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Abstract: The regulation of mitochondria structure and function is at the core of numerous viral
infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates
control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed
to post-translational modification (PTM) of mitochondrial proteins as a critical component of such
regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several
diseases and emerging evidence is starting to highlight essential roles in the context of viral infections.
Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins
and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and
immune responses. We further consider links between PTM changes and mitochondrial structure
remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial
PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based
analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.

Keywords: post-translational modifications; mitochondria; virus–host interactions; mass spectrometry;
proteomics; phosphorylation; acylation

1. Introduction

Mitochondria are dynamic organelles that control the cell’s energy metabolism, im-
mune signaling, and lifespan [1,2]. These functions are primarily performed and regulated
by proteins localized to the mitochondria. Despite the mitochondrial genome only en-
coding for 13 proteins, it is currently estimated that between 1100 to 1500 proteins are
localized to the mitochondria [3,4]. As a result, mitochondrial health is largely dictated
by expression from nuclear chromosomes and transport to the organelle; however, the
functions of mitochondrial proteins are additionally fine-tuned or entirely enabled through
post-translational modifications (PTMs).

PTMs provide the means to dynamically regulate protein functions by driving changes
to protein abundance [5], interactions [6], subcellular or sub-organellar localization [7],
and activity [8]. As methods incorporating quantitative mass spectrometry (MS) have
afforded the discovery of a range of PTM types within different subcellular compartments,
efforts have focused on characterizing the PTMs that are critical for cellular homeostasis
or altered in various disease states [9–20]. These efforts have led to the identification of
thousands of PTM-modified residues by more than 400 types of PTMs [21], deepening our
understanding of the phenotypic plasticity built into the proteome through PTM-modifiable
amino acids. As a crucial cellular regulatory hub, it is perhaps not surprising to find that
the dysregulation of the mitochondrial proteome by PTMs is linked to many disease states,
including cancer [22], aging [23], and neurodegenerative disease [23,24]. Furthermore, an
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accumulating body of literature points to PTM events that regulate mitochondria function
and structure during infection with viral pathogens [25].

Protein post-translational modification is an important facet of virus–host interactions,
allowing for the rapid toggling of protein function to either initiate host defense signaling
or support the temporal and spatial coordination of a virus replication cycle. As obligate
parasites, viruses must remodel the host cell proteome and metabolic output to fuel the pro-
duction of their genomes, proteins, and, in certain cases, their lipid envelopes [16,19,26–29].
This is often accompanied by the modulation of host cell apoptotic signaling to prevent pre-
mature abortion of the virus replication cycle [30–32]. On the host side, immune signaling is
propagated via phosphorylation-mediated cascades and protein shuttling on the time scale
of minutes to hours [33,34]. In turn, viruses have acquired mechanisms to rapidly disable
or manipulate these host defenses and ensure virus production and spread [35–40]. As a
core contributor to cellular metabolism, immunity, and apoptosis, mitochondria regulation
is at the cornerstone of virus replication, spread, and connected pathologies.

Here, we review PTM-based mechanisms that modulate different aspects of mito-
chondria function and structure. We consider different types of protein PTMs identified
within the mitochondria, as well as the enzymatic and non-enzymatic mechanisms that
control these modifications. Throughout the review, we highlight specific mitochondrial
PTMs that have either been functionally characterized during infection or are positioned to
influence viral replication. Finally, we provide an overview of available methods for the
identification, prioritization, and elucidation of functional PTMs.

2. Mitochondrial PTMs Remodeling Mitochondrial Structure

Viruses frequently manipulate mitochondrial processes by remodeling mitochondrial
ultrastructure and inter-organellar communication [28,41]. Mitochondrial functions depend
largely on mitochondrial structure, which is regulated by both intrinsic and extrinsic factors.
During homeostasis, mitochondrial dynamics are tuned to balance the rate of fission and
fusion [1]. Conversely, significant bias towards either the fused or fragmented state is
seen in diseases such as cancer, neurodegenerative diseases, and viral infections [42].
When mitochondria are elongated, they generally have higher mitochondrial membrane
potential and metabolic output with lower apoptotic induction and mitophagy, which are
all hallmarks of mitochondrial health. Alternatively, when mitochondria are fragmented,
they frequently show the opposite phenotypes [43,44]. Mitochondrial fusion is mediated
by the outer mitochondrial membrane (OMM) proteins mitofusin 1 and 2 (MFN1 and
MFN2) and the inner mitochondrial membrane (IMM) protein optic atrophy 1 (OPA1),
whereas fission is controlled by dynamin-related protein 1 (DRP1)and mitochondrial fission
1 protein (FIS1) (Figure 1A) [1]. Through regulation of the mitochondrial ultrastructure,
these proteins also regulate diverse pathways independent of mitochondrial metabolism.
For example, elongation of the mitochondrial network by overexpression of MFN1 or
depletion of FIS1 and DRP1 has been shown to activate antiviral signaling, likely through
the promotion of mitochondrial antiviral-signaling protein (MAVS) functions [45]. OPA1
additionally moonlights as a cristae structural factor, maintaining cristae width through its
oligomerization [46,47]. Loss of OPA1 expression or OPA1 oligomerization has been shown
to release cytochrome c, initiating apoptotic signaling [48].

