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Abstract: KB-R7943, an isothiourea derivative, is widely used as a pharmacological inhibitor of
reverse sodium–calcium exchanger (NCX). It has been shown to have neuroprotective and analgesic
effects in animal models; however, the detailed molecular mechanisms remain elusive. In the current
study, we investigated whether KB-R7943 modulates acid-sensing ion channels (ASICs), a group of
proton-gated cation channels implicated in the pathophysiology of various neurological disorders,
using the whole-cell patch clamp techniques. Our data show that KB-R7943 irreversibly inhibits
homomeric ASIC1a channels heterologously expressed in Chinese Hamster Ovary (CHO) cells in a
use- and concentration-dependent manner. It also reversibly inhibits homomeric ASIC2a and ASIC3
channels in CHO cells. Both the transient and sustained current components of ASIC3 are inhibited.
Furthermore, KB-R7943 inhibits ASICs in primary cultured peripheral and central neurons. It inhibits
the ASIC-like currents in mouse dorsal root ganglion (DRG) neurons and the ASIC1a-like currents in
mouse cortical neurons. The inhibition of the ASIC1a-like current is use-dependent and unrelated to
its effect on NCX since neither of the other two well-characterized NCX inhibitors, including SEA0400
and SN-6, shows an effect on ASIC. Our data also suggest that the isothiourea group, which is lacking
in other structurally related analogs that do not affect ASIC1a-like current, may serve as a critical
functional group. In summary, we characterize KB-R7943 as a new ASIC inhibitor. It provides a
novel pharmacological tool for the investigation of the functions of ASICs and could serve as a lead
compound for developing small-molecule drugs for treating ASIC-related disorders.
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1. Introduction

Acid-sensing ion channels (ASICs), members of the degenerin/epithelial sodium
channel (Deg/ENaC) superfamily, are expressed throughout the central and peripheral
nervous systems [1,2]. At least six ASIC subunits, including ASIC1a, 1b, 2a, 2b, 3, and
4 have been identified [3,4]. Three subunits assemble to form a functional homo- or
heterotrimeric channel [5]. ASICs are proton-gated channels sensitive to acidic pH to
varying extents depending on the subunit composition of the channels. ASIC1a and 3 are
most sensitive to protons with an activation threshold close to pH 7.0. ASIC1a has a pH0.5 of
~6.2 and mediates fast decaying, transient currents [6]. ASIC3 can generate biphasic inward
currents that contain a transient component with a pH0.5 of ~6.2 and a sustained component
with a pH0.5 of ~4.3 [7,8]. ASIC1b has a similar sensitivity to proton with a pH0.5 of
~6.0 [7,9], whereas ASIC2a has a low sensitivity to acidic pH with pH0.5 of ~4.4 [10]. ASIC2b
and ASIC4 do not form functional homomeric channels [11–13]. Activation of ASICs
by protons induces sodium influx, resulting in membrane depolarization and neuronal
excitation. In addition to sodium, the homomeric ASIC1a and heteromeric ASIC1a + 2b
channels are also permeable to calcium [14,15]. Several studies have shown that ASICs play
important roles in physiological processes such as synaptic transmission, plasticity, and
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learning/memory [16,17], and in pathological conditions such as brain ischemia [14,18,19],
pain [20–23], seizure [24], multiple sclerosis [25], Huntington’s and Parkinson’s disease [3],
and tumor cell migration [26,27].

A significant tissue pH drop, a condition termed acidosis, is a well-known feature of
acute neurological conditions, including brain ischemia, seizure, etc. Acidosis has long
been known to aggravate ischemic brain damage; however, the mechanism remained
elusive, although a host of possibilities have been suggested. A series of studies have
demonstrated a clear link between ASIC1a activation, intracellular calcium accumulation,
and acidosis-mediated brain injury [14,15,28]. Pharmacological inhibition of homomeric
ASIC1a or heteromeric ASIC1a/2b channels reduces acidosis and ischemia-induced neu-
ronal injury [14,15]. Importantly, blockade of ASIC1a provides a prolonged therapeutic
time widow of ~5h for stroke [29], which significantly increases the chances for stroke
intervention. In these regards, ASIC1a represents a promising target and the compounds
that can inhibit ASIC1a channels may have therapeutic potential for stroke intervention. In
addition to brain ischemia, acidosis also occurs in many inflammatory and painful condi-
tions such as skin and muscle incision, arthritis, etc., under which conditions the protons
are released by the injured tissues [30–32]. It has been demonstrated that the accumulation
of protons depolarizes the terminals of nociceptive sensory neurons to cause pain sensation
and that the depolarization is caused by direct activation of ASICs [20,21,33]. ASIC1 and
ASIC3 have been demonstrated as the leading acid sensors in nociceptors, contributing to
acid-induced nociception within a pathophysiologically relevant pH range [20,30,33]. Par-
ticularly, the non-desensitizing sustained current component of ASIC3 has been suggested
to play a unique role in non-adaptive pain sensation [28,34]. In addition to stroke, ASICs
also represent new targets for pain treatment. Compounds that can target ASICs have the
potential to be developed as a pain killer.

