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Abstract: The availability of drugs capable of blocking the replication of microorganisms has been
one of the greatest triumphs in the history of medicine, but the emergence of an ever-increasing
number of resistant strains poses a serious problem for the treatment of infectious diseases. The
search for new potential ligands for proteins involved in the life cycle of pathogens is, therefore,
an extremely important research field today. In this work, we have considered the HIV-1 protease,
one of the main targets for AIDS therapy. Several drugs are used today in clinical practice whose
mechanism of action is based on the inhibition of this enzyme, but after years of use, even these
molecules are beginning to be interested by resistance phenomena. We used a simple artificial
intelligence system for the initial screening of a data set of potential ligands. These results were
validated by docking and molecular dynamics, leading to the identification of a potential new
ligand of the enzyme which does not belong to any known class of HIV-1 protease inhibitors. The
computational protocol used in this work is simple and does not require large computational power.
Furthermore, the availability of a large number of structural information on viral proteins and the
presence of numerous experimental data on their ligands, with which it is possible to compare
the results obtained with computational methods, make this research field the ideal terrain for the
application of these new computational techniques.

Keywords: HIV-1 protease; HIV protease inhibitors; molecular docking; drug resistance; artificial
intelligence; autoencoder

1. Introduction

In the early 1980s, a new viral infection was recognized, with a pandemic trend that
is still ongoing. Acquired immunodeficiency syndrome (AIDS), which has had dramatic
clinical implications for many years, is caused by a retrovirus known as human immunode-
ficiency virus type 1 (HIV-1). It is estimated that this virus has caused around 40 million
deaths worldwide, and currently, there are about 38 million patients infected by HIV-1 [1].
Despite significant progress in understanding the immune response to the virus and de-
veloping vaccines [2—4], the disease is now controlled only by antiviral drugs [5,6]. These
molecules affect three viral enzymes: protease, reverse transcriptase, and integrase. The
availability of these drugs has radically changed the prognosis and quality of life of HIV-
infected patients, so much that the reassuring certainty that HIV-1 infection has become
a chronic, but controllable, condition has spread in public opinion. However, this optimistic
vision soon collided with the emergence of strains resistant to one or more drugs [7-10].
The rate of infections with resistant strains has increased significantly in recent years, espe-
cially in North America and sub-Saharan Africa, to the point of becoming a real threat to
public health.
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HIV-1 protease, encoded as part of the Gag-Pol polyprotein in the viral genome,
is responsible for the maturation of the Gag-Pol and Gag precursors and has an essen-
tial role in the viral replication cycle [11]. For this reason, it was quickly realized that
molecules capable of blocking this enzyme were excellent drug candidates for the treat-
ment of AIDS [11,12]. This enzyme is a C2 symmetric homodimer of subunits containing
99 residues [13,14]. Its active site is located at the dimer interface and contains a catalytic
aspartate (D25) in the sequence signature DTG. Three regions can be recognized in each
monomer: one involved in the enzyme dimerization (residues 1-4 and 95-99); the core
region (residues 10-32 and 63-85 of each monomer), which participates to the catalytic
site, as well as dimerization; and the flap region consisting of two solvent exposed loops
(residues 33—43 of each chain) and two flexible, glycine-rich 3-hairpins (residues 44-62).
The flexible flaps cap the catalytic triad, and upon substrate- or inhibitor-binding, these
plug the active site. The error-prone replication of the HIV-1 rapidly generates a pool of
mutant viruses, often resistant to the protease inhibitors [11,15].

HIV-1 protease, which is one of the most important targets of the highly topical
research field known as computational virology [16], has been the subject of numerous
molecular dynamics studies [17-25] and analysis of large crystallographic data sets [26-29].
These studies suggest that the most stable form of the enzyme is the semi-closed (or semi-
open) one, followed by a more tightly closed form, whereas the enzyme in the open flap
conformation is difficult to observe.

The aim of this work was to identify new ligands for the HIV-1 protease. We used
a strategy based on a first phase of screening assisted by artificial intelligence (AI). The
approach used in this phase was essentially the one described in [30], in which two neural
networks work in concert. The first is a variational autoencoder (VAE), whose function
is to generate a numerical representation of the molecules which can then be used by the
second neural network. The latter is trained to associate the VAE numerical representation
with a measure of the efficacy of known ligands of our target protein. Once trained, this
system can be used for the rapid screening of large numbers of molecules. Subsequently,
molecules identified as potential ligands were subjected to molecular docking, and the
most interesting ones were validated by molecular dynamics. The advantage of this
approach is that it is possible to eliminate many molecules that most likely have no chance
of being interesting ligands of the target protein before proceeding with the molecular
docking, thus reducing the computational load. Our most promising candidate belongs to
a chemical class which, to the best of our knowledge, has not been considered for HIV-1
protease inhibition.

