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Abstract: The inverse protein folding problem, also known as protein sequence design, seeks to
predict an amino acid sequence that folds into a specific structure and performs a specific function.
Recent advancements in machine learning techniques have been successful in generating functional
sequences, outperforming previous energy function-based methods. However, these machine learn-
ing methods are limited in their interoperability and robustness, especially when designing proteins
that must function under non-ambient conditions, such as high temperature, extreme pH, or in
various ionic solvents. To address this issue, we propose a new Physics-Informed Neural Networks
(PINNs)-based protein sequence design approach. Our approach combines all-atom molecular dy-
namics simulations, a PINNs MD surrogate model, and a relaxation of binary programming to solve
the protein design task while optimizing both energy and the structural stability of proteins. We
demonstrate the effectiveness of our design framework in designing proteins that can function under
non-ambient conditions.

Keywords: protein design; physics-informed neural networks; binary optimization

1. Introduction

Protein sequence design is the process of generating a sequence of amino acids that
folds into a desired shape to perform a certain function. To achieve this, several approaches
have been developed which can be divided into traditional-physics-based e.g., [1,2], and Ma-
chine Learning (ML)-based techniques e.g., [3–5].

Traditional physics-based methods led to the initial steps in protein design and have
contributed significantly to our understanding of protein structure and function. Yet, these
methods suffer from several limitations, including model complexity, sensitivity to model
accuracy, computational cost, and oftentimes a lack of flexibility. Traditional algorithms
often presume a fixed or almost fixed backbone. Such an assumption consequently means
that the protein structure is weakly sequence dependent; thus, changing the sequence does
not significantly change the structure [2,6–8]. This approximation can work only for small
changes in the original sequence, or when changes in the original sequence do not break or
create any significant new interactions. Indeed, if we arbitrarily change every residue in
the original sequence, the structure is almost surely bound to change. Therefore, while this
approach can lead to elegant optimization algorithms, it lacks robustness as the number
of mutations in the sequence increases. Furthermore, such an approach necessitates a
reasonable initial guess, namely a protein that already closely folds into the desired shape,
making the use of this approach for de novo design difficult.

Machine Learning methods have proven to be effective tools for predicting protein
structure and function, as well as designing new proteins [4,9–11], yet they avoid energy
calculations all-together. Since ML methods do not use energy calculations and since they
often lack interpretability and have limited explanatory power, there is no guarantee that
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the generated structure-sequence model optimizes some target function (e.g., stability),
even approximately. Furthermore, even if a sequence does fold into a desired structure it
may be unstable or suboptimal.

Physics-based and deep learning-based methods rely on empirical energy functions
and machine learning models, respectively. Both are parameterized by the known protein
structures, regardless of the optimal conditions for their folding and operations. For most of
them, however, these conditions are ambient. Thus, interpolating these functions and mod-
els to specific domains of non-ambient conditions (e.g., high temperature) is speculative,
and likely wrong.

In this work, we tackle the problem of protein design from a different perspective.
Rather than using the commonly used energy functions on a static structure, we use
molecular dynamics (MD) simulations to compute the protein energy landscape. In this
way, we both avoid the fixed backbone assumption and infer an energy landscape that
is MD-derived for a target under specific environmental conditions. Thus, this method
should allow us to design proteins that approximately fold into a target structure, optimize
their properties even at non-ambient conditions, and account for their flexibility, under the
assumption that molecular dynamics simulations faithfully describe protein interactions
(see [12–14] and reference within).