KB-R7943, an isothiourea derivative, is widely used as a pharmacological inhibitor of
reverse sodium–calcium exchanger (NCX) and has been shown to have neuroprotective
and analgesic effects [35,36]. However, the underlying mechanism is poorly understood. In
the current study, we investigated the effect of KB-R7943 on ASICs to determine whether
the inhibition of ASICs might be an underlying mechanism. We first examined the subunit
selectivity of KB-R7943 on different homomeric ASICs heterologously expressed in CHO
cells. Then, we studied the effect of KB-R7943 on ASIC currents in primary cultured DRG
and cortical neurons which express a combination of different homomeric and heteromeric
ASICs. In addition, we determined whether the inhibition of ASICs is related to its activity
on NCX, and the potential structure–activity relationship by comparing the structurally
related NCX inhibitors.

2. Materials and Methods
2.1. ASICs Transfection in CHO Cells

CHO cells were cultured in F12K medium containing 10% fetal bovine serum (FBS,
Invitrogen, Carlsbad, CA, USA), 50 units/mL penicillin, and 50 µg/mL streptomycin. At
50–80% confluence, cells were transfected with cDNA for rat ASIC1a or 2a fused with a
green fluorescence protein (GFP) [37], or co-transfected with cDNAs for rat ASIC3 and
GFP, as described previously [38]. GFP-positive cells were used for electrophysiological
recordings 48–72 h after the transfection.

2.2. Primary Culture of DRG Neurons

As described previously [39], DRG neurons were dissected from embryonic Swiss
mice at 16 days of gestation (Charles River), enzymatically dissociated with 0.25% trypsin
for 10 min, and plated in poly-L-ornithine coated dishes. Cells were initially cultured
in DMEM containing 10% FBS and 10% horse serum (HS) at 37 ◦C in a humidified 5%
CO2 atmosphere incubator. After 24 h, the culture medium was replaced with Neurobasal
medium supplemented with B27 (Invitrogen). The cultures were fed twice a week and
used for electrophysiological recordings 6~8 days after plating.
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2.3. Primary Culture of Mouse Cortical Neurons

Mouse cortical neurons were isolated and cultured as described in our previous
study with modification [40]. The use of mice for neuronal cultures was approved by
the Institutional Animal Care and Use Committee of Morehouse School of Medicine.
Briefly, the brains of fetuses (embryonic day 16) were removed quickly from pregnant
mice following anesthesia and cervical dislocation, and placed in cold Ca2+/Mg2+-free PBS.
Cerebral cortices were dissected and incubated with 0.05% trypsin-EDTA for 10 min at
37 ◦C, followed by trituration. Cells were plated in poly-L-ornithine-coated culture dishes.
Cells were initially cultured in minimal essential medium (MEM) with 10% FBS, 10% HS,
and 25 mM glucose at 37 ◦C in a humidified 5% CO2 atmosphere incubator for 24 h. Then,
the culture medium was completely replaced by a Neurobasal medium supplemented with
B-27 and changed twice a week. Neurons were used for the experiments between days 10
and 14.

