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Abstract: Systemic lupus erythematosus (SLE) is a disease of immune complex deposition; therefore,
complement plays a vital role in the pathogenesis of SLE. In general, complement levels in blood
and complement deposition in histological tests are used for the management of SLE. Thus, the
evaluation of complement status can be useful in the diagnosis of SLE, assessment of disease activity,
and prediction of treatment response and prognosis. In addition, novel complement biomarkers, such
as split products and cell-bound complement activation products, are considered to be more sensitive
than traditional complement markers, such as serum C3 and C4 levels and total complement activity
(CH50), which become more widely used. In this review, we report the complement testing in the
management of SLE over the last decade and summarize their utility.

Keywords: systemic lupus erythematosus; lupus nephritis; complement; split product; cell-bound
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1. Introduction

Systemic lupus erythematosus (SLE) is a typical systemic autoimmune disease char-
acterized by the production of a variety of autoantibodies and the formation of immune
complexes, with a chronic disease course and diverse organ involvement [1–3]. In 2014,
besides the enhancement of SLE drugs, the treat-to-target concept was proposed for SLE [4],
as previously proposed for rheumatoid arthritis. In addition, the basic framework of treat-
ment strategies for SLE was established. In a treat-to-target strategy, treatment aiming at
remission or where remission cannot be reached, the lowest possible disease activity must
be conducted after periodically assessing overall SLE disease activity [4]. Furthermore,
this strategy aims to ensure long-term survival, prevent organ damage, and optimize
health-related quality of life by controlling disease activity and minimizing comorbidities
and drug toxicity [4]. Therefore, these treatment strategies require strict management based
on disease activity monitoring. Biomarkers can be used in this management, but they
have not yet been established because SLE is associated with various organs with diverse
immunological abnormalities [5–7].

SLE is a disease of immune complex deposition; thus, complements play a vital role
in the pathogenesis of SLE [8–10]. In SLE, complements have a biphasic nature, which is
known as the “lupus paradox [11].” That is, complement activation via immune complexes
deposited in tissues causes tissue damage, whereas congenital deficiencies of the early
components of complement activation pathways, such as C1q and C4, which are involved
in the processing of apoptotic cells, frequently lead to the development of SLE [12]. In
SLE, complement tests are usually abnormal, indicating complement-mediated pathologies.
In general, complement levels in blood and complement deposition in histological tests
are used for the management of SLE. Moreover, complement biomarkers can be useful
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in various settings, including the diagnosis of SLE, assessment of disease activity, and
prediction of treatment response and prognosis.

This review outlines the reports of complement testing in the management of SLE
over the last decade and summarizes its advantages. First, we discuss the advantages of
serum C3 and C4 levels and total complement activity (CH50), the traditional complement
markers, frequently used in routine clinical practice in various settings. Consequently, we
also discuss novel biomarkers that are currently under research but are still expected to be
applied and enhanced.

2. Overview on Complement

Complement is formed from more than 30 components found in blood and cell
membranes, including plasma proteins, receptors on cell membranes, and regulatory
factors. As shown in Figure 1, complement activation occurs through a series of chain
reactions, which is known as a cascade. C3 activation is the most critical event. The
complement response can be divided into two pathways: the “complement activation
pathway” until C3 is degraded and the “late complement pathway” until the subsequent
formation of the membrane attack complex. The complement activation pathway is divided
into three: the classical pathway, the lectin pathway, and the alternative pathway. After C3
activation, the cascade to its deposition on a target as C3b and the formation of membrane
attack complexes below C5 are common.

Biomolecules 2023, 13, x FOR PEER REVIEW 2 of 15 
 

can be useful in various settings, including the diagnosis of SLE, assessment of disease 
activity, and prediction of treatment response and prognosis. 

This review outlines the reports of complement testing in the management of SLE 
over the last decade and summarizes its advantages. First, we discuss the advantages of 
serum C3 and C4 levels and total complement activity (CH50), the traditional complement 
markers, frequently used in routine clinical practice in various settings. Consequently, we 
also discuss novel biomarkers that are currently under research but are still expected to 
be applied and enhanced. 