A similar idea was used in [12]; however, its usability is prohibitively restricted by
the computational complexity. Since the energy, structure and stability of the protein
are determined by MD, computing them a number of times might not be realistic. We,
therefore, extend previous work and combine MD with a deep learning algorithm that
approximates the quantities obtained from MD. Replacing MD with ML is a recent practice
(see e.g., [15,16] and references within). Unlike many recent papers that aim to replace
MD with deep learning to approximate the entire MD trajectory, our model is designed to
approximate only the average energy and deviation from the target design, requiring only
a small amount of computational effort. Such an approximation is sometimes referred to as
a Physics-Informed Neural Network (PINN) or surrogate model (see [15] and references
within). Using PINNs as surrogate models is an inexpensive approximation that replaces
complex simulations and is now commonly carried out in many fields (see, e.g., [17–20]),
ranging from flow to chemical engineering and hardware testing. We, therefore, find it
appropriate to extend this methodology to protein design.

We set out to construct PINNs which, given a sequence and MD data, predicts the
protein energy, metrics that measure the deviation of the structure from the initial design
as well as stability. Once PINNs learn a certain model, they can replace MD and be used
to efficiently solve the protein design task as an optimization problem (see algorithm
description in Figure 1).

To solve the optimization problem that is associated with the design, we use binary
programming where the energy calculations are conducted inexpensively. We generate
new, low-energy sequences as we solve the optimization problem. These sequences are
simulated by MD and their energy and structure data are input into the networks to be
re-trained. The algorithm exploits the neural network surrogate to MD while exploring the
space by using random perturbations.

Note that a fundamental aspect of this work is that we aim to generate predictions that
are as good as MD predictions. Clearly, if the simulated system is too far from equilibrium
or the computed energy is incorrect then our model will fail to reproduce experimental
results. However, the calculation of energies based on MD trajectories has been thoroughly
studied and therefore can be considered a reliable alternative compared to many ad hoc
calculations [12,21–24].

The rest of this paper is structured as follows. In Section 2, we mathematically
define the protein design problem. In Section 3, we describe the surrogate model used
to approximate the energy. In Section 4, we describe the optimization procedure used
to design new proteins. Section 5 describes a case study and in Section 6 we summarize
the paper.
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Figure 1. Design workflow. Input model structure and sequences are processed by MD simulations
to generate time trajectories of structure, stability, and energy. All metrics are used to establish PINNs,
followed by a sparsity-promoted optimization algorithm. The output is either used to retrain the
model or outputs the suggested optimized sequences.

2. Mathematical Definition of the Protein Design Problem

In this section, we discuss the mathematical framework for the solution of the protein
design problem. While this framework bears some resemblance to earlier studies in this
field, there are some substantial differences that make our formulation unique.

Similar to other classical work, the driving force behind our protein design algorithm is
the energy of the system. Therefore, a key requirement is to be able to compute the energy
for every given sequence. Common codes assume fixed coordinates and compute the
energy while others use heuristics to do so. Here, we attempt, for the first time, to introduce
protein dynamics in solution under the desired environmental conditions while avoiding
common assumptions that could lead to unrealistic designs.

Assume that we have a protein or a number of proteins that interact through some
interface. The interface may be intra-chain, or between different proteins in a complex. We
represent the system with a sequence, s, and the coordinates of its full atom model, x.

Assume that we have a target structure xtar, to which we aim the protein to fold into.
This structure may be fully known, or alternatively, only a portion of the region involved
in the interaction might be defined (protein in painting [25,26]). The latter may be the case
when considering protein–protein interactions where only the interaction site is known.
Our goal is to find sequences ŝ with low energies and low structural deviations from xtar.

There are a number of challenges when considering the binding energy and structural
stability of a complex. First, there is no unique value to the binding energy. Proteins are
flexible and may even change conformation. Second, taking into account the energy alone
may not be sufficient. A low energy protein may be structurally unstable/disordered if its
energy landscape has several local minima or is very flat, allowing for a high level of
coordinate perturbation. We thus turn to a different approach that takes these limitations
into consideration. Let us assume that we have a sequence s and its all-atom model. In
order to compute the energy of this sequence, we simulate the protein. MD trajectories
can be analyzed to obtain the energy of the protein and extract its coordinates for every
timestep of the simulation. Since proteins in solution are in constant motion and fluctuate
around a minimum at equilibrium, we define the following quantities

r(s) =
1
T

∫ T

0
‖x(t)− xtar‖2 dt (1a)