2.4. Electrophysiology

Whole-cell ASIC currents were recorded using a combination of patch-clamp and fast
perfusion techniques, as described previously [39]. GFP-positive CHO cells were selected
for the recordings of ASIC currents. For fast perfusion, a multibarrel perfusion system
(SF-77B, Warner Instruments, Hamden, CT) was used. Patch pipettes were pulled from
borosilicate glass. Pipettes had a resistance of 2–4 MΩ when filled with the intracellular
solution. Currents were recorded using Axopatch 200B amplifiers (Axon Instruments,
Foster City, CA, USA). All data were filtered at 2 kHz and digitized at 5 Hz using Digidata
1320 DAC units (Axon Instruments). Only recordings with an access resistance of less
than 10 MΩ and a leak current of less than 100 pA at −60 mV were included for data
analysis [40]. The maximal inward current value was measured as the peak current. The
sustained current component of ASIC3 was measured at the end of the 4 sec perfusion of
acidic solutions. Since ASIC1a currents show significant run-down in the first ~15 min of
whole-cell recording, in general, the effect of KB-R7943 (Sigma-Aldrich, Inc, St. Louis, MO,
USA) was tested ~20 min after the initiation of whole-cell configuration and following the
recording of at least three stable ASIC currents.

2.5. Solutions and Chemicals

The extracellular solution contained (mM): 140 NaCl, 5.4 KCl, 20 HEPES, 10 Glucose,
2 CaCl2, and 1 MgCl2; the pH was adjusted to selected levels with NaOH and HCl, and
320–330 mOsm. The intracellular solution contained (mM): 140 CsF, 1 CaCl2, 10 HEPES,
11 EGTA, 2 TEA, 4 MgCl2, pH 7.3, adjusted with CsOH, and 290–300 mOsm [40]. KB-R7943
(CAS No.: 182004-64-4) was purchased from Sigma-Aldrich (St. Louis, MO) and has a
purity of ≥98% (HPLC). DMSO was used to dissolve the compound to make a 100 mM
stock solution, which was kept at −20 ◦C until use.

2.6. Statistical Analysis

All data are expressed as mean ± SEM. Statistical analyses were performed by ANOVA
using GraphPad Prism 9. p < 0.05 was considered as statistically significant.

3. Results
3.1. KB-R7943 Use-Dependently Inhibits ASIC1a Currents in CHO Cells

We first examined whether KB-R7943 affects ASIC1a currents. ASIC1a is transiently
expressed in CHO cells (CHO-ASIC1a) as described previously [39]. At 48–72 h after
transfection, ASIC1a currents were induced by a pH drop from 7.4 to 6.0. Considering
the run-down of ASIC1a currents [41], the effect of KB-R7943 was not tested until at least
three consecutive stable currents were obtained. KB-R7943 (100 µM) was added in pH 6.0
solution. It inhibits ASIC1a currents in a time-dependent manner, and the inhibition is
irreversible after washout for 5 min (Figure 1A). The time-dependent reduction of ASIC1a
currents suggests a potential mechanism of use-dependent inhibition. Use-dependent
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inhibition often refers to frequency-dependent inhibition [42], i.e., within the same period
of time; the higher the frequency of channel activation in the presence of an inhibitor, the
more inhibition takes place. To test this possibility, three stimulating frequencies with
an interval of 60, 30, and 15 s between activations of ASIC1a were used (Figure 1B–D).
As expected, we found that, within the same period of 120 s, the higher frequency of
stimulation causes more ASIC1a currents inhibited by KB-R7943 (Figure 1E). KB-R7943
inhibits 78%, 67%, and 51% of the ASIC1a currents under high-frequency stimulation (15 s
interval), medium-frequency stimulation (30 s interval), and lower-frequency stimulation
(60 s interval), respectively (Figure 1E, n = 4–6, ANOVA, * p < 0.05, ** p < 0.01 compared
with 60 s interval, ## p < 0.01 compared with 30 s interval).
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Figure 1. KB-R7943 inhibits homomeric ASIC1a currents in CHO cells (CHO-ASIC1a). ASIC1a was
transiently expressed in CHO cells and the currents were recorded at 48–72 h after transfection.
(A) Representative current traces show a time-dependent and irreversible inhibition of the ASIC1a
currents by KB-R7943. KB-R7943 (100 µM) was added in the pH 6.0 solution. ASIC1a currents were



Biomolecules 2023, 13, 507 5 of 15

induced by a pH drop from 7.4 to 6.0 and the effect of KB-R7943 was not tested until at least
3 consecutive stable currents were obtained. (B–D) Representative current traces show that KB-R7943
inhibits ASIC1a currents at 3 different stimulating frequencies with intervals of 60, 30, and 15 s
between activations of ASIC1a. (E) Summary data show that KB-R7943 inhibits more ASIC1a currents
at higher-frequency stimulation (n = 4–6, ** p < 0.01 compared with 60 s interval, ## p < 0.01 compared
with 30 s interval, ANOVA followed by Turkey’s multiple comparisons test). Data were expressed as
mean ± SEM.

