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Abstract: In humans, the cytosolic glutathione S-transferase (GST) family of proteins is encoded by
16 genes presented in seven different classes. GSTs exhibit remarkable structural similarity with
some overlapping functionalities. As a primary function, GSTs play a putative role in Phase II
metabolism by protecting living cells against a wide variety of toxic molecules by conjugating them
with the tripeptide glutathione. This conjugation reaction is extended to forming redox sensitive
post-translational modifications on proteins: S-glutathionylation. Apart from these catalytic functions,
specific GSTs are involved in the regulation of stress-induced signaling pathways that govern cell
proliferation and apoptosis. Recently, studies on the effects of GST genetic polymorphisms on
COVID-19 disease development revealed that the individuals with higher numbers of risk-associated
genotypes showed higher risk of COVID-19 prevalence and severity. Furthermore, overexpression of
GSTs in many tumors is frequently associated with drug resistance phenotypes. These functional
properties make these proteins promising targets for therapeutics, and a number of GST inhibitors
have progressed in clinical trials for the treatment of cancer and other diseases.
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1. Introduction

Glutathione transferases (GSTs), also referred to as glutathione S-transferases, belong
to the supergene family of phase II detoxification enzymes that are ubiquitously present
in almost all cellular life forms. On the basis of their sub-cellular distribution, GSTs are
classified into three major protein families as either Cytosolic, Mitochondrial or Kappa and
Microsomal (also known as Membrane-Associated Proteins in Eicosanoid and Glutathione
(MAPEG)) [1]. The cytosolic GSTs constitute the largest family and are sub-divided into
seven distinct classes based on their amino acid sequence and other structural similarities,
represented by Greek letter names with alphanumeric letter designations, namely alpha
(A), mu (M), omega (O), pi (P), sigma (S), theta (T), and zeta (Z) [2–4]. Cytosolic GSTs
are structurally distinct from mitochondrial and microsomal classes of enzymes and are
composed of two subunits (~25 kDa each), either homodimers of a single gene product or
heterodimers encoded by a different gene. Each subunit of the dimeric isozyme consists of
two functional domains, the more conserved N-terminal domain containing catalytically
active cysteine, serine, or tyrosine residues, and the C-terminal domain. There are two
substrate binding sites in each subunit: the GSH binding site or G-site and an adjacent
H-site for binding structurally diverse hydrophobic xenobiotics or the products of oxidative
stress [1,5]. As principal phase II detoxification enzymes, GSTs protect living cells by
catalyzing the conjugation of glutathione (GSH) to a wide variety of electrophilic molecules
of both endogenous and exogenous origin. GSH is a tripeptide (γ-l-glutamyl-l-cysteinyl
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glycine) synthesized in the cytoplasm of every cell in a two-step ATP-requiring enzymatic
process catalyzed by glutamate-cysteine ligase and glutathione synthetase enzymes. GST
tissue distribution and expression levels vary according to the class. A recent review
summarizes the tissue distribution of soluble GSTs [6]. The variations in GST tissue
distribution suggest possible differences in the ways by which individual human tissues
can detoxify or otherwise handle xenobiotics and or drugs. Furthermore, certain chemicals,
including those occurring naturally in fruits and cruciferous vegetables can act as inducers
of GST genes through a range of responsive elements and such inductions are part of GSTs
adaptive response mechanisms to chemical insult caused by electrophiles [7].

Apart from their essential role as detoxification enzymes, GSTs are involved in several
other important functions such as cell signaling, post-translational modifications, and
chemotherapeutic drug resistance [8]. For example, the pi and mu classes of GSTs modulate
the mitogen-activated protein kinase (MAPK) signaling pathway responsible for stress
response, cell proliferation, and apoptosis via direct interactions with c-Jun N-terminal
kinase 1 (JNK1) and apoptosis signal-regulating kinase (ASK1) [8,9]. Furthermore, GSTs
are known to facilitate protein S-glutathionylation reactions, and a number of proteins
have been shown to be common substrates for GST-mediated protein S-glutathionylation
including protein disulfide isomerase (PDI), p53, and peroxiredoxin-VI (Prdx-VI) [10].
Overexpression of GSTs, particularly GSTP1-1 is often considered as a possible mechanism
of tumor cell drug resistance [11–13]. Hence, GSTs remain a viable therapeutic target, and
inhibitors of GST catalytic activity have emerged as potential therapeutic tools in cancer
cell drug resistance [14,15]. This review focuses on the diverse role these versatile enzymes
play in human health and disease.