Among the aforementioned mitochondrial proteins, the fusion factor OPA1 has been
characterized to be regulated by PTMs (Table 1). Increased OPA1 acetylation at Lys926 and
Lys931 has been observed under cardiac stress conditions and been shown to inhibit OPA1
functions, thereby suppressing fusion and contributing to mitochondrial dysfunction [49].
In the context of viral infection, OPA1 acetylation has been shown to be upregulated during
human cytomegalovirus (HCMV) infection, as part of a global increase in the mitochondrial
acetylome [14]. HCMV induces mitochondrial fragmentation, in part through inhibition of
OPA1 function. OPA1 restricts virus production and its functions in mitochondrial fusion
are inhibited through Lys834 and Lys931 acetylation. Although it has not been studied
extensively, it is possible that stress-induced mitochondrial hyperfusion—dependent on
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L-OPA1, MFN1, and SLP-2 [50]—is mediated through OPA1 PTMs during infection with
viruses that elongate mitochondria, such as Dengue virus [51]. More broadly, it remains
to be determined whether the infection-induced global upregulation of the mitochondrial
acetylome is connected to HCMV-linked pathologies—cardiac hypertrophy and metabolic
syndrome—that also exhibit dysregulated mitochondrial acetylation [16,52,53].
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Figure 1. Post-translational regulation of key mitochondrial processes. (A) Mitochondria health is
modulated by mitochondrial fusion and fission events. MFN1/2 can each promote fusion of the
outer mitochondrial membrane, while OPA1 fuses the inner mitochondrial membrane. Functions of
MFN1/2 and OPA1 are inhibited through a variety of mechanisms, including inhibitory acetylations
on OPA1, which are removed by SIRT3 during infection (bolded PTMs have been mechanistically
characterized during viral infection). Meanwhile, DRP1, a fission factor for the outer mitochondrial
membrane, is phosphorylated at several residues to regulate its docking onto mitochondria. Subse-
quent docking promotes oligomerization and outer membrane fission, a process which is inhibited by
cysteine S-nitrosylation (NO). (B) Mitochondria control cellular bioenergetics, and flux through their
pathways are finely tuned by PTMs. Pyruvate dehydrogenase (PDH) complex activity is controlled
by pyruvate dehydrogenase kinases and phosphatases (PDKs and PDPs), thus regulating the main
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entryway of carbon from glycolysis into the TCA cycle. Regulation of PDH and other entryways
into the TCA cycle, as well as TCA cycle proteins themselves, is accomplished through a suite of
activating and inhibitory lysine acylations (acetylation [Ac], succinylation [Suc], malonylation [Mal],
Lipoylation [Lipo], glutarylation [Glut]). These acyl modifications are removed by mitochondrial
sirtuin proteins (SIRTs), thus regulating flux through aerobic respiration. (C) Voltage-dependent
anion-selective channel 1 (VDAC1) is an integral membrane protein on the outer mitochondrial
membrane. During intrinsic apoptotic signaling, cytochrome c (cyt c) passes from the mitochondrial
intermembrane space (IMS) to the cytosol across the VDAC1 channel. VDAC1 functions can be
positively regulated by phosphorylation, while VDAC1 can also be inhibited through phosphorylation
by Nek1 or monoubiquitination (Ub) by PARKIN. (D) MAVS serves as the central signaling hub for
the innate immune response to RNA viruses. Activation occurs upon binding of the RNA sensors
RIG-I or MDA5, facilitating IRF3 phosphorylation and subsequent dimerization. Succinylation (Suc)
or addition of polyubiquitin (Ub) chains promote MAVS aggregation, making it a more effective
scaffold. TBK1 phosphorylation of MAVS enables IRF3 scaffolding onto MAVS aggregates, stabilizing
it for phosphorylation of IRF3 by TBK1.

Among the aforementioned mitochondrial proteins, the fusion factor OPA1 has been
characterized to be regulated by PTMs (Table 1). Increased OPA1 acetylation at Lys926 and
Lys931 has been observed under cardiac stress conditions and been shown to inhibit OPA1
functions, thereby suppressing fusion and contributing to mitochondrial dysfunction [49].
In the context of viral infection, OPA1 acetylation has been shown to be upregulated during
human cytomegalovirus (HCMV) infection, as part of a global increase in the mitochondrial
acetylome [14]. HCMV induces mitochondrial fragmentation, in part through inhibition of
OPA1 function. OPA1 restricts virus production and its functions in mitochondrial fusion
are inhibited through Lys834 and Lys931 acetylation. Although it has not been studied
extensively, it is possible that stress-induced mitochondrial hyperfusion—dependent on
L-OPA1, MFN1, and SLP-2 [50]—is mediated through OPA1 PTMs during infection with
viruses that elongate mitochondria, such as Dengue virus [51]. More broadly, it remains
to be determined whether the infection-induced global upregulation of the mitochondrial
acetylome is connected to HCMV-linked pathologies—cardiac hypertrophy and metabolic
syndrome—that also exhibit dysregulated mitochondrial acetylation [16,52,53].

Table 1. PTMs that modulate mitochondrial functions.

Substrate Modification Site Function References

AceCS2 Acetylation Lys642 Inhibits enzymatic activity [54]

DRP1 Phosphorylation Ser579, Ser600, Ser616;
Ser637

Activates DRP1 binding to
mitochondria; inhibits
DRP1 binding

[54–61]

S-nitrosylation Cys644 Inhibits DRP1 oligomerization [62]
GLS Succinylation Lys164 Inhibits enzymatic activity [63]

GLUD1 Glutarylation Lys545 Inhibits enzymatic activity [64]
IDH2 Acetylation Lys413 Inhibits enzymatic activity [65]

Succinylation Lys360 Inhibits enzymatic activity [66]
LCAD Acetylation Lys42 Inhibits enzymatic activity [67]
MAVS Polyubiquitination Lys10, Lys311, Lys461 Promote MAVS aggregation [68]

Succinylation Lys7 Promotes MAVS aggregation [69]

Phosphorylation Ser442 Activates IRF3, innate
immune signaling [33,70]

MCD Acetylation Lys471 Activates enzymatic activity [71]
MFN1 Phosphorylation Thr562 Inhibits mitochondrial fusion [72]
MFN2 Phosphorylation Ser65, Thr111, Ser442 Inhibit mitochondrial fusion [73,74]
OPA1 Acetylation Lys834, Lys931 Inhibit mitochondrial fusion [49]

PDHA1 Phosphorylation Ser203, Ser264, Ser271 Inhibit enzymatic activity [75–78]
Lipoylation Lys97, Lys132, Lys259 Activate enzymatic activity [79,80]

SDH Malonylation Lys179 Activates enzymatic activity [81]

VDAC1 Phosphorylation Ser104; Ser193 Promotes cytochrome c release;
inhibits cytochrome c release [82–84]