E∗(s) =
1
T

∫ T

0
E(x(t), s) dt (1b)
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Note that these quantities depend only on s and xtar as the coordinates x(t) are
integrated out. The first quantity measures the average deviation of the coordinates from
the desired fold, the Root Mean Square Deviation (RMSD), from the target. This deviation
is small in stable proteins with a fold, which is similar to the desired design. However,
for unstable proteins or ones that undergo large conformational changes, this quantity may
be rather high. We refer to the RMSD as stability. The second component, E∗(s), is the
average energy of the structure.

Let us now consider the design of a new protein. In this case, we want to design a
protein with a particular structure of interest xtar. Our goal is to find an optimal sequence
ŝ with two characteristics. First, we require that the energy of the protein E∗(ŝ) is low.
Second, we require that its structure is stable around the required fold, i.e., r(ŝ) is small.
This strategy permits coordinate motion (no fixed backbone assumption) and also addresses
the problem of structural instability in the designed structure. These requirements lead to
the following optimization problem

min
s

E∗(s) energy minimization (2a)

s.t. r(s) ≤ δstab structural stability (2b)

where δ is some acceptable deviation from the target structure.
The optimization problem (2a) and (2b) is challenging to solve. The difficulty stems

from two main issues. First, the energy and stability are computed by expensive simulations.
While this looks initially difficult, deep learning approximations have been developed to
replace expensive MD at a fraction of the cost in recent years. We thus use MD simulations
to train a graph neural network that can approximate those simulations, yielding the
desired quantities for the solution of the problem. Note that our network is different from
networks that recover the complete trajectory. Our demands are substantially modest as
we aim to approximate only the average energy of the protein and its coordinate deviation
from the target design.

A major challenge in such an optimization task is the discrete nature of the sequence
s, which can be solved as a binary programming problem. To address this, we utilize a
sparsity-promoting optimization method that employs convex relaxation to replace the
binary optimization problem. This approach has proven to be effective for several binary
optimization problems [27–29]. Although the method may require intensive sampling, it
is highly efficient when the objective function evaluation is inexpensive. As a result, our
approach of combining this method with surrogate deep learning models can be considered
an effective solution for the protein design problem.

3. Deriving a Surrogate Neural Network

Since solving the optimization problem requires the MD simulation of every given
sequence-structure set, and since each MD simulation is computationally intensive, we opt
for a so-called surrogate deep learning model to replace the MD simulation. The goal of
the surrogate is to predict the binding energy E∗(s), and the structural stability ‖r(s)‖ for a
given protein. These quantities can then be used directly in the optimization problem (2a)
and (2b), saving on the time costs of MD simulations and significantly reducing the cost of
the optimization problem.

Protein folding is influenced by both local and global interactions between residues,
making it a system that can be described well using a graph. We experimented with graph
neural networks (GNNs) [9] and selected the one proposed in [30] as it has an interpretation
of energy.

The input to the network is the sequence (one hot encoded) and the coordinates of the
alpha carbon (Cα) atom of each residue. Given the coordinates, we compute the distance
matrix (that is, the distance between every pair of Cα atoms) and use the distance map as
a soft adjacency matrix. From the coordinates, we further derive a number of invariant
features. To this end, we use the Frenet framework [31] that uniquely defines any curve in
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3D space up to rotation and translation. We compute the curvature of each protein, κ(x),
and its torsion τ(x). We use these features, together with one hot embedding, as inputs to
our network.

The network can be written as

Y0 = K0X (3)

Yj+1 = Yj + σ(KjYjL) j = 1, . . . , N (4)

Xout = KoutYN

Here, X, which represents the sequence, is a matrix of k× n, where k is the number
of possible amino acids (typically 20), n is the length of the protein, L is the n× n graph
Laplacian matrix, the weights Kj are s× s and Kout is a 2× s matrix. We choose σ(·) to be
the leaky Relu function.