2. Role in Detoxification

GSTs function in cellular protection by catalyzing the conjugation of GSH with numer-
ous hydrophobic and electrophilic intermediates, including many carcinogens, therapeutic
agents, and products of oxidative stress, rendering them less toxic and facilitating their
export from the cell. An overview of xenobiotic detoxification is shown below in (Figure 1).
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Figure 1. Overview of xenobiotic biotransformation pathway. Once inside the cell, the toxic molecules
are targeted by different enzymes of detoxification system. Lipophilic molecules are metabolized
by Phase I enzymes, i.e., Cytochrome P450s. The activated xenobiotics are subsequently conju-
gated with GSH by phase II detoxification enzyme GSTs and are finally exported out of the cell in
phase III by trans-membrane multidrug resistance-associated proteins (MRPs) from the C family
of ABC transporters [1]. Some compounds (polar or hydrophilic in nature) may enter in Phase II
metabolism directly.
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The human genome encodes 16 cytosolic GST enzymes with overlapping, but non-
identical, substrate specificities, and there is no clear reason for such diversity. A possible
explanation could be based on the physiological role of these isoenzymes. Functionally,
they comprise a “chemical immune system” that must be capable of dealing with a broad
spectrum of substrates, including those it has not previously encountered, and without
interfering with non-toxic endogenous metabolites. A single, multifaceted enzyme would
be incapable of the latter, whereas too many specific enzymes could be too costly to
maintain from an energy efficiency standpoint. Perhaps the evolved optimal number of
GST isoenzymes in each class is co-determined by the occurrence of xenobiotics in the
distinctive environment of each species [16]. Early in mammalian development, rapid
gene duplication and subsequent adoptive evolution of the replicated genes is essentially
a divergent process, but may eventually have resulted in multiple isoenzymes acquiring
specificities for a given substrate by convergent evolution rather than by a common ancestry.

Traditionally, the catalytic activities of GSTs are measured with 1-chloro-2, 4-dinitrobenzene
(CDNB) and cumene hydroperoxide (CuOOH) as substrates. Because they also possess
selenium-independent GPx activity, GSTs are able to reduce hydroperoxides of phospho-
lipids and free fatty acids as well as cholesterol hydroperoxides [17–19]. In this regard,
GST’s can impact the regulation of certain electrophilic intermediates indirectly control-
ling critical regulatory pathways. For example, 4-hydroxy-2-trans-nonenal (4-HNE), is a
potentially toxic stable end product of lipid peroxidation, a common denominator in stress-
mediated signaling and a pro-apoptotic second messenger that alters cell cycle signaling
pathways in a concentration-dependent manner [20,21]. Steady-state intracellular levels of
4-HNE are maintained by the balance between its production, due to lipid peroxidation,
and its removal via different pathways. GSTs are a major determinant of the intracellular
concentration of 4-HNE as they catalyze the conjugation of GSH with 4-HNE [22]. In partic-
ular, the GSTA4-4 isoform possesses a higher affinity for 4-HNE [23] than other xenobiotics,
implying a critical role in regulating 4-HNE homeostasis. The GS-HNE adduct formed is
then transported out of the cell in an ATP-dependent manner, similar to the system that
exports other GSH conjugates [24,25] (Figure 1).

It is generally accepted that the conjugation of GSH with xenobiotics almost always re-
sults in the formation of less reactive metabolites that are more readily excreted. However, in
some cases, GSH conjugates can be more reactive than their parental compounds. Examples
include short-chain alkyl halides bearing two functional groups. The conjugation of GSH
with dichloromethane results in the formation of highly unstable s-chloromethylglutathione
adducts, containing an electrophilic center capable of modifying DNA [26,27], with sub-
sequent toxic effects. Cisplatin, a commonly used anticancer agent, leads to nephrotoxic-
ity [28]. This occurs when GSH conjugates of platinum are metabolized in the proximal
tubule cells of kidneys [29,30]. It was subsequently shown that this occurs in a GSTpi-
dependent manner using both genetic and pharmacological inhibition in vivo [31,32].
Cisplatin-induced nephrotoxicity could be diminished using GSH mimetics [33] (Figure 2).

The capacity of cells to maintain cellular redox homeostasis during oxidative stress
resides in their ability to induce a battery of protective enzymes critical to mounting a
cellular defense against ROS/RNS or toxic electrophiles. In this context, the Nrf2/Keap1
transcription complex in animals is the primary finely tuned system that regulates the
expression of many oxidative stress-related genes, including antioxidant and phase II detox-
ification enzymes. This is achieved via interactions with antioxidant response elements
(ARE) in their promoter regions [34,35]. Under unstressed conditions, Nrf2 binds to Keap1
in the cytosol where it is instantly ubiquitinated and destined for proteasomal degradation.
However, under conditions of elevated oxidative stress, Keap1 becomes oxidized, and this
inhibits its binding to Nrf2. The activation and translocation of Nrf2 into the nucleus is
facilitated by various cellular protein kinases [36,37]. Once inside the nucleus, Nrf2, along
with other small Maf proteins, binds to the ARE of target genes and induces their expression.
In this way, the induction of antioxidant and phase II detoxification enzymes contributes to
cytoprotection against chemical insults that cause direct or indirect oxidative stress.
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with GSH by GST. The Cisplatin–GSH conjugate then passes through to the tubule lumen by MRP2
effluxes, where it is cleaved to a cysteinyl–glycine conjugate by g-glutamyl transpeptidase (GGT)
followed by further cleavage to Cisplatin–Cysteine by aminopeptidase (APN). The Cisplatin–Cys
conjugate is then re absorbed by the proximal tubule, where Cisplatin–CYS is further metabolized
by a pyridoxal 5′-phosphate-dependent enzyme, cysteine S-conjugate beta-lyase (CCBL) to form a
reactive thiol that can bind proteins and contribute to toxicity.

