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Abstract: Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-
containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mech-
anisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory
drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized and characterized, namely
[Ph3Sn(IND)] and [Ph3Sn(FBP)]. The crystal structure of [Ph3Sn(IND)] reveals penta-coordination of
the central tin atom with almost perfect trigonal bipyramidal geometry with phenyl groups in the
equatorial positions and two axially located oxygen atoms belonging to two distinct carboxylato (IND)
ligands leading to formation of a coordination polymer with bridging carboxylato ligands. Employing
MTT and CV probes, the antiproliferative effects of both organotin(IV) complexes, indomethacin,
and flurbiprofen were evaluated on different breast carcinoma cells (BT-474, MDA-MB-468, MCF-7
and HCC1937). [Ph3Sn(IND)] and [Ph3Sn(FBP)], unlike the inactive ligand precursors, were found
extremely active towards all examined cell lines, demonstrating IC50 concentrations in the range of
0.076–0.200 µM. Flow cytometry was employed to examine the mode of action showing that neither
apoptotic nor autophagic mechanisms were triggered within the first 48 h of treatment. However,
both tin(IV) complexes inhibited cell proliferation potentially related to the dramatic reduction in NO
production, resulting from downregulation of nitric oxide synthase (iNOS) enzyme expression.

Keywords: triphenyltin(IV); indomethacin; flurbiprofen; anticancer; breast cancer; NO production

1. Introduction

Given that carcinoma is a main cause of death and a significant obstacle to raising life ex-
pectancy globally [1–3], it is not a surprise that the prime objective of contemporary medicinal
chemistry is the creation of novel anticancer medications. After the unintentional finding of cis-
platin in the 1960s [4] and the success it had treating several solid tumors types [5,6], numerous
platinum-based compounds have undergone substantial research as potential chemothera-
peutics [7–9]. However, the drawbacks related to using platinum-based therapies in clinical
settings, such as systemic toxicity as well as innate and/or acquired resistance [10,11], have
motivated scientists to expand the investigation also on other possible metal-based chemother-
apeutic alternatives potentially exhibiting distinct modes of action. Many different metals,
such as Ti, Fe, Ru, Os, Co, Rh, Ir, Pd, Cu, Au, Ga, Ge, and Sn, have spurred considerable
attention in this context [12–16]. Among them, organotin(IV) complexes have appeared as very
noteworthy non-platinum metallodrugs investigated by many research groups in the past four
decades [17–20]. This is due to their reduced toxicity [17] and capacity to circumvent the medi-
cation resistance perceived for some commercially available metal-based pharmaceuticals [21].
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The potential to induce apoptosis as well as to strongly interact with the deoxyribonucleic acid
(DNA) are key for the chemotherapeutic capacity of organotin(IV) complexes [22]. The organic
ligand is crucial for the bioactivity of these complexes; thus, Bu and Ph ligands result in more
active compounds compared to those bearing Et and Me ligands [13,23]. The relative lipophilic-
ity of the organotin moieties could be responsible for this effect [24]. The ligands’ nature is
also closely related with the biological activity. Among the extensively studied thiolato [25–30],
dithiocarbamato [31], and carboxylate [32–39] ligands, the last ones showed highest cytotoxic
activity in vitro [24] and significant reduction in tumor growth in vivo [40,41].

Since it was discovered that the cyclooxygenase (COX) enzyme, particularly the
isozyme COX-2, contributes to tumor generation and angiogenesis [42] and is overex-
pressed in certain tumor cells, such as stomach, colorectal, pancreas, bladder, breast, skin
and esophagus [43], both non-steroidal anti-inflammatory drugs (NSAIDs), which are
non-selective COX inhibitors, as well as COX-2-selective inhibitors (COXIBs) have been ex-
ploited as adjuvant chemotherapeutic and/or chemopreventive agents [44,45]. Complexes
of different metals with NSAIDs have been previously prepared and discovered to have
significant in vitro anticancer activity [46–53]. Complexes of organotin(IV) with NSAIDs
have also been investigated. Triphenyltin(IV) complexes of flufenamic and mefenamic acid,
namely triphenyltin(IV) flufenamate and mefenamate, have shown high in vitro cytotoxic-
ity towards A549 (lung carcinoma), T-24 (bladder carcinoma) and MCF-7 (breast carcinoma)
cells [54]. Different organotin(IV) ibuprofenate compounds have been synthesized as well
and screened in vitro for cytotoxicity against Caco-2 (colorectal adenocarcinoma), HCT-15
(colon adenocarcinoma) and DU145 (prostate carcinoma) cells. According to the findings,
triphenyltin(IV) ibuprofenate is most active against the cell line Caco-2 [55]. Oxaprozin is
another NSAID used as carboxylate ligand in different di- and triorganotin(IV) complexes
whose antiproliferative effects have been examined in vitro on a plethora of carcinoma
cells including human colorectal adenocarcinoma (HT-29), hepatocellular (HepG2), breast
(MCF-7), and prostate (PC-3) cancer cells. These complexes have shown excellent cyto-
toxicity with IC50 values of 0.10–0.76 µM. Once again, triphenyltin(IV) oxaprozinate has
demonstrated greatest cytotoxicity towards the cancer cell line MCF-7 [56]. Several organ-
otin(IV) indomethacinates have also been prepared; tri-n-butyltin(IV) and triphenyltin(IV)
indomethacinate exhibited cytotoxic activity against the SK-LU-1 lung adenocarcinoma
and the cervical cancer HeLa cells [57]. Additionally, different organotin(IV) derivatives
with racemic flurbiprofenate as ligand have been prepared. However, they have only been
tested as antibacterial and antifungal agents, while their cytotoxic activity has not been
evaluated [58].