The output of the network, Xout, contains two channels. The first is the binding energy
of each residue and the second is the RMSD of each residue. When we train the network,
we minimize the difference between Xout to the per node energy and structural deviation
obtained by the MD simulation.

Thus, if the network is trained successfully, it can approximate both the binding energy
and the structural stability of a given sequence; it can therefore be used for protein design
without the computational cost of MD simulations.

4. Binary Programming Using Group Sparsity Relaxation

The core of the protein design problem requires solving an optimization problem
based on a specific energy. The sequence s is converted into a s× n “one hot” matrix S,
where each column represents a residue and each entry is binary. Techniques for solving
binary optimization include relaxation and random searches [27–29]. Here, we propose
a modification of the concept of group sparsity to approximately solve the optimization
problem, as it has been successful in relaxing non-convex problems in the past (see [32–34]
and reference within).

To this end, rather than solving for a binary matrix S that has a single non-zero entry
at each column we define the convex set, S and require the following three properties for
every matrix S ∈ S :

0 ≤ Sij ≤ 1 (5)

∑
i

Sij = 1 (6)

‖S‖2
1,2 = ∑

j

(
∑

i
Sij

)2

≤ n (7)

The first two properties simply imply that each element in the matrix is between 0 and
1 and that the sum of each column of the matrix is also 1. The last term in the set is the so
called `1,2 norm and its role is to promote sparsity in each column of the matrix. Since the
matrix S is sparse, holding exactly n non-zero entries, group sparsity yields a structure of S
that is similar to the one obtained from binary programming.

The set S is convex; therefore, the projection is well defined (see [34] for details). To
this end, we define the projection operator as

PS (S∗) = arg min
S∈S

1
2
‖S− S∗‖2 (8)

The projection takes a matrix S∗ that is outside the convex set S and solves for a matrix
S that belongs to the set S . As shown in [34], this can be achieved using simple thresholding.
Given the projection PS , we can now use the gradient projection algorithm [35] for the
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design problem. The algorithm takes a steepest descent step to minimize the energy
followed by a projection to the set S (see Algorithm 1).

Convergence occurs when S is a fixed point of the iteration. However, we use another
important criterion to terminate the algorithm and exit. Recall that the energy we use in this
algorithm is not the true energy but rather a surrogate function. When training the network,
we keep track of our validation accuracy and the number of mutations in S. The network is
trained until the number of mutations exceeds a preassigned number. Here, we allow up
to 10 mutations in the protein and exit the algorithm when it exceeds this number. While
there is no proof that such an algorithm converges to an exact solution, we have found that
after a small number of iterations the algorithm does not yield significant improvement
in the energy and yields acceptable solutions. These findings are consistent with other
applications [36] where similar algorithms have been used. Notably, each iteration of the
algorithm requires an evaluation of the energy function, which is prohibitively expensive if
MD is used, but feasible with the surrogate model. Thus, practical design is obtained in
linear time with respect to the length of the protein.

Algorithm 1 Group Sparsity Design

Require: S, X, niter, δstab
n = length(X)
E← ∞
set S← PS (S)
for i = 1 . . . niter do

Using the network compute E(S, X) and ∇SE
S← PS (S− µ∇SE)
Check for convergence or exit conditions.

end for
return S

5. Example: Designing Cardiac Troponin Binders

Cardiac troponin I (cTpnI) is a protein found in heart muscles [37]. Upon damage
to cardiac cells such as in acute myocardial infarction (AMI) (commonly known as heart
attack), cTpnI is released in the blood [38]. Hence, the detection of cTpnI makes it an
excellent biomarker for the diagnosis of AMI [39–41]. In this section, we describe cTpnI
binders design using our PINNS approach.