3. Role in Protein S-Glutathionylation

Protein post-translational modifications (PTMs) complement functional proteomics
by regulating enzymatic activities, stability, localization, and their interactions with other
cellular proteins [38]. Because of the valence flexibility of sulfur, the redox reactions of
cysteine thiols can be exceptionally dynamic. Oxidative stress can preferentially react and
oxidize protein thiolates (RS−). Protein S-glutathionylation is a redox-sensitive, reversible
PTM that adds GSH to a cysteine residue in a acceptor protein [39,40]. Cysteines on
the surfaces of globular proteins are generally readily accessible to GSH and GSSG and
can undergo spontaneous S-glutathionylation [41], which can be altered by antioxidant
enzyme systems such as thioredoxin (Trx) [42], glutaredoxin (Grx) [43], or sulfiredoxin
(Srx) [44]. Grx isoenzymes have been shown to metabolize both glutathionylation and
deglutathionylation reactions and are controlled by the overall redox state of the GSH pool,
where a more oxidized (GSSG) environment favors glutathionylation while restoration of
reduced (GSH) levels steers deglutathionylation [45].

Of relevance, a prerequisite for a cysteine residue modification is its accessibility by
the solvent and reactivity influenced by adjacent amino acids. The estimated pKa of the
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cysteine thiol under physiological pH ranges from 8.0 to 8.7, contributing to low reactive
potential. GSTs can effectively lower this pKa of the cysteine thiol, creating a more reactive
nucleophilic thiolate anion [46]. Several GST isoenzymes have been reported to facilitate
S-glutathionylation reactions. In particular, GSTP1-1 has been shown to catalyze glu-
tathionylation of numerous cellular proteins, particularly under oxidative stress conditions
both in vitro [9,47,48] and in vivo [10,49].

Peroxiredoxins (Prdxs) are important thiol-dependent peroxidase enzymes that are ubiq-
uitously expressed and are known targets for GSTP1-1 mediated reversible S-glutathionylation.
They perform their antioxidant functions by using intracellular thiols to catalyze the re-
duction of H2O2, and other alkyl hydroperoxides. There are two major sub-classes of
peroxiredoxins, 1-cys Prdx (commonly known as Prdx VI) and 2-cys Prdx. It has been
shown that the catalytically active cysteine residue of Prdx VI undergoes oxidation and
results in the loss of peroxidase activity. The heterodimerization of Prdx VI with GSTP1-1
facilitates the S-glutathionylation of the previously oxidized catalytic cysteine residue and
restores the enzyme’s peroxidase activity [50]. Interestingly, studies suggest that poly-
morphic variants of GSTP1-1 may differentially mediate the activation of Prdx VI and
hence influence an individual’s response to oxidant stress. For example, GSTP1-1A, is the
most abundant variant of GSTP1-1 and shows a higher affinity for Prdx VI than those of
GSTP1-1B or 1D variants. Furthermore, the transient transfection of GSTP1-1A in MCF-7
breast cancer cells exhibited higher peroxidase activity than that of the GSTP1-1B variant.
The variations in catalytic activity between different polymorphic isoforms could be at-
tributed to the relative distance between oxidized cysteine of Prdx VI and the activated GSH
bound to the GSTP1-1 molecule [51]. Such information might imply that polymorphisms
in the human population can regulate response to oxidative stress and influence factors in
responding to such stress.

S-glutathionylation reactions have also been shown to influence the functions of many
endoplasmic reticulum (ER) resident proteins involved in regulating the unfolded protein
response (UPR). Protein disulfide isomerase (PDI) is a multifaceted ER resident protein
that plays a pivotal role in cellular protein folding through its chaperone and isomerase
activities. GSTP1-1 has been shown to S-glutathionylate PDI in cells exposed to oxidative or
nitrosative stress, including cigarette smoke [52,53]. GSTP1-1-mediated S-glutathionylation
of PDI results in impaired isomerase activity and is potentially an upstream signaling
event in UPR that could influence the functionality of other client proteins with enormous
impact on cellular proteostasis [52]. Although, GSTP1-1 is primarily considered a cytosolic
protein, its sub-cellular distribution in the nucleus [54], mitochondria [55], and ER [49] has
been reported.