Based on the latest cancer statistics, globally the most commonly diagnosed can-
cer and the number one reason for cancer-related death in women is female breast can-
cer [2]. Certain forms of breast cancer respond quite well to treatment. Yet, forms such
as the triple-negative breast cancer (TNBC, estrogen-, progesterone- and HER-2-negative
(ER−,PR−,HER2−)), are exceedingly difficult to medicate because of the disease’s complex-
ity and absence of distinct molecular targets [59]. We have previously reported platinum(IV)
complexes with different NSAIDs that proved to be highly effective towards different breast
cancer cells. The cisplatin-indomethacinate (IND) conjugate was even able to overcome
resistance expressed towards cisplatin by MDA-MB-231 breast carcinoma cells [60]. The
racemic cisplatin-flurbiprofenate (FBP) conjugate showed even higher cytotoxic potency
against four different breast cancer cell lines (MCF-7, HCC-1937, MDA-MB-468, BT-474) [61].
In order to assess how the metal ion affects the biological activity, we have also prepared two
triphenyltin(IV) complexes with indomethacin and racemic flurbiprofen (corresponding
carboxylate anions), namely [Ph3Sn(IND)] and [Ph3Sn(FBP)] (Figure 1). The two com-
pounds have been previously reported [57,58]. In this study, however, these complexes
were synthesized using different precursors; furthermore, a single crystal structure analysis
of [Ph3Sn(IND)] is reported and the biological activity of both triphenyltin(IV) complexes
was evaluated towards four cell lines of human breast carcinoma, namely BT-474, MCF-7,
MDA-MB-468, and HCC1937, using colorimetric MTT- and CV-based cell viability assays.
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Furthermore, flow cytometry has been employed in order to understand the mechanism of
the drug-induced cytotoxicity.
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Figure 1. Organotin(IV) carboxylates: triphenyltin(IV) indomethacinate, [Ph3Sn(IND)], and triph-
enyltin(IV) flurbiprofenate, [Ph3Sn(FBP)].

2. Materials and Methods

Reactions were performed implementing standard Schlenk techniques to ensure ni-
trogen atmosphere. Chemicals (triphenyltin(IV) chloride (Sigma-Aldrich Chemie GmbH,
Steinheim, Germany), indomethacin (TCI), and racemic flurbiprofen (Biozol)) were used
as purchased. Triethylamine was distilled from KOH and kept over 4 Å molecular sieves
previously activated at 150 ◦C. Toluene was obtained from an MBraun Solvent Purification
System (MBraun SPS-800) and kept over 4 Å active molecular sieves. A Heraeus VARIO
EL oven was used for carrying out elemental analyses. NMR spectra were recorded on
a Bruker AVANCE DRX 400 spectrometer. Tetramethylsilane (TMS) was used as internal
standard to reference the NMR spectra; chemical shifts are reported in parts per million;
1H (400.13 MHz), 13C (100.61 MHz) and 119Sn (149.21 MHz). Mass spectra (HR-ESI-MS)
were obtained with an FT-ICR-MS Bruker Daltonics ESI mass spectrometer (APEX II, 7 T).
X-ray data from single crystals were collected with a Gemini-CCD diffractometer (Rigaku
Oxford Diffraction, Oxford, UK).