2. Materials and Methods

Molecules with known activity on the HIV-1 protease were obtained from ChEMBL [31-33]
(query target CHEMBL243). The data set was analyzed with pandas [34,35] for the presence
of duplicates, which were eliminated, and in this case, the one with the best inhibition
value was kept.

The neural network (NN) used in this work consisted of two parts: a VAE and a deep
feed-forward network (DNN), as described in [30]. NNs were implemented in Keras [36]
with TensorFlow [37] as the backend. The VAE consists of two parts, namely the encoder
and the decoder. The first one encodes a particular representation of the molecules (in
our case, the SMILES representation [38]) in a numerical vector; the second one decodes
the same vector in the starting representation. We used VAE because it has the advantage
of minimizing the non-coding areas of the latent space (the latter is jargon to indicate
the space containing vectors encoded by the VAE). Several VAE implementations are
available [39—-43], even already-trained ones, which can be used on SMILES strings; in this
work, training was carried out as suggested in [42]. Vectors obtained by VAE staring from
SMILES representations were used as input for various DNN architectures, which were
trained to calculate the pChEMBL values associated with the corresponding molecules. We
tried different DNNSs, containing from three to nine fully connected layers (dense layers),
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with or without dropout layers (up to six). The Adam algorithm was used for the optimizer,
with mean absolute error as loss function, and the learning rate was controlled with the
Keras ReduceLROnPlateau function by monitoring the loss function. Interested readers
can find in the Supplementary Materials the pseudo-code to reproduce the DNN used to
obtain the results described below. Once trained, the VAE-DNN system was used to predict
the binding value (as pChEMBL score) on a data set containing 250,000 molecules (which
we will refer to as ZINC250K), coded as non-isomeric SMILES, obtained from ZINC20 [44];
see also [43]. Molecules in ZINC250K with the best and worst predicted pChEMBL scores
were selected; each of these two sets initially contained 933 items, and those that generated
valid pdbqt files in Open Babel [45] were then used for further analysis.

Molecular docking was performed by means of AutoDock Vina 1.2.3 [46,47], essentially
as described [48,49]. The PDB [50,51] structure 5IVQ [52] was used as receptor, and its pdbgt
file was obtained by the AutoDockTools suite [53], with which the hydrogen atoms and
Gasteiger-Marsili charges were added [54]. The docking box of dimensions (12.0 A, 16.0 A,
16.0 A) was centered at the coordinates (18.6 A, 18.6 A, 6.6 A).

Molecular dynamics has been performed in NAMD [55] in a water box with 15 A
padding, essentially as described [49,56,57] with few modifications. Briefly,a CHARMMB36m
force field [58] was used, and parameterization of the protein-ligand complex was carried
out by means of CHARMM-GUI using Antechamber for ligand modeling [59-64]. Ionic
strength and electroneutrality were obtained by adding potassium and chloride ions at
a concentration of 150 mM. Periodic boundary conditions and the particle-mesh Ewald
(PME) method have been used; the time step was 2 fs. Systems underwent 10,000 conjugate
gradient minimization steps followed by 125,000 equilibration steps in canonical ensemble
conditions, with the protein-ligand complex fixed, after which 10 ns production runs began
in the NpT ensemble (Langevin dynamics at 303.15 K and Nosé-Hoover Langevin piston at
1.01325 bar). Structural analysis was conducted essentially as described in a VMD (version
1.9.3) environment [65-68].

Numerical calculations were performed using Numpy [69] and Scipy [70] in a Jupyter
environment [71]. Graphs were obtained in Matplotlib [72]. The manipulation of SMILES
strings, such as the conversion between isomeric and the non-isomeric forms, has been
performed using the RDKit software suite [73].