Non-enzymatic S-glutathionylation reactions depend upon the GSH/GSSG ratio
within the cell and occur through thiol-disulfide exchange reactions between GSSG and the
protein cysteinyl residues, or by the reaction of GSH with an oxidized thiol derivative such
as S-nitrosyl (-SNO), thiyl radical (-S•), or sulfenic acid (-SOH) (Figure 3) [56].

The importance of S-glutathionylation as a post-translational modification in modu-
lating cellular processes is underscored by the ubiquity of these reactions in mammalian
cells. Indeed, reversible S-glutathionylation reactions have been shown to control an array
of cellular processes that include calcium homeostasis, cell signaling, chemotaxis, immune
cell function, energy metabolism, and glycolysis [57]. Moreover, deregulated glutathionyla-
tion reactions have been shown to be involved in pathogenesis of many human diseases,
including cardiovascular, neurological, and metabolic disorders, cataracts, and impaired
embryonic development [50]. Collectively, these reactions are critical to the oversight of
cellular protection against environmental insults of many different types.
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4. Role in Signaling

Cells are constantly exposed to internal or external stressors that trigger signaling
cascades and result in the activation of numerous biological processes such as cell stress
response, differentiation, proliferation, and apoptosis. Control of these pathways is complex
and is regulated by upstream activation of members of the mitogen-activated protein kinase
(MAPK) family. Jun-terminal kinases (JNKs) are a sub-class of MAPK kinases, initially
identified as stress-activated protein kinases in mouse liver treated with cycloheximide
to induce inflammation and apoptosis [58]. JNKs are transiently activated by several
stress stimuli including ROS/RNS, UV irradiation, heat or osmotic shock, or inflammatory
cytokines [59]. JNK activation can result in subsequent phosphorylation of multiple nuclear
substrates that can include transcription factor c-Jun, activating transcription factor 2
(ATF2), p53, and others, and further stimulate downstream targets and contribute to stress
response through alterations in the cell cycle, DNA damage repair, and/or programmed
cell death [59].

GSTs exhibit significant ligand-binding properties, and several GST isoenzymes have
been shown to interact with stress kinases during regulation of cell signaling pathways
responsible for stress response, cell proliferation, and apoptosis. Acting in a non-enzymatic
chaperone role, GSTP1-1 negatively regulates signaling by sequestering the JNK kinase in a
complex, preventing its capacity to act upon its downstream effectors. In unstressed cells,
the basal activity of JNK is necessarily maintained at low levels by sequestration within
the protein complex that includes at least GSTP1-1 and JNK [9]. However, under oxidative
or chemical stress conditions, GSTP1-1 dissociates from the complex and accumulates
in oligomeric structures, resulting in the release and activation of JNK for subsequent
phosphorylation of downstream targets regulating cell proliferation and apoptosis [60].
Furthermore, GSTP1-1 has been documented to interact with, and inhibit, tumor necrosis
factor (TNF) receptor-associated factor 2 (TRAF2), an upstream regulator of JNK, hence
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modulating the MAPK signaling cascade at multiple levels. The inhibitory effects of GSTP1-
1 on TRAF2 were shown in human cervical cancer cells, where overexpression of GSTP1-1
suppressed TRAF2-induced activation of both JNK and p38. Additionally, GSTP1-1 has
been shown to weaken the effects of TRAF2 on apoptosis signal-regulating kinase-1 (ASK1)
and inhibit TRAF2-ASK1-induced apoptosis by suppressing the interaction between these
two proteins. In comparison, reducing GSTP1-1 levels triggers TRAF2-ASK1 association
and results in the activation of both ASK1 and JNK [61]. Biochemical analysis of the
complex revealed that GSTP1-1 interacts with TRAF2 through both G and H sites. Even
though the engagement of GSTP1-1 with TRAF2 is dimeric in form, only one monomer
is involved in binding with TRAF2 and therefore the other monomer may still perform
catalytic functions [62].

Furthermore, GSTP1-1 has been implicated in modulating the transcription factor
nuclear factor kappa B (NF-κB) [63], which promotes the activation of pro-inflammatory
signaling cascades [64,65]. An in vitro study using unstimulated mouse lung alveolar ep-
ithelial cells showed a constitutive association between GSTP1-1 and IκBα, and resulted in
the inhibition of NF-κB, potentially by preventing the phosphorylation and ubiquitination
of IκBα. However, LPS stimulation led to a rapid decrease in GSTP1-1/IκBα association
and increased interaction between GSTP1-1 and IKKβ, along with increased IKKβ-SSG
levels. These results were supported by decreased S-glutathionylation of IKKβ after siRNA-
mediated knockdown of GSTP1-1 in LPS exposed cells. GSTP1-1 ablation also promoted
NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine pro-
duction, suggesting a potential inhibitory activity of GSTP1-1 on IKKβ [63]. Similar results
to that of GSTP1-1 knockdown were observed by using isotype-selective GSTP1-1 inhibitor
TLK 117, which also enhanced NF-κB transcriptional activity and pro-inflammatory cy-
tokine production in LPS-treated cells, indicating that GSTP1-1 catalytic activity is essential
in repressing NF-κB activation. Such results suggest that S-glutathionylation of IKK pro-
teins may represent a model through which GSTP1-1 can attenuate NF-κB [63]. The possible
mechanistic model anticipates that, in the absence of a stimulus, GSTP1-1 averts IκBα degra-
dation and GSTP1-1-mediated S-glutathionylation shuts down IKK activity, providing a
versatile mechanism by which GSTP1-1 represses NF-κB activation.