2.1. Synthesis and Stability of Complexes

A stoichiometric amount of indomethacin or racemic flurbiprofen (0.45 g or 0.32 g,
respectively), dissolved in 10 mL toluene, was added to a solution of Ph3SnCl (0.5 g,
1.3 mmol) in 10 mL toluene. After 20 min stirring, NEt3 (0.18 mL, 1.3 mmol, 1 eq.) was
slowly (10 min) added to the solution and the resulting solution was stirred at room
temperature overnight. The formed precipitate, (Et3NH)Cl, was filtered off. The solvent
was evaporated and the solid residue was recrystallized from a 3:1 mixture of chloroform
and methanol. For detailed characterization (multinuclear NMR, X-ray crystallographic
data and HR-ESI-MS), see SI, Figures S1–S10. Spectroscopic data of [Ph3Sn(IND)] and
[Ph3Sn(FBP)] are in agreement with those previously reported [57,58].

[Ph3Sn(IND)]: White solid; yield: 0.76 g (83%). Anal. calcd. for C37H30ClNO4Sn: C,
62.88; H, 4.28; N, 1.98%. Found: C, 62.46; H, 4.18; N, 1.93%.

[Ph3Sn(FBP)]: White solid; yield: 0.69 g (88%). Anal. calcd. for C33H27FO2Sn: C, 66.81;
H, 4.59%. Found: C, 66.55; H, 4.29%.

Stability of complexes [Ph3Sn(IND)] and [Ph3Sn(FBP)] was evaluated in water-containing
DMSO, employing time-resolved (0, 1, 3, 6, 12, 24, 48 and 72 h) 1H NMR spectroscopy.

2.2. Data Collection and Structure Refinement of [Ph3Sn(IND)]

The X-ray data from a single crystal of [Ph3Sn(IND)] were collected with a Gemini-
CCD diffractometer (Rigaku Oxford Diffraction, Oxford, UK) employingω-scan rotation
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and Mo-Kα radiation (λ = 0.71073 Å). Data reduction and empirical absorption correction
were carried out using CrysAlisPro [62] with SCALE3 ABSPACK program for the later.
For solving the structure, SHELXT-2018 [63] with dual-space method were employed,
while structure refinement was performed with SHELXL-2018 [64] using full-matrix least-
squares routines against F2. Anisotropic refinement was carried out for all non-hydrogen
atoms, whereas hydrogen atoms were calculated on idealized positions. The C19H15ClNO4
substituent is disordered on two positions with a ratio of 0.814(5):0.186(5). All chloroform
solvent molecules are disordered as well. DIAMOND-4 [65] was used to generate all
structural figures. Crystallographic details are listed in Table S1 in the SI.

2.3. In Vitro Studies

The four cell lines of human breast carcinoma utilized in this study were acquired
from ATCC, Manassas, USA. Cell viability assays (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) and CV (crystal violet)) were bought from Sigma-Aldrich,
Taufkirchen, Germany. Multi-well plates, culture flasks and additional plastics for cell
culturing were bought from TPP, Trasadingen, Switzerland and Greiner Bio-One GmbH,
Frickenhausen, Germany. Fetal calf serum (FCS), RPMI cell culturing medium, L-glutamine,
trypsin/ethylenediaminetetraacetic acid (EDTA) and phosphate-buffered saline (PBS) were
all obtained from Capricorn Scientific GmbH, Ebsdorfergrund, Germany. The reagents for
fluorescence-activated cell sorting (FACS) were obtained from several suppliers: Thermo
Fisher Scientific: annexin V/propidium iodide (AnnV/PI) and 4-amino-5-methylamino-
2′,7′-difluorofluorescein diacetate (DAF-FM); BD horizon: dihydrorhodamine (DHR) and
carboxyfluorescein succinimidyl (CFSE); Sigma Aldrich: acridine orange (AO) and 4′,6-
diamidino-2-phenylindole (DAPI); R & D scientific: ApoStat.

2.4. Cell Lines, General Conditions and IC50 Determination

Cytotoxic effects of the NSAIDs used as ligands, indomethacin and flurbiprofen, and
organotin(IV) compounds [Ph3Sn(IND)] and (Ph3Sn(FBP)] were evaluated using colorimet-
ric MTT- and CV-based cell viability assays against four cell lines from different human
breast carcinoma. BT-474 and MCF-7 are estrogen-positive cells, while MDA-MB-468 and
HCC1937 are triple-negative cells [66]. Cells’ cultivation was carried out in T-75 flasks
using RPMI 1640 medium supplied with 10% FCS inactivated by heat, L-glutamine (2 mM)
and 1% penicillin/streptomycin, at 37 ◦C, in a humidified environment with 5% CO2
until subconfluency ~ 80% was reached. Cell passaging and seeding was carried out after
washing of adherent cells using PBS and detaching them applying trypsin/EDTA solution
(0.05%) in PBS.