In cardiac cells, cTpnI forms a complex with the following two regulatory proteins:
troponin C (TpnC) and troponin T (TpnT) [38]. The crystal structure of the ternary complex
is available (Figure 2a) [42]. In blood, however, the biomarker can be found in a complex
with either TpnC only or both TpnC and TpnT. Our goal is to design peptides that can
specifically bind to cTpnI complexed with TpnC, herein referred to as the target complex.
Such a binder can be used for the detection of cTpnI to test for AMI.

5.1. Choice of the Template Peptide

This study is based on the experimentally-resolved structure of the cTpnI-TpnC-TpnT
complex, PDB ID: 1J1D [42]. Our first goal was to choose the fragment of TpnT that would
be the starting template for the designed binder. An ideal binder would have high affinity
and selectivity to cTpnI. Therefore, we aim to find the highest affinity fragment of TpnT to
cTpnI-TpnC. Specifically, we ran MD simulations of the troponin complex. The average
energy contribution of each residue of TpnT to the total binding energy was calculated to
decide the highest affinity fragment to be used as a design template.
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Figure 2. Structure of the Troponin complex. (a) Ribbon representation of a modified Troponin
complex. Using a fragment of Troponin T (blue) as a template, the design of a binder for Troponin
I (light gray)-Troponin C (dark gray) complex can be optimized. (b) Mean normalized energy
prediction error (white_red spectrum, red indicates large errors) between MD prediction (panel (c))
and NN prediction (panel (d)), (both panels are blue_white_red spectrum, blue indicates negative
energy values). Note that the overall error is low, as indicated from the minor color difference
representing the energy predictions even where the difference (normalized) is the most significant.
This means the model can be used for optimization.

To prepare the complex for MD simulations, we first protonated the 1J1D structure
using PDB2PQR [43,44] with the Amberff14SB forcefield [45]. This complex was neutralized
and solvated using the tleap program of Ambertools21 [46], in TIP3P 0.15 M NaCl water
box. The solvated system was parameterized using the Amberff14SB forcefield [45] and
simulated using the NAMD simulations package [47]. First, water molecules and ions were
minimized for 1000 steps while the protein complex was restrained. This was followed by
1000 step minimization of the unrestrained system. Next, the backbone-restrained system
was gradually heated from 0 to 300 K. The restraints were then gradually decreased until
they were completely removed. The non-restrained system was finally simulated for 500
ns. The MMPBSA.py program [48] was used to calculate the Molecular Mechanics Gener-
alized Born Surface Area (MMGBSA) binding energy (BE) of TpnT to the target complex.
Generally, the change in Gibbs free energy (4Gbind) can be approximated as follows:

4Gbind = 4H − T4S ≈ 4EMM +4Gsol − T4S (9)

in which4H is the change in enthalpy, T is the temperature,4S is the change in entropy,
4EMM is the molecular mechanics energy in the gas phase and4Gsol is the solvation free
energy. BE is computed using MMPBSA.py and is calculated as follows:

BE = 4EMM +4Gsol (10)

4EMM = 4Einter +4Eelec +4EvdW (11)

BE is a sum of Einter, which is the internal energy of the molecule bond distances,
angles and dihedrals, as well as4Eelec and4EvdW , which are the electrostatic and van der
Waals energies. Note that the entropic change is not accounted for in this calculation since
such a calculation is computationally demanding and inaccurate.
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BE was decomposed to each residue of TpnT and it was decided that residues 104–130
would constitute the starting template for our peptide design, herein referred to as the
TpnT-template.

5.2. Generating Training Data

While it is possible to randomly sample peptide structures and compute their trajecto-
ries, it is better to sample structures that are considered feasible, that is, those structures
that do not diverge when running molecular dynamics. As explained in the introduction,
there are many software packages that can provide an initial design using either empirical
energy or machine learning. Here, we use the popular Rosetta package and its protein
complex generation process [7].