2. Overview on Complement 
Complement is formed from more than 30 components found in blood and cell 

membranes, including plasma proteins, receptors on cell membranes, and regulatory 
factors. As shown in Figure 1, complement activation occurs through a series of chain 
reactions, which is known as a cascade. C3 activation is the most critical event. The 
complement response can be divided into two pathways: the “complement activation 
pathway” until C3 is degraded and the “late complement pathway” until the subsequent 
formation of the membrane attack complex. The complement activation pathway is 
divided into three: the classical pathway, the lectin pathway, and the alternative pathway. 
After C3 activation, the cascade to its deposition on a target as C3b and the formation of 
membrane attack complexes below C5 are common. 

 
Figure 1. The complement cascade. 
Figure 1. The complement cascade.

The factors that trigger the complement activation pathway are distinct, and they
mediate different complement molecules. In the classical pathway, when an antibody
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binds to an antigen to form an immune complex, C1q binds to this immune complex and
immediately activates C1r, which activates C1s. Then, this activated C1s activates C4
and then C2, leading to form C4bC2a, which is a C3-converting enzyme that activates C3.
When C3 is activated, it is cleaved into fragments C3a and C3b, and C3b associates with
C4bC2a to form C4bC2aC3b, a C5-converting enzyme that activates C5. It mediates the
cleavage of the α-chain of C3b, leading to the formation of iC3b, followed by its further
degradation into C3dg and C3d. In the lectin pathway, when mannose-binding lectin (MBL)
and ficolin recognize and bind to the characteristic glycan structure of the pathogen cell
wall, MBL-associated serine protease, a serine protease that is bound to MBL, is activated.
Then, it cleaves C4 and C2 to form the C3-converting enzyme, which is similar to the
classical pathway. In the alternative pathway, strictly speaking, no recognition molecule
is found. C3(H2O), a hydrolyzed C3, is present in the blood, and it is activated when it
binds to polysaccharides and other substances on the surface of microorganisms, binding
an activated factor B and forming the C3-converting enzyme under the action of factor D, a
serine protease.

Three pathways are involved in SLE, although the classical pathway is particularly
important. Complement is not only a useful biomarker, as described below, but is also
considered an important target for therapeutic drugs [13,14]. Currently, no approved
complement-targeted therapies are available for SLE, but clinical trials are ongoing. Drugs
in phase 2 trials for lupus nephritis include ravulizumab, an anti-C5 monoclonal antibody;
iptacopan, a complement factor B inhibitor; vemircopan, a complement factor D inhibitor;
narsoplimab, an anti-MBL-associated serine protease 2 monoclonal antibody; and pegc-
etacoplan, a PEGylated C3 inhibitor. In addition, KP104, a bifunctional biologic designed
to simultaneously block both the alternative pathway (factor H) and the late complement
pathway (C5), is in a phase 2 trial for thrombotic microangiopathies secondary to SLE.

3. Complement Tests

In routine clinical practice, serum C3 and C4 levels and CH50 are usually measured in
blood samples, and complement deposition is identified by fluorescent antibody assay of tissues.

C3 and C4 are proteins of the complement cascade. In general, C3 and C4 are measured
in serum, but samples such as urine, pleural fluid, and spinal fluid can also be used. In
SLE, hypocomplementemia, decreased levels either of C3 and C4 or both occurs as an
immunological abnormality (Table 1). C3 is included in the common cascade after the
convergence of the three pathways. By contrast, C4 is included in the classical and lectin
pathways. Therefore, low levels of both proteins indicate the activation of these two pathways,
whereas low C3 and normal C4 indicate the activation of the alternative pathway.

Table 1. Complement markers.

Complement Markers Abnormalities Observed
in Patients with SLE

Complement Pathway Involved
Classical Lectin Alternative

Functional assay
CH50 low + – –

Complement components
C3 low + + +
C4 low + + –

C1q low + – –

Complement split products
iC3b high + + +
C3dg high + + +
C3d high + + +
C4d high + + –
C4a high + + –
C5a high + + +
Bb high – – +
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Plasma C4 levels are strongly influenced by and correlated with C4 gene copy num-
bers [15–18]. Each copy of the C4 gene encodes for one of two isotypes, acidic C4A or basic
C4B. Congenital deficiency or a low copy number of the C4A gene has been associated with
the development of SLE [19]. By contrast, a low C4B gene copy number did not show this
association, and a medium to high C4B copy number was associated with thrombosis and
hypertension in patients with pediatric SLE [15]. The profiles of C4 and C3 protein levels
are different in each patient with SLE depending on the C4 gene copy number; therefore,
there is a group of patients with low C4 levels due to low C4 gene copy number and without
reflecting disease activity [16]. If only C4 shows persistently low levels, then the possibility
of a low copy number of the C4 genes should be considered in the evaluation [16–18].