Utilizing the aforementioned cell growth medium, cells were seeded in plates with
96 wells, at a 6000/100 µL/well density. Before treatment with the investigated compounds,
cells were given 24 h to adhere. Stock solutions of cisplatin, indomethacin, flurbiprofen,
[Ph3Sn(IND)], and [Ph3Sn(FBP)] were made in DMSO and subsequently diluted in growth
medium to reach the following concentrations: 300, 100, 30, 10, 3, 1, and 0.1 µM for cisplatin,
100, 50, 25, 12.5, 6.25, 3.125, and 1.6 µM for the NSAIDs and 10, 5, 1, 0.5, 0.1, 0.01, and
0.001 µM for [Ph3Sn(IND)] and [Ph3Sn(FBP)]. A positive control of digitonin (100 µM) was
included in each 96-well plate. Three independent biological replicates and four technical
replicates were conducted. After 72 h treatment, cell viability was assessed. For the MTT
assay, cells were initially rinsed with PBS and then exposed for 1 h to the working solution
containing 0.5 mg mL−1 MTT in culture medium. The MTT solution was then removed,
the formazan formed was dissolved in DMSO and its absorbance was measured at 570 nm
and 670 nm employing a multi-well plate reader SpectraMax M5 (Molecular Devices,
San Jose, CA, USA). For the CV assay, cells were first washed with PBS, fixated with 4%
paraformaldehyde (PFA), dried after removal of the PFA solution and only then stained for
20 min with a 10% crystal violet solution. After discarding the staining solution, stained
cells were supplied with acetic acid (33% in aqua bidest.) and the absorbance was recorded
by using the previously described method at the same wavelengths [67]. Cell viability is
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expressed as a percentage of untreated cells with the mean value being computed using a
four-parametric logistic function [68]. SigmaPlot 14.0 and Microsoft Excel 2013 programs
were used for data analysis and IC50 value calculation.

2.5. Flow Cytometry

BT-474 cells were seeded in 6-well plates, with a density of 150,000 cells/well. Cells
were allowed to adhere overnight, after which they were treated with IC50 value con-
centrations of [Ph3Sn(IND)], [Ph3Sn(FBP)] and cisplatin and subjected to flow cytometry
(BD FACSAria III) assessment. For that, several staining procedures were employed in-
cluding (1) AnnV/PI to identify cells undergoing apoptosis, (2) ApoStat to detect caspase
activity, (3) AO to monitor autophagy induction, (4) DHR to measure reactive oxygen
species/reactive nitrogen species (ROS/RNS), (5) DAF-FM to detect intracellular NO, and
(6) CFSE to track the impact on cellular proliferation.

AnnV/PI, ApoStat, AO and DAF-FM staining was carried out according to the
manufacturer’s recommendations after 48-h-long exposure to the examined compounds,
trypsinization and washing with PBS. AnnV/PI (5% AnnV, 2% PI in PBS) [69] and AO
(1 µg mL−1 PBS) staining solutions were applied for 15 min at room temperature or at 37 ◦C,
respectively, in an environment with 5% CO2. For caspase activity determination, 30 min
exposure to the ApoStat (1% ApoStat, 5% FCS in PBS) stain at 37 ◦C with 5% CO2 was
applied. For NO production analysis, cells were dyed with DAF-FM dye (5 µM DAF-FM,
10% FCS in RPMI) for 1 h at 37 ◦C with 5% CO2. To neutralize the stain, the cells were incu-
bated in serum-free medium for 15 min. Finally, cells’ detachment was performed and flow
cytometry examination was conducted through measurement of fluorescein isothiocyanate
(FITC) fluorescence.

For ROS/RNS production analysis and cell proliferation investigations, cells were
first dyed with the appropriate stain solution before being subjected to 48 h treatment
with the experimental agents and cisplatin. DHR (1 µM DHR, 0.1% FCS in PBS) and CFSE
(1 µM CFSE, 0.1% FCS in PBS) [70] stains were applied overnight at 37 ◦C with 5% CO2.
After dyeing and 48 h treatment, trypsin-EDTA was used to detach the cells, which were
subsequently rinsed with PBS and finally analyzed by flow cytometry.