Notably, the direct interaction of GSTs with MAP Kinases is not limited to GSTP1-1.
Other GST isoenzymes have also been shown to be involved in regulating MAPK signaling
pathways. For example, GSTM1-1 can bind to, and inhibit, the activity of ASK1. Under
stress conditions, the GSTM1-1–ASK1 complex dissociates, causing the oligomerization of
GSTM1-1 and the activation of ASK1, which subsequently activates JNK and P38 pathways,
leading to apoptosis [66]. Elevated expression of GSTM1-1 has been associated with an
impaired clinical response to therapies in a number of different types of cancers.

GSTA1-1 can also bind to and suppress activation of JNK signaling by pro-inflammatory
cytokines or oxidative stress, implying a protective role in JNK-mediated apoptosis [67].
More recently, it has been documented that GSTA1-1 negatively regulates the mTOR sig-
naling pathway and the over-expression of the isoenzyme in hepatocellular carcinoma
cells showed enhanced AMPK activity and subsequent inhibition of the mTOR pathway.
Moreover, cancer patients with high expression of GSTA1-1 in their tumors had better
prognoses, and the isoenzyme may serve a protective role against hepatocellular carcinoma
by suppressing the AMPK/mTOR-signaling pathway [68]. Additionally, GSTO1-1 has been
shown to modulate Akt and MEK1/2 kinase pathways in human neuroblastoma SH-SY5Y
cells, where the catalytic activities of the isoenzyme was shown to suppress the activation
of these two kinases (either directly or in a complex) to maintain basal levels [69].

5. GST Polymorphism and SARS-CoV-2 (COVID-19) Disease Susceptibility

COVID-19 is a highly infectious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The disease emerged in late 2019 and was declared a global
pandemic in March 2020 by World Health Organization. Severe illness and death rates
were more prevalent in elderly people and in those having underlying health conditions.
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However, the majority of the individuals infected with COVID-19 showed mild symp-
toms and did not require hospitalization. The severity of the infection was driven by
the host’s response to the disease, triggering a cascade of inflammatory responses and
respiratory dysfunction [70]. Individuals with COVID-19 infections have been reported to
have markedly higher levels of inflammatory cytokines that trigger a pro-inflammatory
response and cause tissue damage, thus contributing to the severity of the disease [71,72].
There is mounting evidence to support the concept that inflammatory disease progression
is associated with increased ROS production and resultant oxidative stress. Imbalanced
redox homeostasis linked to COVID-19 [73] may contribute to inter-individual differences
in patient clinical manifestations, influenced by genetic variation in antioxidant enzyme sys-
tems. GST polymorphisms are common in humans and range from frequencies as high as
20% to 60 % in some populations, including the null genotypes of GST Mu and Theta class
(GSTM1−/− and GSTT1−/−, respectively), whereby individuals lack a catalytically active
enzyme [74]. In a study comprising 269 RT-PCR-confirmed COVID-19 patients (with both
mild and severe conditions), Abbas et al. [75] reported the relationship between GSTM1
and/or GSTT1 genotypes with COVID-19 vulnerability and its outcome in Northern In-
dian populations. The results indicated that the frequencies of GSTM1−/−, GSTT1−/−

and GSTM1−/−/GSTT1−/− were more pronounced in patients with severe COVID-19
symptoms than those with mild. Overall, patients with GSTT1−/− genotypes had higher
mortality rates than those with GSTT1+/+. In another study, Saadat [76] suggested that
individuals with the GSTT1−/− genotype showed a positive association with COVID-19
mortality, but no correlation with COVID-19 prevalence. However, individuals with a low
frequency of the GSTT1-null genotype exhibited higher numbers of COVID-19 deaths in
East Asian countries.

Tatjana et al. [77] recently reported in Serbian populations that individuals carrying
GSTO1*AA and GSTO2*GG polymorphic variants had a significantly increased risk of
COVID-19 development as compared to the wild-type genotype. Vesna et al. [78] studied
the distribution of GST genotypes among COVID-19 patients of both genders with com-
mon COVID-19 co-morbidities such as hypertension, diabetes, and obesity. The results
indicated a significant association between GSTP1 and GSTM3 polymorphisms and COVID-
19 susceptibility and clinical manifestation. Individuals carrying the GSTP1* (Ile105Val
rs1695) or GSTP1* (Ala114Val rs1138272) variants were less prone to develop COVID-19
as compared to the GSTP1 wild type genotypes. Similarly, individuals with GSTM3*AC
(rs1332018) variants showed lower odds of developing COVID-19 compared to the wild
type GSTM3. The combined GSTP1* and GSTM3* polymorphisms showed a cumulative
risk regarding COVID-19 prevalence and severity. These results have shed some light on
the involvement of genetic susceptibility in COVID-19 development and further pointed
out the multifaceted role of GSTP1-1 as being the dominant GST class in lungs.