3. Results

The main aim of this work was to try to identify new types of molecules capable
of binding the HIV-1 protease. Virtual screening can be used in the early stages of the
search for new protein ligands to speed up (even enormously) the evaluation of potential
candidates. Currently, in the initial stages of in silico screening, molecular docking [74]
is the first choice. Although docking is much faster than techniques that start from first
principles such as molecular dynamics, being challenged with a large number of ligands
requires extremely powerful computing infrastructures, and docking-dedicated databases
today contain millions or even billions of entries [32,33,44,75-77].

In reality, most of the docking computing time is wasted by the algorithm to evaluate
molecules of little chance to be ligands of the target of interest. Therefore, the computa-
tional strategy used in this work was based on the initial deployment of an NN for the
rapid screening of potentially interesting molecules, consisting of a VAE and a DNN. At
the VAE [30,78], previously trained with a sufficiently large database, molecules were
presented as SMILES strings and then transformed by this into a numerical (i.e., vectorial)
representation. In principle, any kind of molecular representation can be used for the
autoencoder training, but representation as SMILES strings, despite being very simple, can
obtain good results with a modest computational cost [39-43]. SMILES representation of
molecules, whose experimental affinity for the HIV-1 protease is known, were obtained
from ChEMBL. Only ligands with reported binding efficiency index (BEI), surface efficiency
index (SEI), and pChEMBL value [79,80] were considered, and 5863 items in ChEMBL
matched these criteria. After deleting duplicates and entries that cannot be processed
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by the VAE (exclusion criterion was the length of the SMILES string of the ligand or the
impossibility to obtain a latent vector),the final data set was composed of 4299 entries, each
consisting of the VAE-generated vectorial representation of the molecule and the associated
pChEMBL value. This data set was then split into training set and test set in a ratio of
0.8to 0.2.

The first set was then used to train the DNN to transform the vector representation
of molecules into pChEMBL values. Below, we will refer to what was obtained using
an eight-layer DNN (see Section 2). This DNN is able to fit the train set almost perfectly:
a linear relationship was obtained between the experimental and predicted pChEMBL
values (slope 1.0000047, intercept—4.46—>, R-value = 0.99999), which is not surprising,
since the DNNss are capable of approximating any function [81], however complicated it
may be. Obviously, the results on the test set are not so impressive, but a linear relationship
between the experimental values and those estimated by the DNN is clearly visible, as
reported in Figure 1. The linear fitting led to the following results: slope 0.58698, inter-
cept 3.20243, R-value 0.64671, p-value 519, standard error 0.02363, intercept standard
error 0.18865.
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Figure 1. Results of fitting by the DNN described in the text on the ChEMBL test data set. The
figure shows the prediction of the neural network described in the text on the ChEMBL test set (see
also, Supplementay Data). Experimental data are reported on the horizontal axis, whereas the DNN
predicted values are on the vertical one. The best fitting performed in Scipy gives as a result a straight
line (not shown) with parameters: slope 0.58698, intercept 3.20243, R-value 0.64671, p-value 5103

standard error 0.02363, intercept standard error 0.18865.

No tendency to over-fitting (which could lead to a loss of ability to generalize by the
DNN) was observed with any of the architectures used (not shown). The trained DNN
was then used to predict the pChEMBL values of a larger data set. Here, we used the
ZINC250K data set containing 250,000 molecules. The obtained pChEMBL scores range
from a minimum of 3.02 to a maximum of 13.49. Interested readers can find the composition
of this dataset in the Supplementay Data, where SMILES codes used for the calculation of
the vector representation and the corresponding calculated score are reported.
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The good performance of DNN on the test set, as reported above, does not necessarily
imply that it is able to obtain similar results on random sets of molecules, such as the
ZINC250K data set. This is because databases reporting experimental screening results for
a particular target are most likely affected by bias. In general, an excess of particular classes
of molecules, or functional groups, is expected in these data sets: if a class of molecule is
known to be a good ligand for a particular target protein, many other molecules of the
same class, or containing the same functional groups, will have been tested experimentally
in an attempt to find new and better ligands, or in an attempt to find relationships between
ligand structures and their activity (QSAR studies). However, even when there should not
be this kind of bias, the chemical space is so enormous that a data set of a few thousand
molecules is focused on only a small fraction of the possible ones (therefore, the data set is
biased, inevitably; see Section 4).