Ubiquitination Lys274 Inhibits apoptotic signaling [85]
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Mitochondrial fission is also regulated by PTMs, such as the extensive modification
of DRP1, which has been reported to be phosphorylated, ubiquitinated, SUMOylated,
and nitrosylated [62]. Fragmentation of mitochondria has been shown to be driven by
S-nitrosylation of DRP1 during neuronal injury [62], and phosphorylation of DRP1 by
CDK1/Cyclin B has been observed to promote mitochondrial fission in mitotic cells [58].
Later studies highlighted the importance of the phosphorylation of DRP1 Ser616 and Ser637
residues for the regulation of their binding to mitochondria (Figure 1A). In agreement with
this finding, the modulation of these two phosphosites has been linked with several diseases.
Increased Ser616 phosphorylation and decreased Ser637 phosphorylation, concomitant with
excessive mitochondrial fragmentation, have been observed in myocardial lipotoxicity [86]
and several cancers [22,54,55]. In the context of viral infection, both hepatitis B and C
viruses have been shown to induce mitochondrial fragmentation by elevating DRP1 Ser616
phosphorylation [56,57]. In both viral infections, DRP1-mediated fission led to mitophagy,
thereby attenuating virus-induced apoptosis. In HCV infection, it has been further shown
that DRP1 knockdown decreased virus secretion, glycolysis, and cellular ATP level, while
enhancing innate immune responses. Although DRP1 phosphorylation studies have mainly
focused on Ser616 and Ser637 phosphorylations, it has been found that, during HIV-1
infection, DRP1 Ser620 and Ser629 residues are also phosphorylated [87]. These sites remain
to be functionally characterized. Considering that overexpression of DRP1 inhibits the loss
of mitochondrial membrane potential and apoptotic cell death by HIV-1 viral protein R
(Vpr) [88], it is possible that DRP1 activity is targeted by HIV-1 via the phosphorylation of
these uncharacterized sites. Of note, this study also found that Vpr increases the bulging of
mitochondria-associated membranes (MAM), which are areas of contact between the ER
membrane and the OMM [88].

Mitochondria, like all other organelles, do not function in isolation, but instead form
dynamic inter-organellar networks through membrane contact sites (MCSs). Distance
between the organelles in MCSs can range from 10 nm to 100 nm [89], and these contacts
are composed of several different classes of proteins with distinct roles [90]. Structural
proteins act as tethers and spacers in the MCS to stably hold the organelles together at a
certain distance. This is most often achieved through homotypic or heterotypic interactions
between two proteins on the opposing membranes [90]. This enables the shuttling of
metabolites and signaling molecules between organelles without fusion of the organellar
membranes. For example, ER–mitochondria contacts facilitate lipid transport [91], Ca2+

transport [92], ROS signaling [93], and autophagy [94].
MCSs are altered in several diseases such as cancer, Alzheimer’s disease (AD), and

diabetes, as well as viral infections [95]. HCMV remodels all major organelles during its
replication cycle [96], and a recent study has highlighted that HCMV infection globally
increases MCS protein abundances [97]. This stands in contrast with the fine-tuning of
specific MCSs during infection with HSV-1, as well as the overall decrease in MCSs for
influenza A and HCoV-OC43. These findings are in line with the understanding that each
virus uniquely alters organelle structure–function relationships to aid its replication. For
example, HSV-1 has been previously reported to increase peroxisome biogenesis [98], and
HCoV-OC43 has been shown to restructure the ER to form the double-membraned vesicles
used for viral replication and capsid assembly [99]. HCMV has been found to induce a pre-
viously unreported MCS structure termed mitochondria–ER encapsulation (MENC), which
is supported by tethering proteins VAP-B and the relocalized PTPIP51 [97]. The molecular
regulators of MENC formation are not yet known, but PTM-based regulation may aid in
the formation of this structure, as has been observed for MCSs in the past. For example,
PTPIP51 phosphorylation events have been reported to impact several protein–protein in-
teractions [100–102], and contact between mitochondria and vacuole—known as a vacuole
and mitochondria patch (vCLAMP)—has been shown to be regulated by phosphorylation
of Vps39 in yeast [5]. Additionally, phospho-FFAT domains have been shown to regulate
ER–endosome contact depending on phosphorylation state [103]. With the accumulating
knowledge that viral infections induce numerous protein translocation events [34], it is
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likely that PTMs are more broadly involved in inter-organellar communication, as well as
intra-organellar remodeling.

3. Mitochondrial PTMs Regulating Cellular Processes
3.1. Metabolism

Given that a primary role of mitochondria in cell survival is to regulate metabolic
pathways to support bioenergetics, a main functional interaction between viruses and mito-
chondria is at the interface of metabolic control. Viruses rely on host metabolites for energy
and precursors for their genomes, proteins, and lipid envelopes. Hence, the temporal
rewiring of metabolic pathways is a feature of many viral infections. An infection-induced
alteration is the upregulation of glycolysis, a major carbon entry point into the TCA cycle
and oxidative phosphorylation pathway. Upregulated glycolysis has been observed during
infection with diverse viruses, including Kaposi’s sarcoma herpesvirus (KSHV) [104], hu-
man cytomegalovirus (HCMV) [26,27], influenza A [105], HIV-1 [106], Dengue [107], and
SARS-CoV-2 [108]. Some of these viruses induce a “Warburg-like effect” [109], similar to
the metabolic phenotype characteristic of cancers, with this aerobic glycolysis enabling
rapid energy production and shunting of carbon into production of biomass for cellular
proliferation. The resulting pyruvate is not further oxidized by mitochondrial pathways
but is instead reduced to lactate in the cytosol, thereby regenerating NAD+. Increased
lactate production is known to dampen immune signaling [110], and to also contribute to
an anti-inflammatory tumor microenvironment through the modulation of infiltrating im-
mune cells [111–115]. It is likely that this immunosuppressive outcome is also beneficial for
preventing interference with viral replication. Furthermore, the metabolic reprogramming
caused by certain infections is thought to be linked to the oncogenic or oncomodulatory
properties of these viruses, such as for KSHV [104] and HCMV [116].