In addition, we also examined whether KB-R7943 inhibits ASIC1a currents when
added to the pH 7.4 solution. We first tried 100 µM and found that this concentration
causes an unstable recording after 2 to 3 min perfusion (data not shown), which makes the
analysis unreliable. We then changed to a lower concentration of 50 µM and observed a
significant “time-dependent” inhibition, which is irreversible. Around 80% of the ASIC1a
currents are inhibited by 50 µM KB-R7943 after 5 min perfusion with 5 stimuli of the channel
(Figure 2A,D). To determine whether this inhibition is use-dependent, we compared the
extent of inhibition between 1 and 5 stimuli in the presence of 50 µM KB-R7943, within the
same period of 5 min. Our data show that only ~20% of the currents are inhibited by 5 min
perfusion of KB-R7943 with 1 stimulus, but ~80% of the currents are inhibited by 5 min
perfusion of KB-R7943 with 5 stimuli (Figure 2A,B,D). These data together with the data
in Figure 1 strongly suggest that KB-R7943 inhibits ASIC1a channel in a use-dependent
manner. Considering the fact that KB-R7943 use-dependently and irreversibly inhibits
ASIC1a currents when it is only present in the pH 7.4 solution, we speculate that KB-R7943
could also bind with the inactivated channels near the channel pore region and when the
channels are opened it gets trapped in the channel pore, which makes it difficult to be
washed out. The binding on the inactivated channel might be loose and easy to be washed
away since it is not trapped in the channel pore yet. To test this hypothesis, we examined
the ASIC1a currents after perfusion of KB-R7943 in the pH 7.4 solution for 3 min followed
by a 2 min wash out. We found that there is no significant change in the amplitude of the
ASIC1a currents (Figure 2C–D), suggesting that KB-R7943 can be washed away easily from
the inactivated ASIC1a.
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Figure 2. Application of KB-R7943 in pH 7.4 solution inhibits homomeric ASIC1a currents in CHO
cells (CHO-ASIC1a). ASIC1a was transiently expressed in CHO cells and the currents were recorded
at 48–72 h after transfection. (A) Representative current traces show a time-dependent and irreversible
inhibition of the ASIC1a currents by KB-R7943. KB-R7943 (50 µM) was added in the pH 7.4 solution.



Biomolecules 2023, 13, 507 6 of 15

ASIC1a currents were induced by a pH drop from 7.4 to 6.0 and the effect of KB-R7943 was not
tested until at least 3 consecutive stable currents were obtained. (B) Representative current traces
show the ASIC1a currents after 5 min perfusion of KB-R7943 with one stimulus of the ASIC1a
channels. KB-R7943 was not administered during the 4S of switching the barrel without acidic
solution perfusion. (C) Representative current traces show the ASIC1a currents after 3 min perfusion
of KB-R7943 followed by a 2 min wash. KB-R7943 was not administered during the 4S of switching
the barrel without acidic solution perfusion. (D) Summary data show that KB-R7943 use-dependently
inhibits ASIC1a currents (n = 4–5, ** p < 0.01 compared with 3 min perfusion of KB-R7943 followed
by a 2 min wash; ## p < 0.01 compared with 5 min perfusion of KB-R7943 plus one stimulus of the
ASIC1a channels. ANOVA followed by Turkey’s multiple comparisons test). Data were expressed as
mean ± SEM.