3. Results and Discussion
3.1. Synthesis, Characterization, and Stability of Organotin(IV) Carboxylates

The two organotin(IV) complexes, triphenyltin(IV) indomethacinate [Ph3Sn(IND)],
and triphenyltin(IV) flurbiprofenate [Ph3Sn(FBP)], were prepared in a reaction of the corre-
sponding NSAID (HIND or HFBP) deprotonated with NEt3 and an equimolar amount of
Ph3SnCl. The preparation of both organotin(IV) compounds, starting from triphenyltin(IV)
chloride, resulted in higher yields and easier purification of the obtained compounds then
previously reported procedures involving Ph3SnOH as starting material [57,58]. Elemental
analysis was employed to verify purity of the produced complexes. Further characteriza-
tion of the compounds was also carried out by multinuclear NMR spectroscopy (1H, 13C,
119Sn) and mass spectrometry. The obtained results, presented in the SI (Figures S1–S10),
are in agreement with the reported ones [57,58].

The complexes [Ph3Sn(IND)] and [Ph3Sn(FBP)] are stable in water-containing DMSO
solution during a 72-h period, as shown by time-resolved 1H NMR spectroscopy. No ligand
exchange or complex degradation was observed during this time (Figures S11 and S12).

Single crystals adequate for X-ray diffraction studies were formed slowly diffusing
methanol into a CHCl3 solution of [Ph3Sn(IND)]. [Ph3Sn(IND)] crystallizes with sixteen
monomeric units per unit cell, in the tetragonal space group I41/a. The trigonal-planar SnPh3
moieties are connected by bridging carboxylato ligands in the axial positions (Figure 2)
forming polymeric helical chains (Figure 3). Consequently, with equatorial phenyl groups
and two axial oxygen atoms belonging to two distinct carboxylato (IND) ligands, the penta-
coordinated central tin atom displays an almost perfect trigonal bipyramidal geometry. Thus,
the C–Sn1–O, C–Sn1–C (C20–Sn1–C26, C20–Sn1–C32 and C26–Sn1–C32), and O1–Sn–O2′
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angles are close to 90, 120 and 180◦, respectively. The Sn–O (Sn1–O1 2.182(7), Sn1–O2′ 2.274(7)
Å) and Sn–C bond lengths (Sn1–C26 2.108(5), Sn1–C20 2.129(5), Sn1–C32 2.129(5) Å) are
comparable to ones reported for analogous triorganotin(IV) carboxylate complexes [71–76].
The carboxylato ligand bridges two tin atoms which are symmetry-independent resulting in
distinct Sn–O bond lengths (Table 1).
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Figure 3. Helical chain structure of [Ph3Sn(IND)], propagation via O → Sn coordination. Bonds
forming the basis of the helix are highlighted in pink.

Table 1. Selected Bond Lengths [Å] and Angles [◦] for [Ph3Sn(IND)].

Bond Lengths [Å] Bond Angles [◦]

Sn1–O1 2.182(7) C20–Sn1–C26 116.1(2)
Sn1–O2′ 2.274(7) C26–Sn1–C32 121.1(2)
Sn1–C26 2.108(5) C20–Sn1–C32 122.7(2)
Sn1–C20 2.129(5) C–Sn1–O 83.9(2) to 95.3(3)
Sn1–C32 2.129(5) O1–Sn1–O2′ 174.6(5)

symmetry operation ‘ −y + 3/4,x + 1/4,z + 1/4
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3.2. Cytotoxic Activity

Following a 72 h treatment, the in vitro cytotoxicity of [Ph3Sn(IND)] and [Ph3Sn(FBP)]
was evaluated in a variety of breast carcinoma cells, namely triple-positive (ER+,PR+,HER2+)
BT-474 causing invasive ductal breast cancer, COX-1 expressing MCF-7 (ER+,PR+,HER2−),
COX-2 expressing MDA-MB-468 (ER−,PR−,HER2−), and HCC1937 cancer cells with
BRCA1 mutation (ER−,PR−,HER2−). Investigations were made with two distinct cell
viability assays, MTT and CV. MTT is an indirect method for cell viability determination
which utilizes the capacity of living cells to catalyze tetrazolinum salt reduction in MTT to
formazan [77]. This is the result of mitochondrial dehydrogenase activity taking place in
the mitochondria of viable cells. Consequently, substances that alter cellular metabolism
through elevation of the level of reduced nicotinamide adenine dinucleotide phosphate
(NADPH) or the activity of lactate dehydrogenase (LDH) may have a considerable im-
pact on the results of the MTT experiment [78–81]. Therefore, for higher reliability of the
results, also the direct, non-enzymatic CV assay was employed. The cytotoxicity of the
organotin(IV) complexes was compared to that of the two NSAIDs utilized as ligands,
indomethacin and flurbiprofen, as well as cisplatin which is used as standard clinical ther-
apy. The decrease in cell viability in the selected cell lines upon treatment with increasing
concentrations of [Ph3Sn(IND)], [Ph3Sn(FBP)] and cisplatin determined by MTT and CV
assays is presented in the SI (Figures S13–S16). The IC50 values are reported in Table 2.