A number of metabolomics studies have demonstrated that virus infections can promote
flux through the TCA cycle, as shown for HCMV [27], HSV-1 [117], and SARS-CoV-2 [118].
HCMV increases TCA cycle intermediates, both for efflux of citrate into fatty acid synthesis
pathways for production of its lipid envelope [27], as well as increased energy production
through respiration [119]. HCMV additionally encodes a viral protein, pUL13, which
promotes electron transport chain function through cristae remodeling [28]. However, this
upregulation of oxidative phosphorylation seems to make HCMV the exception, rather than
the rule. HSV-1 increases anaplerotic influx into the TCA cycle for nucleotide biosynthesis
to support genome replication [117], not bioenergetics. During infection with SARS-CoV-2,
glucose influx to the TCA cycle is upregulated, but carbon oxidation through the TCA cycle
is repressed [118]. Given that lipid synthesis is required for completion of the SARS-CoV-2
replication [120], it is possible that carbon from the TCA cycle is directed into lipid anabolic
pathways via citrate, much like for HCMV. Some giant DNA viruses even encode TCA cycle
enzymes in their genomes [121], presumably to spur metabolic flux through these pathways.
Despite many virus infections leading to reduction of oxidative phosphorylation as a means
of energy production, the TCA cycle still serves as an important hub for carbon efflux into
various anabolic pathways. Perhaps an additional reason why many viral infections lead
to reduced electron transport chain activity is to temper reactive oxygen species (ROS)
production, which has been shown to activate innate immune signaling through NLRP3
inflammasomes [122]. Through the above-mentioned upregulated glycolysis and carbon
flux towards biosynthetic pathways at the expense of electron transport chain activity, the
virus requirements for energy production and biomolecule generation can be met without
the deleterious impacts of aerobic respiration.

Protein PTMs are known to be critical switches of these metabolic pathways [123].
Phosphorylation-mediated regulation of the pyruvate dehydrogenase complex (PDH) ac-
tivity by kinases and phosphatases (PDKs and PDPs) adjusts pyruvate flux into oxidative
pathways, thus serving as a gatekeeper for mitochondrial metabolism (Figure 1B) [29]. PDH
phosphorylation has been detected in different viral infections: HIV-1 [87], HSV-1 [124],
influenza A [125], and DENV [126]. Phosphorylation of PDHA1, the E1a subunit of PDH,
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at Ser203, Ser264, and Ser271 leads to the inactivation of the complex [75–78]. These three
sites are all located in the highly conserved phosphorylation loops A and B of PDH, which
fold into ordered conformation upon thiamin diphosphate (ThDP) binding [127–129]. Even
in the presence of ThDP, phosphorylation at these sites induces a disordered structure of
the loops due to the steric clashes caused by the phosphate groups, thereby inactivating
PDH [76,127]. Interestingly, all three known PDHA1 phosphosites were found during HSV-
1 infection [124], and Ser203 phosphorylation has been found in both HSV-1 and influenza
A infections [124,125]. Additionally, Ser241 phosphorylation, a previously uncharacterized
phosphosite, was found in HIV-1 infection [87]. Regulation of these phosphosites may
constitute a viral mechanism for either disabling PDH to promote aerobic glycolysis or acti-
vating PDH to facilitate entry and subsequent efflux from the TCA cycle into biomolecule
precursors [117]. Consistent with this, PDH activity has been observed to markedly decrease
in mice infected with influenza through a yet unknown mechanism [130]. Other PTMs have
also been shown to modulate PDH activity, including succinylation and lipoylation [79,80],
and it remains to be seen whether these PTMs are altered during viral infections.

Components of the TCA cycle are also extensively regulated by PTMs, as seen during
infection with HCMV [16]. Malate dehydrogenase (MDH) has been shown to be activated
through acetylation in high glucose environments [131], while acetylation of succinate
dehydrogenase (SDH) decreases its enzymatic activity by preventing substrate entry into
the active site [132–134]. Further, phosphorylation of NADH dehydrogenase (ubiquinone)
flavoprotein 2 (NDUFV2) has been demonstrated to be essential for sufficient ATP produc-
tion for cell survival [135]. In addition to the TCA cycle and oxidative phosphorylation,
mitochondrial proteins involved in fatty acid metabolism are also regulated by PTMs.
Dysregulated lipid metabolism is a hallmark of many cancers and viral infections, as
fatty acids are used for membrane biogenesis, intracellular signaling, and production of
acetyl-CoA to fuel the TCA cycle [27,120,136,137]. Acetyl-CoA carboxylase (ACC) is an
enzyme involved in de novo fatty acid synthesis that irreversibly carboxylates acetyl-CoA
to malonyl-CoA [138]. It has been reported that, in nutrient abundant conditions, ACC2 is
hydroxylated at proline 450 by prolyl hydroxylase 3 (PHD3) to increase its activity, thus re-
pressing fatty acid oxidation [139]. The global changes in mitochondrial protein acetylation
that are starting to be observed during viral infections may broadly direct metabolic flux
away from oxidative phosphorylation and towards anabolic pathways, such as de novo
lipid synthesis [16,27].

3.2. Apoptosis

Most viruses have acquired mechanisms to inhibit apoptotic signaling to allow time for
viral replication, while occasionally inducing apoptosis late in replication to facilitate dis-
semination of virions [30–32]. Mitochondria function as central mediators of both intrinsic
and extrinsic apoptotic signaling pathways [140–142]. In the intrinsic pathway, apoptotic
signals activate pro-apoptotic B cell lymphoma 2 (BCL-2) proteins, which subsequently
activate the pro-apoptotic effectors BAX and BAK, leading to mitochondrial outer mem-
brane permeabilization (MOMP) [143]. MOMP irreversibly commits the cell to death in a
caspase-independent manner by causing efflux of several small pro-apoptotic molecules
such as cytochrome c [144–146]. In the extrinsic pathway, death receptor ligands activate
cell surface death receptors such as TNF-related family receptors, resulting in activation of
caspase-8 [140,141]. Active caspase-8 advances apoptosis by either inducing a cascade of
executioner caspases or translocating the pro-apoptotic protein tBid to the mitochondria,
thereby intersecting with the intrinsic pathway and promoting MOMP [140,147,148].

Both intrinsic and extrinsic apoptotic signaling pathways are regulated by PTMs.
Outside of the mitochondria, caspases can be phosphorylated by various kinases to both
suppress and activate functions in apoptosis [149–153]. For example, the pro-survival ki-
nase Akt has been shown to phosphorylate human caspase-9 at Ser196 to inhibit its activity,
resulting in the failure of apoptotic induction even upon cytochrome c release from the
mitochondria [152]. Caspase-3 activity, on the other hand, has been shown to be enhanced
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by phosphorylation by PRKCD. This phosphorylation increases the proteolytic activity of
caspase-3, thereby amplifying the transmission of apoptotic signals [151]. Another impor-
tant pro-apoptotic protein, BAX, is regulated by the ubiquitin/proteasome pathway. BAX
undergoes ubiquitin-dependent degradation mediated by E3 ligases PARKIN and IBRDC2,
thus preventing initiation of MOMP to induce apoptosis [154].