The proteins cTpnI and TpnC complexed with residues 104–130 of TpnT were first
repacked and minimized based on the Beta_nov16 scoring function [49]. This was followed
by Monte–Carlo based mutagenesis of the design peptide; in this step, the electrostatic
contribution of the Beta_nov16 scoring function was up-weighted by a factor of 1.5. This
modification to the scoring function biases mutagenesis towards residues that would form
more hydrogen bonds, as this would increase the designed peptide specificity. The mutant
fragment was then redocked to the target complex and minimized before the final complex
structure was output. A total of 15,000 design attempts were made using Rosetta. Only
about 2600 designs passed the following initial screening criteria: general design score of
−190 Rosetta Energy Units (REUs), a binding energy of−50 REU, a shape complementarity
score of 0.75 and no more than 3 buried unsatisfied hydrogen bonds. These 2600 structures
were further filtered using MD simulations. Each designed peptide complexed with cTpnI-
TpnC was prepared for MD simulations, as described in Section 5.1. Each complex was
neutralized and solvated in a TIP3P 0.15 M NaCl water box. The backbone-restrained
system was minimized for 1000 steps followed by another 1000 minimization steps without
restraints. The backbone-restrained system was then heated from 0 to 300 K; then, the
restraints were incrementally removed at 300 K. The unrestrained complex was simulated
for 5 ns. Data from 5 ns simulations were extracted for the training of our algorithm.

Three pieces of data were used to train our algorithm.

• Complex coordinates were extracted from the 5 ns simulations at regular intervals
for a total of 50 coordinate sets per designed peptide. These were used to compute
the center of mass coordinates, x∗(s), as well as standard coordinate deviation during
simulations, r(s), of the trajectory.

• The average MMGBSA binding energies of the designed peptides to the target com-
plexes, representing E∗(s), were computed using MMPBSA.py [48].

• The contribution of each individual residue to the average MMGBSA binding energy
for each complex was also calculated.

As part of trajectory analysis, we also computed the MMGBSA binding energies
for the 2600 complexes over the 5 ns simulation time. While more accurate methods for
calculating binding energies exist, such as thermodynamic integration [50,51] and free
energy perturbation [52], these methods are computationally demanding and would be
impractical for calculating the binding energy of thousands of complexes. Furthermore,
previous studies have shown that the Molecular Mechanics Poisson Boltzmann Surface
Area (MMPBSA) method for calculating the binding energy was comparable to MMGBSA,
with the latter being less computationally expensive [53,54].

We also calculated the RMSD of the design atomic coordinates over the simulation
time. In Figure 3, we plot the RMSD as a function of time for 10 random designs. The RMSD
of some structures continued increasing, which implying that they were unstable. For other
structures, however, we observe an initial structural drift followed by a plateau in RMSD
values. It is important to note that 5 ns is a short time to deem whether RMSD plateauing
determines structural stability. However, such short simulation times provide a means
of filtering initial designs within reasonable computational costs. RMSD values were
condensed to the vector r with Equation (1a), and were predicted using the network.
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Figure 3. Top panel: The trajectories of RMSD of 10 random complexes over 5ns. It is evident that
some designs are more stable and remain within their original conformation from design (low RMSD),
whereas others deviate greatly from their original design coordinates (high RMSD). Bottom panel:
The binding energy of different complexes and their corresponding coordinate RMSD. The best
designs (low energy and stable) are plotted in blue while less reliable ones become more yellow.

An ideal design would have a low binding energy and would not considerably deviate
from the original design coordinates. We plot the MMGBSA binding energy of 950 struc-
tures verses their RMSD in Figure 3. It can be observed that there is no correlation between
a designed peptide average MMGBSA binding energy and its structural stability during the
simulation. Hence, it is important to compute and evaluate both attributes in the complex
to assess design success.

5.3. Training the Model

Given the training data, we trained the graph neural network described in Section 3.
In the first step, we take the energy and the stability data, subtract the mean and divide by
the standard deviation. This is a common practice in most training procedures [55]. The
network has a total of roughly 1.3 M parameters, and we use 5 layers of the graph network.
The opening layer, Ko, increases the size of the network from 23 channels (20 for the one
hot sequence and 3 for the geometrical features) to 512 channels. Using this architecture,
we manage to reduce the error of the validation data set to 9.8× 10−3. The maximal error
in training is plotted in Figure 2.