Table 2. IC50 values (mean ± SD, [µM]) of synthesized complexes and cisplatin obtained with
MTT and CV assays after 72 h treatment. IC50 values of the ligand precursors, indomethacin and
flurbiprofen, are >100 µM as found by both MTT and CV assays after 72 h treatment.

MDA-MB-468 HCC1937 MCF-7 BT-474

IC50 [µM]

[Ph3Sn(IND)] MTT
CV

0.11 ± 0.03
0.14 ± 0.02

0.15 ± 0.01
0.20 ± 0.02

0.13 ± 0.02
0.17 ± 0.01

0.10 ± 0.02
0.15 ± 0.02

[Ph3Sn(FBP)] MTT
CV

0.11 ± 0.01
0.12 ± 0.02

0.13 ± 0.01
0.17 ± 0.01

0.12 ± 0.03
0.16 ± 0.01

0.076 ± 0.003
0.16 ± 0.01

Cisplatin MTT
CV

0.60 ± 0.11
3.32 ± 0.19

4.26 ± 0.73
7.62 ± 0.90

32.00 ± 4.29
33.59 ± 4.83

70.30 ± 8.45
54.86 ± 6.03

As expected, none of the four tumor cell lines was susceptible to the COX inhibitors
alone (>100 µM). The cytotoxic potential of both organotin(IV) carboxylates, on the contrary,
was significantly higher compared to cisplatin’s activity, exhibiting nanomolar IC50 values
in all cases. Both complexes [Ph3Sn(IND)] and [Ph3Sn(FBP)] had a comparable effect on all
four cell lines. With regard to cisplatin, their activity was much higher, resulting in at least
24 times lower IC50 values towards the MDA-MB-468 cell line and up to 366 times lower
IC50 values towards the BT-474 cell line. Similarly high activity was previously proven
for [Ph3Sn(IND)] against HeLa cervical cancer cells and SKLU-1 lung adenocarcinoma
cells [57]. The investigated complexes showed much higher activity with respect to the
structurally similar complex with an ibuprofenate ligand ([Ph3Sn(IBF)]) which has been
found to be active against the Caco-2 colorectal adenocarcinoma cell line, but only remotely
active or completely inactive against the DU145 (prostate carcinoma) cells and the HCT-15
(colon adenocarcinoma) cells, respectively [55]. In our previous study, flurbiprofen was
used as an axial ligand of a cisplatin-based platinum(IV) conjugate and the cytotoxic activity
of this cis,trans,cis-[PtCl2(FBP)2(NH3)2] complex was assessed against the same four breast
carcinoma cell lines used in the present study [61]. The obtained results show very similar
cytotoxic activity for [Ph3Sn(FBP)] and the cisplatin-flurbiprofenate complex suggesting
that both NSAID-metal complexes with tin(IV) and platinum(IV) are highly active. Since
the COX inhibitory potential of the prepared metal complexes was not assessed in these
studies, the mechanism underlying the increase in cytotoxic efficacy following NSAID
conjugation is unclear. The findings from the CV and MTT assays for [Ph3Sn(IND)] and
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[Ph3Sn(FBP)] are in very good agreement with each other, while for cisplatin towards
the BT-474, HCC1937 and MDA-MB-468 cells, some discrepancies were identified. This
suggests that the investigated organotin(IV) carboxylates have different mechanism of
action than cisplatin, not affecting the cell metabolism pathways.

3.3. Mode of Cytotoxic Activity

Flow cytometry was employed in order to comprehend the mechanism underlying the
drug-induced cytotoxicity. In this method, a specific type of cell in a heterogeneous envi-
ronment is recognized and physically separated using fluorescently labeled target-specific
antibodies. This enables analysis of the nucleic acid material, presence of characteristic pro-
teins, as well as phenotype-specific metabolic content and, therefore, valuable information
on cell proliferation, apoptosis and autophagy, ROS/RNS, and NO production, etc., can be
acquired. These data allow for conclusions regarding the drug’s mechanism of action to be
drawn. In the present investigation, BT-474 cells underwent treatment with IC50 doses of
[Ph3Sn(IND)], [Ph3Sn(FBP)] and cisplatin before undergoing a variety of FACS assessments.
This cell line was chosen for the mechanistic studies because of the high cytotoxicity of the
investigated compounds against it, which is also the greatest advancement in comparison
to cisplatin.