Most PTMs shown to affect apoptotic signaling operate through regulating the mul-
timerization and relocalization of cytoplasmic proteins; however, mitochondrial protein
PTMs further regulate initiation of intrinsic apoptotic signaling. Cytochrome c has been
found to be acetylated on Lys53 in human prostate xenograft samples, inhibiting its function
in apoptotic induction [155]. Another study has shown that DRP1 is SUMOylated dur-
ing apoptosis in a BAX/BAK-dependent manner [156–158]. The mitochondrial-anchored
RING-finger-containing protein (MAPL) SUMOylates DRP1 at ER–mitochondria contact
sites to facilitate mitochondrial fission and calcium transfer, thus ultimately leading to
cytochrome c release and apoptosis [158].

Interestingly, some apoptosis-related mitochondrial PTMs characterized in other
pathologies are also present in different viral infections [159–161]. A notable example
is voltage-dependent anion channel (VDAC) (Figure 1C). VDAC is an OMM protein that
regulates the transfer of essential molecules such as calcium, NADH, ADP, ATP, and other
metabolites [162–167]. It exists in three isoforms (VDAC1, 2, and 3) in mammals [168], and
phosphorylation of their serine, threonine, and tyrosine residues have been observed by
mass spectrometry in all three isoforms [169,170]. VDAC dysfunction has been reported
in various neurodegenerative diseases such as Alzheimer’s disease [171,172], Down’s syn-
drome [172], and familial amyotrophic lateral sclerosis (ALS) [173,174]. Recent studies have
shown that specific PTMs, such as VDAC1 and VDAC3 deamidations, are enhanced and can
regulate channel behavior in ALS cell lines [175,176]. Moreover, VDAC1 phosphorylation
is dynamically regulated in a variety of human cancers, suggesting a role in tumorigene-
sis [177]. In the context of viral infections, hepatitis B virus (HBV)-encoded protein HBx
has been shown to bind VDAC3 and alter the mitochondrial membrane potential, as well
as activate STAT-3 and NF-κB [178,179]. Given recent findings that show over-oxidation of
VDAC3 methionine and cysteine residues in both rat and human liver [180,181], it is pos-
sible that liver-associated pathologies in various disease states, including viral infections,
are driven in part by VDAC3 PTMs [182,183]. Phosphorylation of VDACs has additionally
been observed by mass spectrometry during infection with herpes simplex virus 1 (HSV-1),
human immunodeficiency virus 1 (HIV-1), and influenza A [87,124,125]. Although not
functionally characterized during viral infection, VDAC1 Ser104 phosphorylation was ob-
served in all three studies, a phosphorylated residue previously shown to stabilize VDAC1
and induce apoptosis [82,83].

VDAC1 and VDAC3 have been shown to restrict replication of HSV-1 by facilitating
cytosolic release of mitochondrial DNA (mtDNA), thereby increasing the cellular immune
response [184]. This indicates that MOMP-induction by VDACs is functionally relevant
to HSV-1 replication. Since VDAC oligomerization is crucial for mtDNA release, the ob-
served VDAC phosphorylations may suppress its oligomerization, leading to inhibition
of apoptosis. In contrast to Ser104 phosphorylation stabilizing VDAC1 functions, phos-
phorylation at Ser193 by Nek1 closes VDAC1, thus preventing cytochrome c release into
the cytosol (Figure 1C) [84]. Additionally, monoubiquitination at Lys274 by PARKIN sup-
presses apoptosis [185]. The observed VDAC phosphorylation events in viral infections
may also regulate channel conformation and VDAC1 stability during infection, constituting
an interface of host–pathogen competition over control of intrinsic cell death pathways.

3.3. Immune Signaling

Mitochondria orchestrate both adaptive and innate immune signaling through vari-
ous mechanisms. As the driver of cellular bioenergetics, mitochondria most prominently
influence the immune system through modulation of immune cell metabolism [85,186].
For example, the hexosamine biosynthetic pathway (HBP) is a glucose metabolism path-
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way that produces uridine diphosphate-N-acetyl glucosamine (UDP-GlcNAc), a precursor
of O-linked and N-linked glycosylations [187]. UDP-GlcNAc is then utilized to synthe-
size glycans by adding O-linked N-acetyl glucosamine (O-GlcNAc) to mitochondrial pro-
teins [188–191]. This specialized PTM is called O-GlcNAcylation and it has been shown
to be involved in various roles, such as maintaining immune cell functions [192–194].
Additionally, glutaminolysis is another critical metabolic pathway for immune cell devel-
opment and response. Glutamine is required for the induction of IL-1 by macrophages
upon lipopolysaccharide (LPS) stimulation [195]. Furthermore, glutaminase inhibition
has been shown to decrease the production of nitric oxide by Bacille Calmette-Guérin
(BCG)-activated macrophages [196,197].

Aside from the regulation of immune cell metabolism, mitochondria act as central hubs
of innate immune signaling across cell types. MAVS is located on the OMM and is activated
by the cytoplasmic pattern recognition receptors (PRRs) RIG-I and MDA5 [198–201]. Upon
detection of viral dsRNA, N-terminal tandem caspase activation recruitment domain
(2CARD) of RIG-I or MDA5 undergoes homo-oligomerization, which in turn induces
MAVS CARD filament formation [202–204]. This filament formation is necessary for the
recruitment of TRAF molecules and for IRF3 dimerization to activate the downstream
signaling pathway [204]. MAVS-mediated innate immune signaling is not restricted to the
cytoplasmic viral RNA sensing pathway, as numerous studies have revealed that RNA
and DNA sensing pathways display complex crosstalk [205–210]. It has been shown that
RNA polymerase III can use cytosolic DNA to synthesize dsRNA, which serves as a ligand
for RIG-I like receptors (RLRs) to induce IFN-B production through the MAVS signaling
pathway [207]. Moreover, stimulator of interferon genes (STING), the ER-resident protein
that serves as an immune signaling hub in the cGAS–STING DNA sensing pathway, has
been suggested to interact with RIG-I and MAVS in a super-complex that is stabilized during
viral infection [205,206,208]. Mitochondrial dynamics and ER–mitochondria tethering
have been shown to directly impact the MAVS–STING interaction, as well as STING
activation [97], consequently affecting downstream immune signaling activity [45].