Keeping what has been reported above in mind, we evaluated the validity our Al
system predictions by considering how the predicted best (and worst) ligands performed
in a completely different computational setup, namely molecular docking. We selected
as best predicted ligands those with calculated pChEMBL values > 10.0, and as worst
predicted ligands, an equal number of molecules with the lowest predicted pChEMBL value
(each of the two data sets containing 933 elements). These molecules were subjected to
molecular docking on an HIV-1 protease template by means of AutoDock Vina, as detailed
in Materials and Methods. The results of this analysis are shown in Figure 2, which reports
the distribution of the calculated binding energies (BEs).
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Figure 2. Molecular docking analysis of the best and worst predicted ligands by the DNN in
the ZINC250K data set. The histogram shows the number of entries in the binned data of the
two data sets, according to the calculated binding energies in the docking experiments. AutoDock
Vina software suite was used for docking, as detailed in the main text. Numerical analysis was
performed in Numpy.

Even if there is a certain overlap, the two distributions are clearly different, both
as average and as extreme values. Molecules predicted as best ligands by the DNN are,
on average, better than those predicted as bad ligands: the average BE of the best lig-
and subset is 7.92 kcal/mol (standard deviation 0.71), whereas for the worst subset, it is
7.33 kcal/mol (standard deviation 0.64). The Kolmogorov-Smirnov test, performed as-
suming as the null hypothesis that the two distributions are identical, returns as distance
0.38645 and p-value 2.15438 2. This may be taken as evidence against the null hypothesis
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and, consequently, that the two distributions are not identical. This suggests that the
DNN we trained can be used effectively to select ligands which are more likely to be good
ligands, avoiding wasting computational time on molecules that probably will not give
any interesting outcome. This result is remarkable considering the diversity of the training
data set obtained from ChEMBL and the ZINC250K data set.

To further validate the results obtained, we analyzed a series of molecules using molec-
ular dynamics. We focused our attention on molecules that were part of the best set based
on what was predicted by the DNN, and with a BE after molecular docking better than that
of the ligand present in the 5IVQ structure. This ligand is a potent inhibitor, and probably
a good candidate for clinical development; its chemical name is methyl N-[(2S)-1-[3-[(2R)-
morpholin-2-ylJpropylamino]-1-oxo0-3,3-diphenylpropan-2-yl]jcarbamate [52]. Molecular
docking of this molecule on its own receptor, carried out using the protocol reported in
Section 2, leads to a calculated BE of 9.149 kcal/mol. Besides the BE value, we also man-
ually evaluated the goodness of the docking obtained; it should be remembered that we
used the procedure in which the receptor is rigid, so we carefully considered the pres-
ence of clashes and how extensively the ligand molecule occupied the region of the active
site. By these criteria, we considered for molecular dynamics the following ZINC250K
molecules: ZINC1040457718 (BE 10.965 kal/mol), ZINC948788229 (BE 10.534 kcal/mol),
ZINC991374169 (BE 10.156 kcal /mol), ZINC987999904 (BE 9.642 kcal/mol). Moreover, we
queried both ZINC20 and PubChem for molecules similar to ZINC1040457718 (the best
ligand after molecular docking) using the built-in Tanimoto similarity search engines. We
obtained 124 molecules which were then subjected to molecular docking on the HIV-1
protease (not shown). Many of these molecules have shown good affinity for the enzyme,
but one showed a very interesting affinity (ZINC31942116, BE 12,231 kcal/mol), so we
also considered this molecule for molecular dynamics. As a control, the dynamics of the
holoenzyme and of the enzyme bound to its crystallographic ligand after docking were
also performed.