5.4. Using the Deep Learning Model for Protein Design

Given the initial 950 sequences, we chose the best 50 sequences and used the optimiza-
tion Algorithm 1. We used a total of 5 mutations in each protein before the optimization
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algorithm returned. A graph of the energy as a function of iterations as well as the number
of total mutations (the number of mutations in all designs) is presented in Figure 4.

Figure 4. Convergence of the optimization algorithm and the number of mutations observed by
using Algorithm 1. Note that the presented energy is the normalized one (de-biased). The code is
terminated when 5 mutations are proposed on average, leading the overall mutations over 50 designs
to amount to 250.

The initial 50 sequences and the designs obtained by using the algorithm are plotted in
Figure 5. We observe a much larger variability of designs compared with the initial designs.

Figure 5. Design sequence logos of the 950 designs from the training set (bottom) and the PINNs-
generated designs (top). Blue, red and grey colors indicate that the residues are positively charged,
negatively charges or uncharged, respectively. It is evident that the PINNs designs are more diverse
compared to the initial designs from the training set. Since the problem is highly non-convex, this
allows us to generate many different sequences with different starting points.

The newly designed proteins are then used as validation data. The energy of the
designed proteins as well as their structural stability is plotted in Figure 3. We see an
overall agreement between the predicted and observed energies and stability.
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6. Summary

In this work, we proposed a new framework that combines MD, deep learning, and bi-
nary programming optimization that leverage the strengths of each to solve the protein
design task. Our goal is to use the most accurate energy model possible in order to achieve a
stable design. To this end, we use MD to account for the protein environment and flexibility,
since proteins are in constant motion. The MD trajectories are used for the calculation of an
average binding energy. To assess the structural stability of the protein, we also record the
deviation of the designed protein from the desired design. The average binding energy and
RMSD of each sequence are then approximated using a graph neural network. The goal
of the network is to recover the average binding energyand the average deviation of the
design, which is more achievable than recovering the whole simulation. This approach
is commonly referred to as PINNS and has gained popularity in many science and en-
gineering problems. We train a graph neural network on data that are generated using
MD. The resulting network is then used for solving the protein sequence design problem.
For optimization, we use a convex relaxation of the problem with a sparsity-promoting
norm. This yields sparse designs that are used to probe the energy surface. The code was
tested on a true design of a binder to troponin. We have shown that we are able to find
designs that indeed have a low binding energy (as computed by MD) given the trained data.
Our designs reduce the energy by an average of 20% while keeping the protein stable. Our
results yield a more diverse set of sequences compared with the initial designs, which will
facilitate the laboratory testing of many more variants compared with the initial variants.

Our method heavily relies on MD, which accounts for protein flexibility. It is worth
noting that simulation conditions can be set to facilitate the evaluation of designed proteins
at different temperatures. Furthermore, different pH values may be considered by adjusting
residue protonation. We assumed in this procedure that if the structure for a given sequence
stably binds to the target protein with high affinity then it will manifest this prediction
in the lab. On the other hand, if the simulations were not reliable our design would lead
to unreliable binder sequence predictions. Clearly, any final design needs to be validated
in the laboratory. It is important to note that 5 ns simulations are too short to assess
the structural stability of peptide–protein complexes. Longer simulation times could
be employed to address this issue although this would be computationally expensive.
Alternatively, longer simulations could be obtained for filtered designs that have an initially
low RMSD. Validating MD results against laboratory experiments is beyond the scope
of this paper. However, recent computational techniques are proposed to obtain an even
higher accuracy for MD when solving the full Schrödinger system. Our approach, which
can be used with any energy function, is designed with the aim of reducing the need for
laboratory experiments by improving the accuracy of protein design simulations.
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