Extensive research efforts have documented the relevance of GST polymorphisms
in governing cancer susceptibility [65,79,80], and with disease progression or response
in various communicable or non-communicable lung diseases [65,81]. In particular, the
homozygous GSTP1* Val allele was found to be associated with a reduced risk of asthma
and improved lung function [82]. Ding et al. [83] reported the association of GSTT1 and/or
GSTM1-null genotypes with an increased risk of developing pulmonary fibrosis in patients
with chronic obstructive pulmonary disease (COPD), one of the more important COVID-19
complications characterizing long-term respiratory problems.

Taken together, the polymorphic studies reviewed in the current article revealed
that GSTT1 and GSTM1-null genotypes show differential behavior against COVID-19
mortality. Individuals with a lower frequency of GSTT1-null genotype showed higher
COVID-19 mortality rates, while GSTM1-null genotype increased the odds of severe disease
outcome. The carriers of GSTM3* (rs1332018) and GSTP1* (rs1695) heterozygotes and
GSTP1* (rs1138272) Val allele showed a reduced risk of developing COVID-19 as compared
to the wild-type carriers. The cumulative effect of GST gene polymorphisms on COVID-19
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disease development shows that the individuals with a higher number of risk-associated
genotypes had a higher risk of developing COVID-19.

6. GST Inhibitors and Their Therapeutic Importance

GSTs emerged as viable therapeutic targets because specific GST isoenzymes have
been shown to be over-expressed in numerous tumors. Involvement in the pathogenesis
of other diseases including allergic asthma, multiple sclerosis, and neurodegenerative
diseases has also been considered [84–87]. Over the years, attempts have been made to
develop specific and potent inhibitors of GSTs with the goal of diminishing tumor growth
and enhancement of the cytotoxic effects of existing chemotherapeutic agents [88–91]. The
first clinical study was carried out on ethacrynic acid, an approved diuretic drug that
nonspecifically inhibits GSTα, GSTµ, and GSTπ isoforms [92]. Although ethacrynic acid
showed encouraging inhibitory properties in several cancers, its strong diuretic properties
and lack of isozyme specificity made it less favorable for its clinical use as a modulator of
anticancer drugs. A further disadvantage was its propensity for enzymatic cleavage as the
γ-glu-cys peptide bond in the GSH conjugates is sensitive to γ-glutamyl transpeptidase
enzymes. Thus, attempts have been made to develop GSH analogues/prodrugs with
improved stability and clinical properties. Newer ethacrynic acid derivatives have been
developed and tested for their antiproliferative properties in vitro [93]. Ethacraplatin is a
platinum (IV)-based prodrug designed to overcome GST mediated cisplatin resistance. The
cisplatin molecule is incorporated between two ethacrynate ligand moieties that inhibit
the enzymatic activity of GSTP1-1 and liberates the cisplatin molecule as a consequence of
binding, which in turn results in the increased localized diffusion of Pt ions and reversion
of platinum drug resistance [94].

NBDHEX (6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol) is another inhibitor of
GSTP1-1 and other GSTs that has shown anti-proliferative activities in various cancer
cells [95,96]. NBDHEX acts as a mechanism-based inhibitor of GSTP1-1, where it is first rec-
ognized as a substrate and makes a spontaneous intermediate σ- complex with GSH, which
binds very tightly to the enzyme and results in the loss of both the GSH-conjugating activity
as well as the ability to form complexes with partner proteins JNK1 and TRAF2 [62,95,97].
NBDHEX was tested on several human osteosarcoma cell lines resistant to cisplatin, dox-
orubicin or methotrexate and proved to be active against the majority of drug-resistant cell
lines [98].