After 10 ns of simulation, all the molecules considered were still in the active site of the
enzyme. However, taking these data as significant evidence of the fact that we are dealing
with a good ligand candidate is absolutely not sufficient. In our case, inspection of the
molecular dynamics trajectories suggested a simple criterion to evaluate the effectiveness
of the protein-ligand interaction: all the protein-ligand complexes considered, except one,
showed a higher root mean squared deviation (RMSD) of the protein atoms than that
obtained with the crystallographic ligand. Indeed, whereas in the case of the protease
bound to its crystallographic ligand, an RMSD equal to 1.24 + 0.46 A was observed (the
holoenzyme showed a similar RMSD to that of the crystallographic ligand, 1.23 4 0.47 A),
in the case of the ligands listed above, the value was higher (for example, 1.40 + 0.55 A for
ZINC987999904, 1.58 + 0.69 A for ZINC31942116), except for ZINC991374169, for which
an RMSD of 1.28 + 0.48 A was obtained. However, even more interesting was the aspect
of the protease, which remained in the closed conformation of the active site in the case
of the crystallographic ligand and of ZINC991374169 (see Figure 3), whilst it assumed
a swollen, semi-open conformation with all the other ligands (not shown), thus justifying
the slightly higher value of the RMSD without a loss of overall stability of the protein.
Furthermore, whereas the crystallographic ligand and ZINC991374169 after 10 ns were
very close to the starting position (obtained by docking), as reported in Figure 3, in the case
of the other molecules, the final position was very different, with a considerable mobility
of these molecules into the semi-open active site during the simulation (not shown). All
this suggests that only ZINC991374169 could be considered a plausible candidate for
experimental validation. The structures of ZINC991374169 and of the crystallographic
ligand are shown in Figure 3.
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Figure 3. Structures of the protease-ligand complexes. The starting simulation structures of the
protease-ligand complexes are reported in cyan, whereas those after 10 ns simulation are reported
in tangerine. Starting simulation structures were obtained by minimization of the protease-ligand
complex after molecular docking, as described in Section 2. The D25 residue of the HIV-1 protease
is highlighted as licorice in all structures. Left structures refer to the HIV-1 protease bound to the
crystallographic ligand reported in 5IVQ (see text); right structures refer to the HIV-1 protease bound
to ZINC991374169.

The results of the first phase of screening were validated by means of classical tech-
niques of computational biochemistry, i.e., docking and molecular dynamics (Figure 4).

Figure 4. Structural formulas of molecules with best result after molecular dynamics. The structure
of the crystallographic ligand present in the PDB entry 5IVQ is shown on the right; this molecule is
reported in ZINC20 as ZINC584904731. On the left, the structure of the ligand identified in this work
as best candidate, ZINC991374169.

4. Discussion

The search for new molecules capable of blocking the replication of pathogens, includ-
ing viruses, has become a pressing clinical concern [8,9], and future projections indicate that
if the current trend is not reversed, infectious diseases will once again be one of the main, if
not the main, causes of death. Our interest has turned to one of the main drug targets for
AIDS therapy, namely the HIV-1 protease. Several drugs are used today in clinical practice
whose mechanism of action is based on the inhibition of this enzyme [11,13]. However, after
years of use, even these molecules are beginning to be interested by resistance phenomena,
with the serious possibility of a dramatic throwback to the early years of the AIDS pan-
demic. Very often, the search for new molecules capable of binding specific target proteins
starts with computational methods that allow for the rapid screening of a large number
of potential candidates. The vastness of the chemical space, or rather, the more than astro-
nomical number of possible molecules, make the research always and only partial [82-84],
hence the need for techniques capable of analyzing a large number of molecules quickly
and with the least possible computing power. The new Al techniques that are increasingly
gaining ground have the potential to greatly accelerate virtual screening processes [78].

We used a simple Al system for the initial screening of a data set containing a number
of candidate molecules. Using this system, it has been possible to identify, in a short time,
a new molecule with remarkable affinity in silico for the active site of the HIV-1 protease.
As expected, this Al system can be used only for a first screening, but it should be noted,
however, that this is a general problem: if we were really able to predict with absolute
certainty whether a molecule is an effective drug, most of the problems of medicine would
already be solved. However, it should be noted that computational analysis of protein-
ligand interactions is an old and still not completely solved problem [85], as well as the
evaluation of binding affinities and the effects on protein dynamics and functions. Bearing
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in mind the above limitations, the results we obtained for ZINC991374169 are interesting,
particularly when compared with that of the inhibitor bound to the HIV-1 protease used
as a template for molecular docking (the PDB entry 5IVQ). Our results suggest that this
molecule could be an interesting scaffold, which deserves to be explored.

Besides the particular molecule identified here, whose real efficacy as inhibitor of the
HIV-1 protease will be established only experimentally, this work shows how it is possible to
use Al-based computational techniques on protein targets to significantly reduce the search
space in virtual screening. It is also interesting to underline the criterion (self-contained
in a computational context) for the final acceptance of a good candidate ligand, i.e., the
evaluation of the RMSD of the protein target compared to an adequate control. We wish to
underline once again how this evaluation/validation criterion of potential ligands can be
used when the structural (mainly crystallographic) data of control ligands whose activity
is known are available. The availability of numerous viral protein structures, combined
with the large number of experimental inhibition data, make the search for new antivirals
an extremely interesting field of application for these computational techniques.
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