CH50 measures the hemolytic activity of serum samples against sensitized sheep
erythrocytes. It is indexed by its ability to form membrane attack complexes via the
classical pathway, and it reflects immune complex formation. It helps in complement-
screening tests because it simultaneously measures all the complement activities from C1
to C9. In active SLE, CH50 levels are low because of complement consumption caused by
the increased activation of the classical pathway (Table 1). If they are extremely low, then
the possibility of a congenital defect is considered. In the case of low CH50 levels with
normal C3 and C4 levels, it is important to exclude artificial in vitro complement activation
(cold activation) after the blood sample is taken.

Complements are also used in the immunological testing of tissues. In SLE, reactions
to C1q, C3, and C4 are observed in the renal glomeruli and at the dermo–epidermal border
of the skin by fluorescent antibody assay. It is useful in evaluating affected organs and in
the differentiation of other diseases.

Other novel biomarkers used include C1q, which is essential for the activation of
the classical pathway; split product, which is a degraded product of complement; and
cell-bound complement activation product (CB-CAP), a cell surface binding of C4d.

4. Traditional Complement Markers in SLE Diagnosis
4.1. SLE Diagnosis

The diagnosis of SLE has no gold standard; thus, it is based on classification criteria
that reflect the variety of immunological abnormalities and diverse organ involvement char-
acteristics of SLE. Although the SLE classification criteria have been revised in recent years,
the currently used 2019 European League Against Rheumatism (EULAR) and American
College of Rheumatology (ACR) classification criteria for SLE emphasizes immunological
abnormalities and nephritis [20]. Consequently, complement, which was not included in
the 1997 ACR classification criteria, was added to the list of immune domains in the current
classification criteria, along with SLE-specific and antiphospholipid antibodies [20–22].
Hypocomplementemia is defined as a decrease in C3, C4, or CH50 based on the 2012
Systemic Lupus International Collaborating Clinics classification criteria, or low C3 and/or
C4 based on the 2019 EULAR/ACR classification criteria [20,22]. A decrease in both C3 and
C4, which suggests the involvement of the classical pathway, was considered as a more
important finding, which was given a higher weight. Regarding the validation studies of the
2019 EULAR/ACR classification criteria, the frequency of hypocomplementemia (low C3 or C4)
at diagnosis of SLE is 50%–89%, which is not commonly observed in all cases [23–25].

Among nephritis, class III or IV findings on renal biopsy are strongly suggestive of
SLE, and in the new classification criteria, such findings can be classified as SLE along with
immunological abnormalities [20]. Complement such as C1q, C3, and C4 deposition by
immunofluorescence is not included in the definition of the pathologic classification of
lupus nephritis [26]. It largely plays an ancillary role, but it is an important reference finding
in differentiating lupus nephritis from other diseases [26,27]. SLE is characterized by C1q
deposition because of the activation of the classical pathway and it often presents a “full-
house pattern” with multiple deposits of immunoglobulins and complements. In addition
to IgA nephropathy characterized by IgA deposition and anti-neutrophil cytoplasmic
antibody-associated nephritis without immunoglobulin or complement deposition, C3
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nephropathy with positive fluorescent findings of C3 deposition and negative or weak C1q,
C4, and immunoglobulin deposition has recently been proposed [28]. Complement deposition
in the fluorescent antibody assay is also useful in differentiating these renal diseases [29].

4.2. Diagnosis and Prediction of Organ Involvement

After the diagnosis of SLE, proper evaluation of the affected organs is important
to provide optimal treatment. SLE presents with a variety of organ involvement, and it
may be classified into several subgroups based on the organs affected and immunological
abnormalities. Studies investigating the relationship between complements and organ
involvement have shown the association of hypocomplementemia with nephritis, hemato-
logic disorders such as autoimmune hemolytic anemia and thrombocytopenia, skin rash,
and arthritis [30–32]. In a study of patients with SLE comparing low C4 levels alone with
low levels of both C3 and C4, the frequency of serositis and hematologic disorders was
lower, and the severity of renal and hematologic disorders was milder in the cases with
low C4 levels alone [33].

