays protective roles in alcohol-induced
liver diseases. NLRP6 knockout mice show lesser degrees of alcohol-induced liver dis-
eases. However, the direct effects of alcohol on NLRP6 inflammasome have not been
revealed [84,85]. In the liver, alcohol might also activate NLRC4 inflammasome since
Nlrc4(-/-) mice had greatly reduced activation of IL13 [86].

3.4. The Effects of Marijuana on Neuroimmune Signaling and NLRP3 Inflammasome

Marijuana, or cannabis, is the most commonly used illicit recreational drug in North
America with the movement towards decriminalization and legalization [87]. According to
NIDA in 2020, 17.9% (49.6 million people) of the population aged 12 and older reported
using cannabis and 5.1% (14.2 million people) had a cannabis-use disorder (CUD). NIDA
estimated that in 2021, 7.1% children in the 8th grade had access to and used cannabis in
the past year.

Cannabis herb contains the psychoactive constituent A-9 tetrahydrocannabinol (THC),
which was historically classified as a hallucinogen [88]. In addition, cannabis plant contains
cannabidiol (CBD) which is considered a non-psychoactive component that attenuates
THC behavioral and metabolic effects [89]. THC binds to the GPCR cannabinoid receptors,
CB1 and CB2. CB1 is distributed throughout the CNS (cortex, hippocampus, basal ganglia,
and cerebellum) and aids in modulating glutamate/GABA release. It also interacts with
the dopamine, serotonergic (5-HT), and noradrenergic systems [90,91]. CB2 is expressed
by hematopoietic cells and is moderately expressed in specific cortical regions and pe-
ripheral cells. CB2 is primarily expressed only when there is active neuroinflammation or
microglia activation and has shown potential as a therapeutic target for neurodegenerative
diseases [92].

The effects of cannabis on neuroinflammation are mixed. In earlier reports, repeated
cannabis exposure could induce the microglia activation underlying cerebellar deficits [93].
However, recent findings reached a consensus that THC may play neuroprotective roles by
inhibiting neuroinflammation. Mechanically, THC could mitigate NLRP3 inflammasome
activity under stimulus condition, probably through the CB2 receptor [94-96]. CBD and
THC significantly inhibited NLRP3 inflammasome activation stimulated by LPS and ATP,
which in turn reduced levels of IL1f3, IL6, IL18, and TNF« in macrophages and HBECs [94].
The CB2 agonist JWH-015 also decreased monocyte IL13 production, similar to THC [97].
THC has similar effects on NLRP3 inflammasome in microglia. BV2 cells being treated
with cannabis sativa L. phytocomplex partially attenuated the LPS-induced upregulation of
IL1B, IL6, and TNFwx [98]. CBD treatment suppressed the secretion of the IL13 and NF-«xB
signaling pathways in LPS-treated mouse microglia [96,99]. Similarly, activation of the CB2
receptor by the synthetic cannabinoid HU-308 induces autophagy in mouse microglia cells
and inhibits NLRP3 activation [100]. In a murine ulcer model, CBD treatment downregu-
lates the expression of molecules associated with the NLRP3 inflammasome pathway [101].
Mechanically, CBD reduces the expression of cytidine/uridine monophosphate kinase 2,
which inhibits the formation of oxidized mitochondrial DNA and ultimately suppresses
the activation of inflammasomes [101].

Till now, most investigations on the effects of cannabis on inflammasomes have
primarily focused on NLRP3 inflammasome. Whether cannabis has effects on other inflam-
masomes remains very much unknown.

3.5. The Effects of Opioids on Neuroimmune Signaling and NLRP3 Inflammasome

Morphine is an opioid drug that is considered to be an effective analgesic for the
management of pain in clinic. The percentage of the population using opioid-like drugs
has been increasing over the years [102].

The effects of morphine on inflammation are also mixed. Some studies have indicated
that morphine is anti-inflammatory through upregulating miR-124 [103,104], while others
have demonstrated pro-inflammatory effects on microglia [105,106]. The mechanisms
underlying such a discrepancy remain very much unknown but are probably due to
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different drug regimens, such as factors like exposure time and dose. TLR4-mediated
neuroimmune signaling is critical for morphine-mediated neuroinflammation. Morphine
was reported to directly bind to TLR4 by docking to the LPS-binding pocket of MD-2 [107].
Following stimulation of the TLR4 pathway, NF-«B is activated and pro-inflammatory
cytokines are released [107]. In CNS endothelial cells, morphine activates the TLR4 pathway
and, in turn, induces rapid phosphorylation of MAPK p38 and ERK [108]. Mechanically,
morphine decreases the ubiquitination of tumor necrosis factor receptor associated factor
6 (a critical mediator of TLR/IL-1 signaling) and phosphorylation of TRAF-activated
kinase 1. In BV2 cells, morphine has been shown to increase the production of IL13 and
TNF«. Likewise, morphine induces the release of pro-inflammatory cytokines (NO, TNF«,
IL1B, and IL6) from the activated mouse microglia via the PKC-Akt-ERK1/2 signaling
pathway. In astrocytes, morphine could dysregulate the autophagy process through ER
stress-mediated pathways, which in turn leads to astrogliosis and neuroinflammation [109].
In addition, beta-amyloid pathways (j3-site cleaving enzyme, amyloid precursor protein,
etc.) are also involved in morphine-mediated astrogliosis and neuroinflammation [110].