In order to determine whether [Ph3Sn(IND)] and [Ph3Sn(FBP)] induce apoptotic cell
death, AnnV/PI staining was used. This method relies on the relocation of the membrane
phospholipid phosphatidylserine (PS) from the internal to the external side of the mem-
brane, causing a change of the plasma membrane asymmetry, which is a key hallmark
of apoptosis. Because of its strong affinity for PS, the annexin V dye acts as a sensor for
cells undergoing apoptosis including early apoptotic cells [82]. As the apoptotic process
progresses, the intactness of the membrane is lost and it becomes permeable for the second
dye, PI. Therefore, cells that are both AnnV- and PI-positive, are in late apoptosis or dead
already. Results presented in Figure 4 show that after 48 h treatment with [Ph3Sn(IND)]
and [Ph3Sn(FBP)], an apoptotic process is not yet ongoing and the number of surviving
cells is not significantly influenced, while cisplatin treatment leads to a slight elevation of
late apoptotic BT-474 cells population.
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Figure 4. Capacity of organotin(IV) complexes ([Ph3Sn(IND)] and [Ph3Sn(FBP)]) and cisplatin to
induce apoptotic cell death—early and late apoptotic cells (after 48 h treatment).

Identification of activated caspases is another marker of apoptosis. These cytosolic
cysteine proteases are implicated in the onset as well as execution of apoptosis. Therefore,
detection of this enzyme’s activity indicates the presence of apoptotic cells. This can be
probed utilizing the ApoStat assay. Figure 5A reveals that [Ph3Sn(IND)] and [Ph3Sn(FBP)]
do not activate, but rather inhibit the activity of these enzymes, whereas cisplatin has no
effect on the caspase activity, although previous reports link cisplatin-induced cell death
with caspase-activated apoptosis [61,83–87]. These results, however, are in agreement with
the ones obtained with the AnnV/PI experiments and confirm that apoptotic mechanisms
in BT-474 cells could not be detected within the 48 h of treatment.
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Figure 5. Effect of organotin(IV) complexes ([Ph3Sn(IND)] and [Ph3Sn(FBP)]) and cisplatin on
BT-474 cells: (A) caspase activation, (B) ROS/RNS production, (C) NO production, and (D) cell
proliferation potential.

Lack of impact was also the outcome of the DHR staining investigation conducted
with the aim to assess the influence of [Ph3Sn(IND)] and [Ph3Sn(FBP)] and cisplatin on the
production of ROS and RNS. Although increased ROS/RNS production has been previ-
ously related to cytotoxicity brought on by cisplatin [83,88,89] as well as cisplatin-NSAID
conjugates [61], in BT-474 cells treated with cisplatin or [Ph3Sn(IND)] and [Ph3Sn(FBP)],
only slightly elevated ROS/RNS production could be detected (Figure 5B). Thus, on breast
BT-474 cells the tested complexes did not induce cell death by orchestrating antioxidant
systems [90].

Interestingly, all three compounds have a most prominent effect on the generation of
nitric oxide resulting in a significant decrease in NO. This effect, as displayed in Figure 5C,
is most pronounced for the tin(IV)-based compounds with [Ph3Sn(FBP)] being the more
potent NO suppressor, while cisplatin causes the least notable inhibition. Nitric oxide is a
bioactive molecule having a profound impact on numerous physiological and pathological
processes [91]. In cancer biology, the role of NO is controversial as it can exert both carcino-
genic or anticancer effects, depending on the location, time, and its concentration [92–95].
NO is produced enzymatically from nitric oxide synthase (NOS). Despite the existence of
three isoforms of this enzyme (neuronal, inducible, and endothelial), the inducible form
(iNOS) has the most compelling association with tumor progression and metastasis [92].
Namely, elevated iNOS expression has been reported for different cancers [96–99], in-
cluding breast cancer [100–103], where iNOS overexpression has been linked with tumor
aggressiveness and poor prognosis for the patients. Furthermore, Chang et al. [104] have
shown that treatment with iNOS inhibitors can suppress tumor cell proliferation as well as
cancer stem cells’ capacity for self-renewal and migration, hence lowering tumor initiation,
growth, and the incidence of lung metastases from breast cancer. Considering the fact that
our findings suggest that the metal complexes cause inhibition of cell proliferation (evalu-
ated with a CFSE assay; Figure 5D) in BT 474 cells, it can be assumed that the suppression of
NO production correlates to reduced cell proliferation, possibly through decreasing iNOS
gene expression. A previous study reports that flurbiprofen has the ability to inhibit iNOS
expression in RAW 264.7 macrophages [105]. Furthermore, indomethacin has been found to
decrease iNOS gene expression and reduce tumor growth in vivo in breast tumor-bearing
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mice [106]. These findings regarding our ligand precursors, indomethacin and flurbipro-
fen, further corroborate our conclusions that the cytotoxic capacity of [Ph3Sn(IND)] and
[Ph3Sn(FBP)] could be due to iNOS suppression-mediated reduction in NO production.