The measurement of complements is also useful in appropriately ruling out other
diseases to confirm whether organ involvement is caused by SLE. In a report in which renal
biopsies were performed on 48 patients with SLE without abnormal urinalysis and renal
impairment, 36 patients had lupus nephritis (class I or II, 72%; class III or IV, 17%; and type
V, 11%), and hypocomplementemia (low titers of CH50 and C3) and a high titer of anti-Sm
antibodies were identified as predictive factors for silent lupus nephritis. Complements
measured in samples other than serum are used to differentiate other diseases [34]. Elevated
levels of C3 in cerebrospinal fluid are useful in diagnosing neuropsychiatric SLE [35] and
decreased levels of C3 and C4 in pleural fluid are useful in discriminating lupus pleuritis
from pleural effusion of other etiologies [36].

5. Traditional Complement Markers in the Assessment of SLE Activity

In a treat-to-target strategy, SLE treatment is aimed at remission or, at least, low disease
activity after regular evaluation of the overall disease activity [4]. Therefore, disease activity
assessment indicators and treatment goals must be established.

In general, the assessment of disease activity in SLE is based on a combination of the
type and severity of organ involvement and immunological abnormalities. Complements,
along with anti-dsDNA antibody titers, are used in routine clinical practice as a biomarker
for immunological abnormalities in SLE, and hypocomplementemia reflects the activity
of SLE. The systemic lupus erythematosus disease activity index (SLEDAI), the validated
activity index, frequently used for assessing global SLE activity, includes the presence of
low complements, that is the decrease in CH50, C3, or C4 in qualitative assessment [37].
On the contrary, the British Isles Lupus Assessment Group index, which evaluates disease
activity by each organ-based system, does not include immunological abnormalities [38].
In addition, the newly proposed SLE disease activity score includes swollen joint counts,
proteinuria, leucocyte counts, and platelet counts as values in the score, but it does not
include quantitative serological immune markers such as serum complement levels or
anti-dsDNA antibody titers [39].

A composite definition is also used for low disease activity and remission, which
are treatment targets of SLE. Although no criteria have been established, the lupus low
disease activity state (LLDAS) is used as a general low disease activity criterion, and the
definitions of remission in SLE (DORIS) is used as a remission criterion [40,41]. These
composite indices combine the disease activity measured using the SLEDAI, the exclusion
of any current disease activity not included in the SLEDAI, physician global assessment,
and medication use, including glucocorticoid dosage. The definition of LLDAS allows for a
SLEDAI-2K score of 4 or less. LLDAS may also be met, although hypocomplementemia
and elevated anti-dsDNA antibodies remain unchanged. On the contrary, DORIS initially
proposed complete remission, which requires no serological activities [42]. However, in
the 2021 definition, remission will be evaluated by clinical SLEDAI-2K, which excludes
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immunological abnormalities from SLEDAI-2K, and serological activity is no longer an
issue in the definition of remission [41]. Thus, whether treatment goals should include
the normalization of immunological abnormalities remains debatable. Cases in which
hypocomplementemia and elevated anti-dsDNA antibodies persist after achieving treat-
ment goals such as low disease activity and remission are often observed. These cases of
clinical remission with persistent immunological abnormalities have been recognized as
serologically active clinically quiescent (SACQ) SLE [38]. The clinical significance of the
SACQ status remains unclear, but a treat-to-target strategy and treatment recommenda-
tions do not recommend that the treatment in clinically asymptomatic patients is escalated
primarily on the basis of stable or persistent serological activity [4,43,44].

Levels of complements must be evaluated regularly in routine clinical practice, along
with symptoms, physical examination, and blood laboratory tests. Complement levels are
not completely linked to SLE activity, as normal complement levels in the active phase and
persistent hypocomplementemia in remission are often observed. SLE evaluation is based
on global assessment; thus, levels of complements should not be overestimated but should
be used as a guide for decision-making.