Morphine has the ability to interact with NLRP3 inflammasome in various types of
brain cells. Elevated NLRP3 inflammasome activity was involved in morphine-mediated
microglia activation and tolerance [111]. In addition, morphine can directly activate
NLRP3 inflammasome, leading to paradoxically prolonged neuropathic pain [112]. Several
molecules, including DAMPs, HMICROGLIAB], and biglycan, and purinergic receptor
P2X7R, were involved in morphine-mediated NLRP3 activity and tolerance [113,114].
Another report showed that repeated morphine exposure could increase the expression
and phosphorylation of TGF( activated kinase 1 (TAK1), which leads to an increase in
NLRP3 activation [115]. Collaboratively, TLR4 knockout mice demonstrated an attenuated
morphine-induced tolerance, inhibited NLRP3 activation, and decreased phosphoryla-
tion of TAK1 under chronic morphine administration [115]. Fentanyl, another opiate-like
drug, could induce cell-specific activation of NLRP3 inflammasome via TLR4 and opioid
receptors in astrocytes and neurons, respectively [116].

4. The Potential Therapeutic Effects of NLRP3 Inflammasome in SUDs

Since NLRP3 inflammasome plays critical roles in both peripheral and central inflam-
mation, many small molecules including MCC950 and OLT1177 have been developed
for the treatment of inflammation-related diseases by regulating NLRP3 inflammasome
activity [117]. The progress of these drugs in clinical trials has been well-reviewed for in-
flammatory bowel diseases [117] and neurodegenerative diseases including AD, PD, stroke,
etc. [118]. SUDs have been increasingly recognized as neuroinflammation-related brain
diseases and many small molecules with the capability of reducing neuroinflammation
levels have been extensively tested in rodent models. Furthermore, several drugs including
minocycline, ibudilast, pioglitazone, N-acetylcysteine, and pentoxifylline have advanced in
clinical trials for SUDs treatment to different stages [37]. A summary of the effects of these
molecules on SUDs in clinical trials and their mechanisms of action is found in Table 1.
Interestingly, these molecules also have the capability of modulating NLRP3 inflammasome
in various disease models [119-123]. Surprisingly, none of the known NLRP3 inflamma-
some inhibitors have been tested in SUDs in either pre-clinical or clinical tests. It would be
worth exploring the effects of those NLRP3 inhibitors on SUD development.
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Table 1. The effects of molecules on SUDs in clinical trials as well as NLRP3 inhibition (down arrow:

downregulation; N/A: no effects).

Mechanisms of .. . . NLRP3
Drugs Action Opioids Psychostimulants Alcohol Cannabis Inhibition
Minocycline microglial inhibitor positive effects ¢ positive effects ¢ positive effects (-) N/A yes
craving (-)
Ibudilast TNF« inhibitor positive effects (-) N/A positive effects (-) N/A yes
withdrawal craving
Pioglitazone cytokine inhibitor positive effects (-) reinforcing effects % N/A N/A yes
craving ‘ craving #
N- GLT-1 upregulation | N/A ¢ N/A ¢ es
Acetylcysteine pres positive effects craving y
ROS scavenger craving # abstinence (-)
abstinence ‘
Pentoxifylline | cytokine inhibitor N/A abstinence (-) N/A N/A yes

5. Conclusions

Abused drugs can activate microglia through multiple neuroimmune signaling path-
ways including NLRP3 inflammasome. NLRP3 inflammasome might function as a common
downstream effector activated by various types of abused drugs and play critical roles in
the pathogenesis of SUDs. The effects of abused drugs on NLRP3 signal 1 and signal 2 path-
ways have been summarized in Table 2. Targeting NLRP3 inflammasome might provide a
novel therapeutic approach for ameliorating the neurological symptoms of SUDs. More
investigations should be carried out to test the effects of those NLRP3 inhibitors on SUDs.
Currently, there is no direct and consolidated in vivo data to demonstrate that microglia
NLRP3 could promote SUD pathogenesis. In addition to NLRP3, microglia express several
other inflammasomes and the involvement of other inflammasomes in SUDs remains very
much unexplored. Furthermore, the NLRP3 inflammasome is expressed in other types
of brain cells, including astrocytes and neurons [124,125]. Thus, to answer the questions
about the specific effects of microglia NLRP3 on SUDs, the generation of microglial-specific
NLRP3 knockout mice is an emergent need for future investigations.

Table 2. Summary of the effects of abused drugs on NLRP3 signaling and miR-124.

Cocaine Meth Alcohol Marijuana Morphine
TLR/NF-xB Up Up Up Down Up
ROS Up Up Up No test Up
NLRP3 Up Up Up Down Up
miR-124 Down Down Down No test Up
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