GSH is the most abundant low molecular weight thiol in the cell and a number of
GST inhibitors have been designed on the structural basis of the GSH moiety. Ezatio-
stat hydrochloride (Telintra, TLK199) is a peptidomimetic analogue of GSH and a well
characterized inhibitor of GSTP1-1 [15]. Studies conducted on mouse fibroblasts, showed
that after intracellular de-esterification to TLK117, it binds to and inhibits GSTP1-1 and
can disrupt the binding of GSTP1-1 to JNK. This results in the activation and restoration
of JNK and MAPK pathways, which subsequently promotes MAPK-mediated cellular
proliferation and differentiation pathways [99]. In addition to GSTP1-1 inhibition, TLK199
has been shown to effectively inhibit multidrug resistance-associated protein 1 MRP1 (en-
coded by ABCC1 gene), which plays an essential role in multidrug resistance by its ability
to effectively export an array of chemotherapeutic and other drugs out of the cell [100].
Studies conducted on MRP1-transfected NIH3T3 mouse fibroblasts with minute GSTP1-1
levels, TLK199 showed significant inhibition of ATP-dependent efflux and resulted in the
enhanced retention and subsequent reversal of numerous resistant phenotypes including
doxorubicin, daunorubicin, etoposide, mitoxantrone and vincristine [101]. Additionally, in
phase I/II clinical studies, TLK199 was tested in patients with myelodysplastic syndrome
(MDS), a diverse group of bone marrow stem cell disorders largely affecting individuals
with median ages of 65–70 years at diagnosis. The results of ezatiostat treatment in patients
with lower to mild risk MDS were encouraging in patients with trilineage cytopenias.
Hematologic Improvement-Erythroid (HI-E) was observed in 11 out of 38 patients (29%
cases), HI-Neutrophil (HI-N) was reported in 11 out of 26 patients (42% cases), while
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HI-Platelet (HI-P) was observed in 12 out of 24 patients (50% cases). HI-E was also reported
in a few patients with red blood cells (RBC) transfusion dependency with no prior record of
receiving any therapy with hypomethylating agents [15,102]. Overall, the available clinical
data showed encouraging results for ezatiostat in MDS patients with favorable tolerability
and hematopoietic-promoting activities, indicating the worthiness of the drug for further
evaluation in randomized phase II/III clinical trials.

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung fibrotic disease
that results in the thickening of alveolar walls and diminished lung function [103]. The
pathogenic mechanism of the disease is not yet completely understood. Hence, therapies
of IPF still remain a clinical challenge. Changes in the expression levels of GSTs have been
reported in pulmonary fibrosis cells, murine models, and in IPF patients [15,81,104]. This
suggests an important role for GSTs in pulmonary fibrosis. Oropharyngeal administration
of TLK117 has been shown to reduce the severity of pulmonary fibrosis. Furthermore,
the synergetic effects of TLK117 with pirfenidone showed better therapeutic outcomes in
pulmonary fibrosis mice models than by using pirfenidone alone [104].

To date, clinical experiences with GST inhibitors have been limited. Ethacrynic acid
in both animals and humans caused the expected diuretic effects and the Phase II clinical
trial was stopped because of severe fluid and electrolyte imbalance [105]. This had less
to do with the GST-inhibitory effect but was more related to the thiol-mediated diuresis’
impact on the kidney [106,107]. In Phase I/II clinical trials, Telintra was dose-limited by
the unusual toxicity of patients displaying unpleasant sulfurous odors, primarily because
of metabolism of the peptidomimetic [15]. While there are now reports of the involvement
of GST isozymes in myeloproliferation, none of the GST inhibitors so far developed appear
to be restricted in their pharmacological effects by myelotoxicities. In summary, the rodent
model and early clinical experiences with direct GST-inhibitory drugs would suggest that
neither acute nor chronic treatments are accompanied by serious dose-limiting toxicities.

Canfosfamide (TLK 286, TELCYTA) is a glutathione analogue prodrug that is pref-
erentially activated by GSTP1-1 into a vinyl sulfone derivative of the GSH backbone and
an alkylating metabolite phosphorodiamidate that spontaneously forms aziridinium ring
structures [108–110]. The rationale behind designing this prodrug was to address the
issue of anticancer drug resistance due to overexpression of GSTP1-1 in many tumors and
to limit the off-target adverse effects. In vitro studies showed that TLK286 had higher
antiproliferative activity in cells overexpressing GSTP1-1. In vivo studies using xenograft
models in nude mice showed that tumor growth inhibition or regression was positively
corelated with GSTP1-1 expression levels in response to TLK286 treatment, and a mild bone
marrow toxicity was observed as a side effect [111]. These promising results led to several
clinical studies where the prodrug was demonstrated to be active and safe, as a single
agent or in combination regimens with other established drugs, including anthracyclines,
platinums, and taxanes. The clinical efficacy of the prodrug in phase II and III clinical trials
was observed in both relapsed patients with ovarian and non-small cell lung cancers, and
in the first-line treatment setting in non-small cell lung cancer patients [112,113].