6. Traditional Complement Markers in Predicting SLE Treatment Response

In recent years, biologic drugs such as belimumab, an anti-B-cell activating factor
(BAFF) monoclonal antibody, and anifrolumab, an anti-interferon-α receptor monoclonal
antibody, have become available for SLE. Compared with glucocorticoids and conventional
immunosuppressive drugs, which act on a relatively broad range of immune cells, biologic
drugs have a clear therapeutic target, and the mechanism of action of the drug may predict
treatment response. Belimumab is known to be more effective at high BAFF levels and
anifrolumab at high interferon signatures [45,46]. However, these markers cannot be
measured in routine clinical practice. Thus, markers predicting response to biologic drugs
must be established within routine clinical practice. In this regard, low C3 levels and high
anti-dsDNA antibody titers have been reported to be associated with high BAFF levels and
interferon signatures [47,48]. In addition, belimumab and anifrolumab are more effective
in patients with immunological abnormalities and are more likely to be effective in patients
with high anti-dsDNA antibody titers, low C3 levels, and low C4 levels [46,49].

7. Traditional Complement Markers in Predicting SLE Prognosis

The prevention of flares is an important goal in the management of SLE. Early detection
of signs of flares through careful monitoring of the global and organ-specific disease activity
is essential, but understanding the risk factors that predict flares is also important. The 2019
update of the EULAR recommendations for the management of SLE identifies persistent
serological activity (low complement and/or high anti-dsDNA antibodies) as risk factors,
along with younger age at disease onset, no use of antimalarials, and persistent generalized
disease activity [43].

In routine clinical practice, the assessment of the disease activity often considers the
fluctuation in complement levels and anti-dsDNA antibody titers, but many clinical studies
have reported the presence of hypocomplementemia at a single point in time, such as
at the achievement of remission or at the beginning of observation. Gensous et al. and
Kostopoulou et al. conducted a systematic literature review on whether complement pre-
dicts SLE flares and reported that many studies have shown that hypocomplementemia
(low serum C3 and C4 levels) is a predictor of flares [50,51]. However, given the ef-
fects of differences in study methods, patient backgrounds, organ systems involved, and
treatment, no firm opinion has been achieved. Regarding the persistent immunological
abnormalities, patients with SACQ-SLE have a higher risk of flares than patients without
immunological abnormalities [52–54], although few reports have focused on persistent
hypocomplementemia. In addition, analyses focusing on fluctuations in complement levels
have reported that progressive reduction in complement levels may indicate future flares
in patients with SACQ-SLE [55].
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Some reports have examined factors that predict the outcome for each organ involved
rather than for SLE as a whole. In lupus nephritis, low serum C3 levels at diagnosis or at
the time of remission may predict renal flares [56,57]. Patients with lupus nephritis and
persistent isolated C3 hypocomplementemia were more likely to progress to end-stage
kidney disease [58]. In patients with end-stage kidney disease, low serum C4 levels at the
time of induction of renal replacement therapy were associated with SLE flares [59]. Severe
neuropsychiatric manifestations and low serum C4 levels at the time of SLE diagnosis
predict the development of severe neuropsychiatric flares [60]. A low serum C3 level
could indicate complications of lupus enteritis [61,62], and a lower CH50 level at the
time of initial treatment could predict an inadequate treatment response in patients with
lupus enteritis [63]. Low serum C3 levels and high SLEDAI-2K scores were reported as
independent risk factors for the development of lupus myocarditis in patients with SLE [64].

8. Novel Complement Biomarkers in SLE Management
8.1. C1q

C1q is essential for activating the classical pathway, and a decrease in C1q levels, as
with C3 and C4 levels, indicates high disease activity in SLE (Table 1). Although the utility
of C1q deposition in renal tissue and anti-C1q antibodies in the management of SLE is well
established [65], serum C1q can also be a useful biomarker (Table 2). Serum C1q levels were
decreased in patients with SLE compared with healthy controls, and they were associated
with disease activity as measured by SLEDAI [66]. Serum C1q levels were also decreased
in patients with lupus nephritis compared with healthy controls and patients with SLE
uncomplicated by nephritis, indicating the activity of nephritis and the histological activity
score of renal tissue [66–68].

8.2. Split Products

Split products are the cleavage fragments of the complement components. Known
cleavage fragments of C3 include iC3b, C3dg, and C3d, and C4d is a cleavage fragment of
C4 (Figure 1). The split products are only produced by complement activation, unaffected
by increased production by the acute-phase response. Therefore, the assay is characterized
by its ability to reflect complement activation in vivo more sensitively than the currently
used C3 and C4.

iC3b is the breakdown product of C3b, a cleavage fragment of C3. Serum iC3b levels
were elevated in patients with SLE compared with healthy controls, and the serum iC3b/C3
ratio was more sensitive to changes in disease activity than serum C3 or C4 levels, making
it more useful for detecting active SLE and predicting flares [69]. Furthermore, iC3b is
degraded to C3dg and C3d. Plasma C3dg levels were higher in patients with SLE than in
healthy controls, and its discriminative power at the time of SLE diagnosis was superior to
that of serum C3 [70]. Plasma and urine C3d levels were elevated in patients with active
lupus nephritis and correlated with disease activity, and a decrease in values after treatment
predicted subsequent treatment response [71].