MAVS expression and ability to recruit signaling factors have been shown to be altered
by various PTMs (Figure 1D) [45,211–213]. Most prominently, MAVS is phosphorylated at
Ser442 by the kinase TBK1, a moiety which is required for the binding of the immune signal-
ing factor IRF3 to MAVS. Upon IRF3 scaffolding onto P-Ser442 of MAVS aggregates, TBK1
phosphorylates IRF3, enabling IRF3 dimerization and subsequent nuclear translocation for
induction of interferon (IFN) and interferon-stimulated genes (ISGs) [33]. As IRF3 relies
on both MAVS phosphorylation and its aggregation for activation, PTMs which influence
MAVS aggregation will also regulate its function as a signaling hub. During infection with
Sendai virus and vesicular stomatitis virus, TRIM31-based poyubiquitination of MAVS at
Lys10, Lys311, and Lys461 has been shown to promote its aggregation and downstream
immune signaling [68]. Succinylation of MAVS at Lys7 has a similar effect in promoting
MAVS aggregation [69]. Phosphorylation by Nemo-like kinase (NLK), on the other hand,
has been shown to suppress antiviral signaling by promoting degradation of MAVS [70].

Additional uncharacterized MAVS phosphorylation events have been reported in
HSV-1, HIV-1, and influenza A infections [87,124,125,159]. One such phosphosite, MAVS
Ser222, has been reported after stimulation of human myeloid leukemia cells with TNF,
which was an unexpected finding since MAVS is not known to be a part of TNF signaling
pathways [214]. Next, MAVS Ser152 phosphorylation has been reported in a study that
investigated the impact of iron deficiency in neuronal cells [215]. Acute iron deficiency in
HT-22, a hippocampal-derived neuronal cell line, resulted in the increased phosphorylation
of proteins involved in inflammatory pathways, including MAVS. The consistent observa-
tion of these sites across pro-inflammatory conditions suggests that they could serve roles
in modulating MAVS function. It will be interesting to see if MAVS is additionally regu-
lated by inhibitory PTMs, perhaps added directly by viral proteins, or if virus antagonism
of MAVS is primarily through obstruction of the aforementioned gain-of-function PTMs
on MAVS.
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4. Enzymatic and Nonenzymatic Regulation of Mitochondrial PTMs

Post-translational regulation of protein function is often dictated by the competition of
PTM “writers” and “erasers” over the protein substrate: phosphorylation through kinases
and phosphatases, acetylation through acetyltransferases and deacetylases, and ubiqui-
tination through ubiquitin ligases and deubiquitinases [216]. This paradigm extends to
the mitochondrial proteome for many PTMs, such as the pyruvate dehydrogenase kinases
and phosphatases regulating PDH activity [77,217–219]. However, ROS induces PTMs on
proteins via nonenzymatic mechanisms [220]. Many viruses alter redox state during their
replication cycles (reviewed in [221]), but the extent to which this influences ROS-induced
PTMs on host and viral proteins is not well understood. Further, the addition of mitochon-
drial acetylation and other acylations is believed to occur primarily through nonenzymatic
mechanisms (reviewed in [222,223]). In vitro experiments have demonstrated that the
slightly alkaline pH of the mitochondrial matrix improves the nucleophilicity of lysines,
enabling it to spontaneously react with the highly abundant acetyl-CoA pool [224]. In cells,
this may be further promoted by a semi-enzymatic mechanism, whereby lysines acquire
acetylation via donation from a transiently acetylated proximal cysteine [225]. Through
these mechanisms, non-enzymatic acetylation regulates mitochondrial protein stability and
enzymatic activities [131].

In contrast with the diverse regulatory roles for protein acetylation on non-histone
proteins in the nucleus, mitochondrial protein acetylation has been found to be inhibitory in
nearly every mechanistic study, thus serving as a “nonenzymatic lesion” on proteins [226].
Some have called into question the functional capacity of these modifications, as abso-
lute quantification studies have reported a sub-1% stoichiometry for many acetyllysine
modifications on their target protein [226,227]. While many such modifications are likely
negligible to protein function, it is possible for regulation at that site to have functional
importance without a high modification stoichiometry (>10%), especially if that protein is
part of multiple protein complexes and only one complex is being inhibited. Many of these
acetyllysine sites can also be modified by other acyl modifications [228], likely leading
to an underestimation of the total acylation at each lysine. Furthermore, the concurrent
low-stoichiometry modification of many lysines on each individual protein, as well as on
several proteins within the same metabolic pathway, may cumulatively inhibit flux through
that pathway.

Removal of acetylation and other acyl modifications is in fact important for regulating
mitochondrial metabolism. This is achieved through a more canonical, enzymatic route:
mitochondrial sirtuin (SIRT) proteins serving as “erasers”. Sirtuins are conserved across
domains of life, maintaining cellular homeostasis through regulation of a diverse array of
lysine acylations [229–231]. Mammalian sirtuins regulate pathways throughout the cell,
with three of the seven mammalian sirtuins localizing to the mitochondria: SIRT3, SIRT4,
and SIRT5 [232,233]. SIRT3 functions as the primary mitochondrial deacetylase [226,234],
while SIRT5 preferentially removes acidic acyl modifications, such as lysine malonyla-
tion [235], succinylation [236], and glutarylation [237]. SIRT4 is able to remove the large,
branched modification lipoylation [80,234], while also displaying activities against various
glutarylations [238], biotinylation [80], and acetylation [71]. In this way, sirtuins specialize
in the protein substrates that they regulate as well as the acyl moieties on those substrates.