3.2. KB-R7943 Inhibits ASIC1a Currents in a Concentration-Dependent and pH-Independent
Manner in CHO Cells

We further determined the concentration and pH dependence of KB-R7943 on ASIC1a
currents. First, we compared the inhibitory effect of 10 µM and 100 µM KB-R7943 on
ASIC1a currents with 5 times of stimulation of the channels. As shown in Figure 3A,B,
KB-R7943 inhibits ASIC1a currents in a concentration-dependent manner: at the end
of 5 times of ASIC1a activation, around 23% and 64% of the currents are inhibited by
10 µM and 100 µM KB-R7943, respectively (Figure 3A,B, n = 4–6, ANOVA, * p < 0.05 and
** p < 0.01 compared with the vehicle; # p < 0.05 and ## p < 0.01 compared with 10 µM
KB-R7943). Then, we determined whether KB-R7943 exerts its inhibition in a pH-dependent
manner. We first compared the inhibitory effect of 100 µM KB-R7943 on ASIC1a currents
activated at different pH levels of 6.0 and 6.7. We found that KB-R7943 exerts a similar
inhibition of the ASIC1a currents activated at pH 6.7 (Figure 3C, middle panel) to that
activated at pH 6.0 (Figure 3A, lower panel), without statistical significance (Figure 3D).
We then compared the inhibitory effect of 100 µM KB-R7943 on ASIC1a currents activated
at pH 6.0 with different conditioning pH levels of 7.4 and 7.25. KB-R7943 exerts a similar
inhibition of the ASIC1a currents at both conditioning pH levels of 7.25 (Figure 3C, lower
panel) and 7.4 (Figure 3A, lower panel), without statistical significance (Figure 3D). These
data suggest that KB-R-7943 might inhibit ASIC1a in a pH-independent manner.
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Figure 3. Concentration-dependent and pH-independent inhibition of homomeric ASIC1a currents
by KB-R7943 in CHO cells (CHO-ASIC1a). (A,B). Representative current traces and summary data
show the inhibition of the ASIC1a currents by 10 µM and 100 µM KB-R7943. KB-R7943 was only
added in pH 6.0 solution. ASIC1a currents were induced by a pH drop from 7.4 to 6.0 and the effect of
KB-R7943 was not tested until at least 3 consecutive stable currents were obtained, n = 4–6, ANOVA,
* p < 0.05 and ** p < 0.01 compared with the vehicle; # p < 0.05 and ## p < 0.01 compared with 10 µM
KB-R7943. (C) The upper left panel shows the ASIC1a currents activated at different pHs of 6.0 and
6.7 with the same conditioning pH of 7.4. The upper right panel shows the ASIC1a currents activated
at pH 6.0 with different conditioning pHs of 7.4 and 7.25. The middle panel shows that KB-R7943
inhibits the ASIC1a currents activated at pH 6.7 with the conditioning pH of 7.4. The lower panel
shows that KB-R7943 inhibits the ASIC1a currents activated at pH 6.0 with the conditioning pH of
7.25. KB-R7943 was only added in pH 6.7 and 6.0 solutions. (D) Summary data show that KB-R7943
inhibits ASIC1a currents at different activation and conditioning pHs (n = 4–6). Data were expressed
as mean ± SEM.

3.3. Effect of KB-R7943 on Homomeric ASIC2a and ASIC3 in CHO Cells

To determine whether the inhibition of KB-R7943 on ASICs is subunit-dependent, we
also examined its effect on homomeric ASIC2a and ASIC3 channels. ASIC2a is present
in both central and peripheral nervous systems, which can form homomeric ASIC2a
and heteromeric channels with other ASIC subunits. Unlike homomeric ASIC1a which
has a high sensitivity to proton (pH0.5 act ~6.0), homomeric ASIC2a has a relatively low
sensitivity to acidic pH (pH0.5 act ~4.5) [9,43]. To activate ASIC2a, we used a perfusion
solution with pH 4.5. The effect of KB-R7943 was tested after three stable current traces
were obtained. Our data show that, unlike its use-dependent and irreversible inhibition
on ASIC1a, KB-R7943 (100 µM) exhibits a fast and reversible inhibition on ASIC2a. The
inhibition reaches a steady state rapidly and is washed back immediately (Figure 4A).
At the end of the KB-R7943 application, ~23% of the peak ASIC2a currents are inhibited
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(Figure 4B, n = 6, ** p < 0.01 compared with the baseline value immediately before KB-R7943
application). Next, we examined whether KB-R7943 affects ASIC3, which is abundantly
and restrictedly expressed in the peripheral nervous system [8,9]. ASIC3 can generate
two current components including the transient and sustained currents. The sustained
current component has a relatively lower sensitivity to protons [7,8], which can be induced
when the pH drops below 5 (Figure 4C). Similar to its effect on ASIC2a currents, KB-R7943
(100 µM) rapidly and reversibly inhibits ASIC3 currents (Figure 4C). It inhibits ~35% of
the transient current and ~62% of the sustained current (Figure 4D, n = 5, * p < 0.05 and
** p < 0.01 compared with the baseline value immediately before KB-R7943 application).
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Figure 4. KB-R7943 Inhibits homomeric ASIC2a and ASIC3 currents in CHO cells (CHO-ASIC2a
and CHO-ASIC3). ASIC2a and ASIC3 were transiently expressed in CHO cells and the currents
were recorded at 48–72 h after transfection. (A) Representative current traces show that KB-R7943
(100 µM) rapidly and reversibly inhibits ASIC2a currents. ASIC2a currents were induced by pH
4.5 acidic solution. (B) Summary data show the normalized peak current amplitudes immediately
before, at the end of KB-R7943 application and at the end of washout (n = 6, ** p < 0.01 compared
with the baseline values immediately before KB-R7943 application, ANOVA). (C) Representative
current traces show that KB-R7943 rapidly and reversibly inhibits ASIC3 currents. The biphasic
ASIC3 currents were induced by pH 5.0 acidic solution. (D) Summary data show that KB-R7943
inhibits the transient (blue) and sustained (red) ASIC3 currents (n = 5, * p < 0.05 and ** p < 0.01
compared with the baseline values immediately before KB-R7943 application, ANOVA, followed by
Dunnett’s multiple comparisons test).
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3.4. KB-R7943 Inhibits ASICs in Primary Cultured DRG Neurons