Advances in structural studies have been instrumental in designing isotype-specific
inhibitors since different GST isoforms have unique glutathione binding sites [114]. The
efforts to use glutathione as a prototype to develop G-site specific inhibitors provides an
efficient platform. However, higher levels of intracellular GSH present a challenge for
developing G-site-specific inhibitors [115,116]. Shishido et al. have developed GSH deriva-
tives by introducing a sulfonyl fluoride (SF) onto the sulfhydryl group of GSH, GS-ESF,
that irreversibly inhibited GSTP1-1 by a covalent bond with Tyr 108 of the isozyme [117].
However, due to the polarity of the GSH moiety, the cell permeability presented a challenge
that was addressed by introducing cell-membrane-permeable benzene sulfonyl fluoride
(BSF)-type covalent inhibitors [118]. The in vitro studies of these covalent inhibitors showed
a prolonged inactivation of the GSTP1-1 in human non-small-cell lung adenocarcinoma
cells, which served as lead compounds for the further development of potent inhibitors of
GSTP1-1 in cancer.
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A library of 20 dichlorotriazine probes was synthesized by Crawford et al. via tosylat-
ing 4-pent-yn-1-ol and evaluated for covalent protein labeling in Hela cell lysates [119]. Of
all the compounds investigated, only one showed the potency and specificity for covalent
modification of GSTP1-1 in cellular context. Mass spectrometry and mutagenesis analysis
identified Y108 as the site of covalent modification of GSTP1-1 by LAS17, thus providing a
unique mode of irreversible inhibition by targeting a functional tyrosine residue (Y108). Cell
cultures treated with LAS17 showed impaired GST activity and reduced cell survival [120].
Daily administration of LAS17 significantly reduced breast tumor xenograft growth.

More recently Jeffery et al. [121] introduced sulfur-triazole exchange (SuTEx) chem-
istry as an adaptive platform for developing covalent probes with broad applications
for chemical proteomics and protein ligand discovery purposes. They have previously
demonstrated that modifications to the triazole leaving group can equip sulfonyl probes
with enhanced chemoselectivity for tyrosines (over other nucleophilic residues). By us-
ing these probes, they identified that the tyrosine residues with enhanced nucleophilicity
are more enriched in enzymatic, protein–protein interactions and nucleotide recognition
domains [89]. GSTP1-1 has a reactive tyrosine Y8 in its active site and a known site for
phosphorylation [122]. By using SuTEx fragments, they discovered JWB152 and JWB198 as
efficient ligands of GSTP1-1 Y8. In vitro studies revealed equivalent inhibitory activities
for both ligands, however, only JWB198 could ligand the Y8 site of GSTP1-1 in live cells.
Proteome-wide reactivity evaluations of JWB198 were encouraging as it maintained ~70%
blockade of GSTP1-1 Y8 in live DM93 cells while being substantially less reactive to the
other tyrosine residues within the protein [121].

7. Conclusions

The various functional properties of GSTs have drawn a lot of attention from re-
searchers all over the world for decades. Initially, the enzymes were best known for their
catalytic functions in the detoxification process of endogenously produced and or xeno-
biotic electrophiles. However, advances in the field have brought research to focus on
additional biologically important roles ascribed to this versatile enzyme family includ-
ing cell signaling and post-translational modifications, as well as conferring resistance to
chemotherapy, since many GST isoforms have been shown to be overexpressed in numer-
ous cancers. In this context, it is not surprising that a large number of GST inhibitors and
prodrugs have been designed and tested for their therapeutic applications. Some of these
inhibitors have entered into phase II/III clinical trials, and in the future we may welcome
the approval of GST inhibitors/prodrugs as therapies for patients. Moreover, the data
on the effects of GST genetic polymorphisms on COVID-19 disease severity and clinical
manifestations is inconclusive, but it may add to our understanding of the risk factors that
contribute to the severity of the disease and may potentially be useful for better selecting
targeted pharmacological strategies for individual COVID-19 patient needs.

8. Perspectives

There has been much progress since the discovery and early descriptions of GST
isozymes in the 1960s. Their role in detoxification have been described in detail and
the isozyme family provides a broad-ranging capacity to conjugate small electrophilic
chemicals with GSH. While the early years focused attention on the catalytic properties of
isozymes and their organ distribution, subsequent publications have served to exemplify
their ligand binding properties, influence on cell signaling, thioltransferase activities and
their general involvement in human pathologies. Pharmacology, particularly in cancer,
has produced a variety of small molecular drugs that either inhibit GST pathways or serve
as prodrugs that might be activated by GST. Since cancer is characterized by aberrant
energy production and signaling pathways, as well as maintaining a redox homeostasis
distinct from normal cells, there has been much interest in how GST expression patterns
may differ in malignant disease and how they might be targeted. Many types of cancer
and drug-resistant tumor cells express extremely high levels of GST, particularly GSTP, and
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oncology studies continue to extend the role of this isozyme in regulating signaling pathway
cascades. Some of these studies consider the involvement of GST in regulating energy
production and may yield information pertinent to how cancer cells use glycolysis versus
the pentose phosphate pathway, the so-called Warburg effect. Moreover, post-translational
modification of the proteome extends structure/function properties of many proteins, and
the involvement of, for example, GSTP1-1 and GST omega in S-glutathionylation and
deglutathionylation reactions. There is a continually expanding literature documenting the
substantial corpus of proteins that are subject to this cysteine modification. In brief, despite
the nearly 60 years of published studies documenting GST, there still remains a significant
amount to be learned about this ubiquitous and adaptable family of enzymes.
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