Mitochondrial sirtuins broadly regulate mitochondrial homeostasis, primarily by di-
recting flux through metabolic pathways (Figure 1B). Acetylation decorates metabolic pro-
teins and inhibits flux through these pathways, a stress which is relieved by SIRT3 [239–242].
To protect against the consequences of hyperactive oxidative phosphorylation, SIRT3 acti-
vates ROS-mitigating systems by deacetylating the mitochondrial superoxide dismutase
MnSOD [243,244]. In contrast with the promotion of aerobic respiration by SIRT3, SIRT4
and SIRT5 restrict aerobic respiration. SIRT4 inhibits carbon entry into the TCA cycle
by removing lipoylation from pyruvate dehydrogenase [80], further decreasing acetyl-
CoA flux through oxidative pathways through the regulation of malonyl-CoA decarboxy-
lase [71,245]. By promoting the catabolism of leucine [238], SIRT4 may additionally impact
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mTOR-mediated cell growth by removal of one of its key agonists [246]. SIRT5 restricts
carbon entry in the TCA cycle by removing activating succinylation marks [79], favoring
fatty acid β-oxidation for energy production [247]. SIRT5 further slows TCA cycling by
removing succinylation and malonylation from succinate dehydrogenase [79,81], while
paradoxically activating the TCA enzyme isocitrate dehydrogenase [66]. The disparate
effects of acidic and branched acyl modifications on metabolic protein function stand in
contrast to the nearly pan-inhibitory impact of acetylation on these same proteins.

As guardians of mitochondrial bioenergetics, mitochondrial sirtuins are implicated
as drug targets across disease states characterized by metabolic dysregulation. Viruses
cause ~15% of cancers worldwide [248], with their promotion of a Warburg-like metabolic
phenotype believed to be partially responsible [116]. Depending on the specific metabolic
needs of the cancer, mitochondrial sirtuins have a dichotomous function in either promoting
tumorigenesis or acting as tumor-suppressors. SIRT3 functions as a tumor-suppressor in
characteristic aerobic glycolysis-dependent tumors by maintaining flux through aerobic
respiration, a known characteristic of non-proliferating cells [249–251]; however, SIRT3 is
also overexpressed in certain tumors [252]. Through its inhibition of aerobic respiration [81],
as well as its protection of glutamine anaplerosis in mitochondrially active tumors [64,253],
SIRT5 is frequently found to be pro-tumorigenic; however, its desuccinylase activity restricts
tumors characterized by mitochondrial hypersuccinylation [254]. Meanwhile, through
decreasing acetyl-CoA and glutamine influx into the TCA cycle, SIRT4 is positioned to
restrict the same mitochondrially active tumors that benefit from the functions of SIRT3
and SIRT5 [255,256].

Despite many metabolic similarities to cancers and findings showing that mitochon-
drial sirtuins impact replication of various viruses [26,27,104–108,117,118,120,257,258], sir-
tuins have been comparatively understudied during infection. SIRT5 has been shown to
promote Sendai virus and SARS-CoV-2 infections [69,259], possibly through an indirect
effect of SIRT5 on cellular metabolism [259]. Then, the avian Newcastle disease virus
induces mitophagy and degrades the antiviral SIRT3 protein enroute to a Warburg-like
metabolic phenotype [260]. SIRT3 additionally exerts an antiviral effect against HCMV
through regulation of the mitochondrial ultrastructure [14]. SIRT3 deacetylates the fusion
factor OPA1 to derepress its function (Figure 1A), interfering with the fragmentation of
mitochondria that is characteristic of HCMV infection. Albeit through a regulation of
mitochondrial morphology and not through the direct regulation of metabolic proteins, the
functional consequence of OPA1 regulation is an alteration of mitochondrial metabolism.
Consistent with the role of mitochondrial sirtuins in cancers, their role in either promoting
or restricting viral replication will likely result from the specific metabolic program induced
by the virus.

5. Methods for Identifying and Determining the Mechanism of PTMs

A range of methods can be deployed for identifying PTMs, most commonly through
antibody-based detection or by mass spectrometry. Mass spectrometry-based (MS) proteomic
approaches enable high-throughput identification and quantification of protein PTMs, in
conjunction with the determination of the specific residues that are modified [261,262]. Bioin-
formatic tools even allow for the identification of novel types of PTMs without any a priori
information [263]. Given that only a fraction of each cellular protein will exist in a modified
form, enrichment is frequently required for extensive coverage of the PTM-modified pro-
teome. Affinity purification using antibodies or cation beads can be used to enrich PTMs of
interest [264–268], typically after protease digestion of cellular proteins into peptides, using
a strategy known as “bottom-up” proteomics (Figure 2A). Use of titanium dioxide cation
beads has been deployed for global profiling of the phosphoproteome during different
types of viral infection [15,19,87,125], while antibody-based methods have monitored other
types of PTMs, including acetylation [16], succinylation [20], and ubiquitination [17,269].
These PTM-specific enrichment methods have proven optimal for broad coverage of certain
PTMs of interest within the cellular proteome. Additionally, immunoaffinity purification of
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a specific protein, followed by MS analysis, can allow for the simultaneous identification
of multiple types of PTMs on the isolated protein [270]. Analysis of the intact or partially
digested protein—“top-down” or “middle-down” proteomics—afford the identification of
co-occurring PTMs that may participate in “crosstalk” mechanisms [271–274], whereby one
modification either positively or negatively regulates another modification. For example,
PINK1-induced phosphorylation scaffolds Parkin binding and the subsequent ubiquitina-
tion of target proteins (Figure 1A) [73,74]. Swaney et al., (2013) took a creative approach
when they performed enrichment for ubiquitination at the protein level followed by the
subsequent digestion and enrichment of phosphopeptides, thus profiling, on a large-scale,
the co-regulation of ubiquitination and phosphorylation [275]. Other similar serial enrich-
ment approaches have been deployed for the deep analysis of multiple PTMs from a single
sample [276]. Determining the influence of one modification on other modifications on the
same or different proteins has proved to be technically challenging (reviewed in [277]), but
it is likely to be a common principle of protein regulation.