Heterologous expression has proven to be a powerful tool to elucidate the functional
properties of ion channels. However, it has limitations, for example, it cannot fully mimic
the ratio of different subunits and complicated subtypes of ion channels in the native cells.
In this regard, we further examined the effect of KB-R7943 on ASIC currents in primary
cultured DRG and cortical neurons, which express a mixture of homomeric and heteromeric
ASICs. The effect of KB-R7934 on ASIC currents mediated by different ASIC subunits in
CHO cells suggests that it might affect the ASICs in the central and peripheral neurons.
To test this hypothesis, we first examined the effect of KB-R7934 on ASICs in primary
cultured mouse DRG neurons, which express ASIC1a, 1b, 2a, 2b, and 3. ASIC3 is the major
ASIC subunit expressed in DRG neurons [44], which can form homomeric and heteromeric
ASIC3 channels. ASIC-like current was induced by perfusing acidic solution at pH 5.0.
The currents are significantly and reversibly inhibited by KB-R7943 (100 µM) (Figure 5A).
The peak current is inhibited by ~51% (Figure 5B, n = 7, ** p < 0.01 compared with the
baseline value).
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Figure 5. KB-R7943 inhibits ASIC-like currents in mouse dorsal root ganglion (DRG) neurons.
(A) Representative current traces show that KB-R7943 (100 µM) reversibly inhibits the ASIC-like
currents in DRG neurons. ASIC-like currents were induced by a pH 5.0 acidic solution. (B) Summary
data show that KB-R7943 inhibits the peak ASIC-like currents (n = 7, ** p < 0.01 compared with the
baseline values immediately before KB-R7943 application, ANOVA, followed by Dunnett’s multiple
comparisons test).

3.5. KB-R7943 Inhibits ASICs in Primary Cultured Mouse Cortical Neurons

Next, we determined the effect of KB-R7943 on ASICs in central neurons. The primary
cultured mouse cortical neurons were used. ASIC1a is the major ASIC subunit expressed
in the brain neurons, which can form homomeric ASIC1a or heteromeric channels with
ASIC2a or 2b [15]. These heteromeric channels generate similar ASIC currents as homomeric
ASIC1a that are difficult to be distinguished from each other. KB-R7943 (100 µM) inhibits
the ASIC1a-like currents in cortical neurons in a time-dependent manner (Figure 6A).
Again, the time-dependent decrease in ASIC1a currents by KB-R7943 suggests a use-



Biomolecules 2023, 13, 507 10 of 15

dependent inhibition. To test this possibility, we examined the inhibitory effect of KB-R7943
on ASIC1a-like currents under two different stimulating frequencies with 15 s and 60 s
intervals (Figure 6A,B). Our data show that, within the period of 2 min, KB-R7943 inhibits
~73% of the ASIC1a-like currents at the high-frequency stimulation (15s interval), whereas
only ~49% of the currents are inhibited at the low-frequency stimulation (60 s interval),
suggesting a use-dependent inhibition (Figure 6C, n = 4–7, ANOVA, ** p < 0.01 compared
with 60 s interval). We performed washout in some neurons after KB-R7943 application and
found that the currents are largely reversible, which recover to ~70 to 80% of the original
values (Figure 6D,E, n = 3–4).
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Figure 6. KB-R7943 inhibits ASIC1a-like currents in mouse cortical neurons. (A,B) Representa-
tive current traces show that KB-R7943 (100 µM) inhibits the ASIC1a currents at different stimu-
lating frequencies, including 15 s and 60 s intervals, respectively. (C) Summary data show that
KB-R7943 inhibits more ASIC1a currents at higher-frequency stimulation (15 s interval) (n = 4–7,
** p < 0.01 compared with 60 s interval, ANOVA, followed by Turkey’s multiple comparisons test).
(D,E) Representative current traces show that KB-R7943 (100 µM) reversibly inhibits the ASIC1a
currents at 60 s and 15 s intervals, respectively.
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3.6. The Effect of KB-R7943 on ASICs Is Independent of NCX Inhibition