Finally, an acridine orange (AO) assay was used to investigate if [Ph3Sn(IND)] and
[Ph3Sn(FBP)] as well as cisplatin can trigger autophagy in BT-474 cells. This controlled
lysosomal mechanism is engaged in the breakdown and reuse of cytoplasmic components.
Amino and fatty acids, which are being created during this process, can be utilized to
produce proteins or energy, which are critical for a cell’s ability to survive in a starvation
situation. However, autophagy can also result in cell death upon exposure to chemical ther-
apy [107]. According to our findings (Figure 6), cisplatin, [Ph3Sn(IND)] and [Ph3Sn(FBP)]
did not have any significant influence on autophagy after 48 h treatment, thus neither
cytoprotective nor cytotoxic effect of autophagy [108] can be expected upon treatment of
B-474 cells with the investigated complexes.
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4. Conclusions

In this study, two triphenyltin(IV) carboxylates with NSAIDs as ligands, [Ph3Sn(IND)]
and [Ph3Sn(FBP)], were prepared and evaluated for their in vitro antiproliferative effect
towards four different cell lines of breast carcinoma. The ligand precursors, indomethacin
and flurbiprofen, exhibited no impact on the examined cancer cells’ proliferation. On
the other hand, the organotin(IV) complexes demonstrated IC50 values at nanomolar
concentrations in the range of 0.076–0.200 µM. This superior cytotoxicity, demonstrated
against all cell lines involved, represents a significant enhancement in comparison to the
effect of cisplatin. Various biological experiments used to investigate these compounds’
mode of action suggested that neither apoptotic nor autophagy mechanisms were activated
within the 48 h treatment. Ho wever, slightly elevated ROS/RNS production as well as
inhibition of the cell proliferation were confirmed for these compounds; the latter might
be related to the massive suppression of NO production. Gene expression experiments
could be additionally performed to evaluate if the extensive NO production suppression is
caused by inhibition of iNOS expression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13040595/s1, Figure S1: 1H NMR spectrum of [Ph3Sn(IND)]
in CDCl3; Figure S2: 13C{1H} NMR spectrum of [Ph3Sn(IND)] in CDCl3; Figure S3: 119Sn{1H} NMR
spectrum of [Ph3Sn(IND)] in CDCl3; Figures S4 and S5: HR-ESI-MS of [Ph3Sn(IND)] (positive
mode, CH3OH); Figure S6: 1H NMR spectrum of [Ph3Sn(FBP)] in CDCl3; Figure S7: 13C{1H} NMR
spectrum of [Ph3Sn(FBP)] in CDCl3; Figure S8: 119Sn{1H} NMR spectrum of [Ph3Sn(FBP)] in CDCl3;
Figures S9 and S10: HR-ESI-MS of [Ph3Sn(FBP)] (positive mode, CH3OH); Figure S11:. Stability
of [Ph3Sn(IND)2] in DMSO-d6 over 72 h; time-resolved 1H NMR spectra; Figure S12: Stability of
[Ph3Sn(FBP)2] in DMSO-d6 over 72 h; time-resolved 1H NMR spectra; Figure S13: Cell viability of
[Ph3Sn(IND)], [Ph3Sn(FBP)] and cisplatin determined by MTT and CV assays in MDA-MB-468 breast
cancer cell line; Figure S14: Cell viability of [Ph3Sn(IND)], [Ph3Sn(FBP)] and cisplatin determined by
MTT and CV assays in HCC1937 breast cancer cell line; Figure S15: Cell viability of [Ph3Sn(IND)],
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[Ph3Sn(FBP)] and cisplatin determined by MTT and CV assays in MCF-7 breast cancer cell line;
Figure S16: Cell viability of [Ph3Sn(IND)], [Ph3Sn(FBP)] and cisplatin determined by MTT and
CV assays in BT-474 breast cancer cell line; Table S1: Crystal data and structure refinement of
[Ph3Sn(IND)].
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76. Kalud̄erović, G.N.; Paschke, R.; Prashar, S.; Gómez-Ruiz, S. Synthesis, characterization and biological studies of 1-D polymeric
triphenyltin(IV) carboxylates. J. Organomet. Chem. 2010, 695, 1883–1890. [CrossRef]
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