While these MS-based approaches have substantially enriched the knowledge of PTM
types and sites [13–15,17–20,87,125], the functional relevance of most of these modification
sites has remained unknown. Considering the low-throughput nature of the mechanistic
characterization of PTMs, several groups have endeavored to prioritize the most-likely
functional PTMs. For example, Ochoa et al., (2020) mined the publicly available phospho-
proteome datasets, totaling a staggering 221,236 human phosphosites [278], and prioritized
sites based on four criteria (Figure 2B): (1) quality of MS evidence for the PTM, including
identification of diagnostic reporter ions for the PTM in question [279,280]; (2) PTM reg-
ulation, inferred by comparison with local sequence motifs for the PTM writer [281,282]
or directly found to be dynamic by comparison between biological conditions [283], (e.g.,
infected versus uninfected cells); (3) structural environment, determined either experi-
mentally or computationally predicted (e.g., AlphaFold [284]), which can point to PTMs
that are solvent accessible or that may modify protein structure enroute to functional reg-
ulation [285]; and (4) evolutionary conservation, as this suggests a selective pressure for
maintenance of PTM-based regulation at that site [286,287]. Further, global analysis of the
PTM can be paired with a functional readout during data acquisition. For example, the ther-
mal stability of proteins upon heat denaturation can be used to predict changes in protein
complex association [288–290], that, when integrated with phosphoproteome analysis, can
directly predict a functional outcome of specific phosphorylated sites (Figure 2B) [291,292].
These types of analyses can be integrated to increase confidence in the regulatory potential
for the identified PTMs.

Another consideration is that the PTM-modified proteoform must be mechanisti-
cally interrogated by comparison with the unmodified proteoform. There are different
approaches available, each with relative strengths and weaknesses (Figure 2C). Early ap-
proaches involved chemical ligation of a PTM-modified peptide into a target protein for
in vitro studies of histones [293,294]. Intein-based protein splicing has allowed for incorpo-
ration of PTM-modified peptides into native proteins in cell culture, proving invaluable for
dissecting the histone code [295]. Like most ligation technologies, this approach is limited to
the introduction of the modifications at the termini of the proteins of interest. To incorporate
modifications throughout the primary sequence of a protein, commonly utilized techniques
are genetic code expansion and site-directed mutagenesis. Genetic code expansion through
amber codon suppression allows one to incorporate PTM-modified amino acids into the
native context in cells and in vivo [296–298], but suppression of endogenous amber codons
leads to nonspecific incorporation throughout the proteome [299,300]. Mutagenesis of the
residue identified to carry the PTM to amino acids that either mimic the modified version
or block the modification is a widely used approach for assessing the molecular functions
of specific sites. While site-directed mutagenesis approaches have proven valuable for
the discovery of many of the PTM functions currently known, caution must be exerted
when interpreting the results, as the mimics do not perfectly recapitulate the structure of
the modified residue. Additionally, these approaches give rise to a protein that is ~100%
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modified, which is typically much higher than the stoichiometry of the modification in vivo.
While the assays may demonstrate that a PTM is sufficient to induce a particular pheno-
type, the observed phenotype may be enhanced compared to the effect generated from the
native PTM.
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Figure 2. Techniques to identify and functionally characterize PTMs. (A) Methods for identifying the
PTM-modified proteome and PTM crosstalk. PTM-enrichment global proteomics through a “bottom-
up” approach of full enzymatic digestion of cellular protein enables optimal proteome coverage
of a particular PTM, while protein immunoaffinity purification followed by proteomics allows
identification of multiple types of PTMs on a target protein. Semi-digested protein (“middle-down”)
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or undigested protein (“top-down”) can be analyzed by mass spectrometry to identify patterns of
PTM co-occurrence or competition, suggesting PTM crosstalk. PTM correlations can be globally
profiled by serial enrichment of PTMs. (B) Methods for predicting highly functional PTMs. Use
of reporter ions for the modified amino acid can bolster confidence in a PTM assignment. Use of
prediction tools for known “writers” and “erasers” of a PTM can suggest regulation at that site, while
directly observing change in a PTM abundance across biological conditions makes regulation of
the site evident. PTM-modifiable residues that are highly conserved suggest that PTM regulation
at that site experiences a positive selective pressure. Further, integration of PTM sites with known
or predicted structures can suggest changes in protein conformation upon PTM addition, such as
the phosphorylation of a flexible region evicting it from the protein’s active site and enabling its
enzymatic activity (phospho-activation loop). Finally, incorporating a functional readout during data
acquisition can immediately predict changes in protein function from a PTM. Thermal proteome
profiling paired with PTM-omics can identify PTM-modified proteoforms with distinct thermal
denaturation curves, suggesting a change in that protein’s interactions or biochemical stability upon
addition of the PTM. (C) Techniques for mechanistically interrogating PTMs. Use of chemical ligation
technologies, such as a split-intein, allows for direct addition of PTM-modified peptides onto the
termini of proteins. Through a semi-synthetic biology approach, cells expressing a foreign tRNA
recognizing amber codons (the least common stop codon in humans) and a corresponding tRNA
ligase can be used to directly incorporate PTM-modified amino acids at an amber codon within a
gene’s coding sequence. Finally, due to ease of use and applicability to higher organisms, many
researchers opt for site-directed mutagenesis of the target protein to amino acids which mimic the
PTM-modified form or the constitutively unmodified form.

6. Concluding Remarks

Mitochondria dysregulation is a fundamental component of viral infections, tightly
linked to virus production and linked pathologies. For example, virus-induced metabolic
rewiring contributes to cardiac disorders and cancers associated with infections [104,116].
An accumulating body of knowledge points to protein PTMs as critical switches in nu-
merous metabolic pathways, and several therapeutic drugs have been developed to target
enzymes that regulate PTMs. For instance, Vorinostat is a class I and II histone deacetylase
(HDAC) inhibitor that is efficacious against cutaneous T cell lymphoma [301], and Onureg
is used to treat acute myeloid leukemia by preventing DNA methylation through inhibition
of DNA methyltransferase [302]. Mitochondrial sirtuins have also been pharmacologi-
cally targeted with small molecules in metabolic and neurodegenerative diseases [303].
Additionally, an ever-increasing diversity of modifications are being identified within the
mitochondria, including numerous acylations with yet unknown functions. These findings
suggest that PTMs can offer molecular signatures of mitochondrial health and cellular
state. Clearly, there are still many unknown facts regarding the regulation and function of
mitochondrial PTMs. However, their diversity points to a remarkably multifaceted ability
for mitochondrial PTMs to contribute to rapid sensing and responses to cellular cues. Ad-
vances in mass spectrometry-based detection and quantification methods promise to help
to untangle the plethora of enzymatic and non-enzymatic PTMs initiated by viral infections.
Given the known viral mimicry of cellular regulatory mechanisms, these infection-induced
PTM profiles are likely to uncover regulatory processes more broadly relevant in health
and disease, opening avenues for therapeutic intervention.
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