KB-R7943 is widely used as a reverse NCX inhibitor. To determine whether the effect
of KB-R7943 on ASICs is coupled with its effect on NCX, we examined the potential effect
of other NCX inhibitors, including SEA0400 and SN-6, on ASIC1a-like currents in cortical
neurons (Figure 7A). The IC50 on NCX is 5.7 µM for KB-R7943 [45], 2.9–16 µM for SN-
6 [46], and 33 nM for SEA0400 [47]. We tested these compounds at a high concentration of
50 µM which should maximally inhibit the NCX activity. We found that only KB-R7943 has
a significant inhibitory effect on ASIC currents (Figure 7B,E). Neither SEA0400 nor SN-6
show any effect (Figure 7C–E). These data suggest that the inhibitory effect of KB-R7943 on
ASICs is independent of its activity on NCX. In addition, these findings also suggest that
the isothiourea group, which is only present in KB-R7943, may play an important role.
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Figure 7. Effect of KB-R7943 and analogs on ASIC1a-like currents in mouse cortical neurons. (A) The
structures of KB-R7943 and its analogs, including SEA-0400 and SN-6. (B–D) The effect of KB-R7943
(50 µM), SEA0400 (50 µM), or SN-6 (50 µM) on ASIC1a-like currents. (E) Summary data show the
effect of KB-R7943, SEA0400, and SN-6 on ASIC1a-like currents (n = 3–5, * p < 0.05 and ** p < 0.01
compared with the baseline value immediately before KB-R7943 application, ANOVA, followed by
Dunnett’s multiple comparisons test).

4. Discussion

In the present study, we demonstrated that KB-R7943 negatively modulates ASICs. It
inhibits the homomeric ASIC1a in a use- or frequency-dependent manner; the higher the
frequency of channel activation within a fixed period of time, the greater the inhibition
occurs. The inhibition is pH independent. Some ASICs inhibitors exert their inhibition by
shifting either the pH dependence of activation to a more acidic pH or that of steady-state
desensitization (inactivation) to more alkaline pH. For example, PcTx-1 inhibits ASIC1a by
shifting the steady-state desensitization curve of ASIC1a to an alkaline pH [48]. In contrast,
the change of the conditioning or activation pH dose not significantly affect the inhibitory
effect of KB-R7943. In addition, the inhibition is irreversible, which might be caused by a
tight binding that makes KB-R7943 difficult to wash away, or an altered conformation of
the ASIC1a upon KB-R7943 binding traps it deeply in certain locations, e.g., the channel
pore, resulting in difficulty for washout. In contrast to ASIC1a, the homomeric ASIC2a and
ASIC3 channels are reversibly inhibited by KB-R7943. Both the transient and sustained
current components of ASIC3 are inhibited. Furthermore, KB-R7943 inhibits the ASIC-
like currents in DRG neurons and the ASIC1a-like currents in the cortical neurons. The
inhibition of ASIC1a-like currents is also use-dependent and is unrelated to its effect on
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NCX since neither of the other two well-characterized NCX inhibitors shows an effect
on ASIC. The inhibition might be dependent on the isothiourea group, which is present
in KB-R7943 but not in other structurally related analogs including SEA0400 and SN-6.
Interestingly, even though amiloride and other analogs have a similar functional group of
guanidine, none of these compounds can inhibit ASIC like KB-R7943 [49]. Their effect on
ASIC1a is fast and reversible [49]. These differences indicate that the isothiourea group
determines the unique pharmacological properties of KB-R7943 on ASICs.

ASICs are predominantly expressed in neurons. The different ASIC subunits have distinct
expression profiles. ASIC1a, 2a, and 2b are expressed in both the central and peripheral
nervous system, while ASIC1b and 3 are restricted to the peripheral nervous system [8,9,50].
ASICs are trimeric channels, which can be either homomeric that are composed of the same
subunits, or heteromeric channels that are composed of at least two different types of subunits.
For example, the peripheral neurons may also express homomeric ASIC1a, 1b, and 3 channels,
or heteromeric ASICs containing different combinations of these subunits [37,51]. Similarly,
the central neurons can express homomeric ASIC1a and 2a channels, as well as heteromeric
ASICs such as ASIC1a/2a, ASIC1a/2b, etc. [15]. Some homomeric and heteromeric channels
share similar electrophysiological properties that cannot be distinguished from each other
due to the lack of pharmacological tools. In this regard, the inhibited ASIC-like currents in
DRG neurons and ASIC1a-like currents in cortical neurons by KB-R7943 could be mediated
by either homomeric or heteromeric ASICs.

The inhibition of the ASIC-like currents in DRG neurons is completely reversible, sug-
gesting an extremely low level of homomeric ASIC1a channels in these neurons because the
inhibition of the homomeric ASIC1a by KB-R7943 is irreversible. This is consistent with the
previous studies which suggest that the heterotrimeric ASIC3 is the leading form of ASICs
in the peripheral neurons [22,52]. ASIC3 is largely colocalized with ASIC2b in sensory
neurons to form a heteromeric channel in DRG neurons, which can also produce a biphasic
current similar to that of the homomeric ASIC3 [44,53]. Based on these facts, we speculate
that the inhibited ASIC-like currents by KB-R7943 are likely mediated by a combination of
homomeric ASIC3 and heteromeric ASIC3, e.g., ASIC3/2b. ASICs, particularly ASIC3, have
been implicated in a variety of pain sensations [21,54,55]. The sustained non-desensitizing
current component can produce a long-lasting depolarization of the neuronal membrane of
the nociceptors, contributing to persistent pain [8,54,56]. Intriguingly, the widely used small
molecule ASIC inhibitor amiloride potentiates this sustained ASIC-like current component
in sensory neurons [34]. This may explain why amiloride was less effective in reducing
acid-evoked pain under more severe acidification conditions when the sustained currents
are evoked compared with that under moderate acidification conditions (pH ≥ 6.0) when
only the transient currents are evoked [23,39]. In contrast, KB-R7943 inhibits both current
components, suggesting that it may have therapeutic potential for relieving pain under a
broader pH range of acidic conditions. A recent study has reported that KB-R7943 exerts
antinociceptive activity in rodent neuropathic pain model [35], and inhibition of ASICs
might be an important mechanism.

KB-R7943 inhibits ASIC1a-like currents in primary cultured mouse cortical neurons in
a use-dependent manner. The recorded ASIC1a-like currents are generated by the activation
of a mixture of homomeric and heteromeric ASIC1a channels, which are difficult to be
distinguished from each other. The inhibition is largely reversible, suggesting that most of
the inhibited currents might be mediated by the heteromeric ASIC1a channels, since the
inhibition of homomeric ASIC1a by KB-R7943 is irreversible. A previous report suggests
that, in primary cultured brain neurons, ~20% ASICs are homomeric ASIC1a, ~30% are
ASIC1a/2a, and the majority of ASIC channels (~50%) are ASIC1a/2b [15]. KB-R7943
inhibits >70% of the ASICs in primary cultured cortical neurons, suggesting that it may
inhibit the heteromeric ASIC1a channels, e.g., ASIC1a/2a or ASIC1a/2b. Regarding the
fact that activation of homomeric ASIC1a and/or heteromeric ASIC1a/2b contributes to
ischemia and acidosis-induced neuronal damage [14,15], we speculate that the inhibition
of ASIC1a or possible ASIC1a/2b by KB-R7943 might be an important component of the
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mechanism underlying its neuroprotective activity [36]. In the future, the combination of
specific ASIC1a inhibitor PcTx1 and ASIC1a knockout mice could yield data that provide
further confirmation of this mechanism.

In summary, we have revealed that KB-R7943 is a novel ASIC inhibitor. This provides
a new pharmacological tool for investigating ASICs functions. In addition, our results
provide an important lead compound for developing ASIC inhibitors for treating ASIC-
related neurological disorders. Future structural modification may help identify a new
compound with a specific inhibitory effect on ASIC without affecting NCX, which could be
a drug candidate for therapeutic applications.
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