C4d is a cleavage product of C4b produced from the degradation of C4. Plasma C4d
levels were elevated in patients with SLE compared with healthy controls, and they were
particularly high in patients with nephritis [72,73]. Plasma C4d levels correlated with
C4d deposition in renal tissue, indicating nephritis activity, and they could be used in
predicting flares and treatment response [73]. C5a is a cleavage product of C5. Recently,
avacopan, a C5a antagonist, has proven to be effective in anti-neutrophil cytoplasmic
antibody-associated vasculitis [74]. Plasma and urine C5a levels were elevated in patients
with active lupus nephritis, and plasma C5a levels correlated with disease activity in lupus
nephritis and SLE [75]. Bb is a cleavage product of factor B associated with the alternative
pathway. Plasma Bb levels were elevated in patients with active lupus nephritis, indicating
the activity score of the renal tissue and predicting poor renal prognosis [76].

Split products are considered superior biomarkers compared with serum C3 and C4.
However, the stable measurement of such products is difficult because of their short half-
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life, and a simple and reliable measurement assay has not been established [8], although a
novel, stable and simple assay using the iC3b/C3dg-binding site of human complement
receptor 2 was reported [77].

Table 2. Summary of reports on novel complement biomarkers.

Reference Author, Year Sample Number of Subjects Key Findings

[66] Sandholm, 2019 Plasma C1q
69 LN

310 SLE without LN
322 HC

SLE patients had lower levels of C1q than matched
HCs (median, 225 vs. 266 mg/L, p < 0.001).

An association was found between the levels of
C1q and the SLEDAI.

Patients with nephritis had lower levels of C1q
than those without nephritis (median, 194 vs.

228 mg/L, p < 0.01).

[67] Tan, 2013 Serum C1q 218 LN
HC

The serum C1q levels were significantly lower in
LN than those in HCs (33.8 ± 20.4 vs.

62.0 ± 10.5 µg/mL, p < 0.001).
Patients with lower serum C1q levels

(<40.97 µg/mL) showed significantly higher levels
of SLEDAI (p < 0.001).

The serum C1q levels were associated with renal
total activity indices scores (rs = −0.327, p < 0.001).

[68] Xu, 2019 Serum C1q

905 SLE without LN
334 active LN

255 inactive LN
497 HC

Significantly decreased C1q levels were observed in
the active LN and inactive LN groups, which was
in contrast to their levels in the SLE and HC groups

(153.2 ± 40.0 vs. 170.8 ± 36.2 vs. 170.6 ± 35.5 vs.
182.3 ± 29.0 mg/L, p < 0.05).

[69] Kim, 2019 Blood iC3b 159 SLE
48 HC

Patients with SLE had elevated iC3b levels as
compared to HCs (4.5 ± 2.8 vs. 2.1 ± 0.9 µg/mL,

p < 0.001).
Patients with active SLE had elevated iC3b:C3 ratio
as compared to patients with inactive SLE and HCs

(7.0 ± 7.8 vs. 4.3 ± 2.0 vs. 1.7 ± 0.6 µg/mg,
p < 0.001).

The iC3b:C3 ratio correlated with the extent of SLE
disease activity and with clinically meaningful
changes in disease activity in patients with SLE.
The iC3b:C3 ratio outperformed C3 and C4 levels

with regard to discriminating active SLE from inactive
SLE, and major flares from no disease activity.

[70] Troldborg, 2018 Plasma C3dg 169 SLE
170 HC

SLE patients had higher concentrations in plasma
C3dg than HCs (Data were presented only in

figures, p < 0.001).
ROC analysis showed that C3dg (AUC 0.96) was

superior to C3 (AUC 0.52) in differentiating
between patients and HCs.

[71] Ganguly, 2020 Plasma C3d
Urinary C3d

28 active LN
4 inactive LN

10 HC

Urine and plasma levels of C3d for active LN were
significantly different from inactive LN (urine,

median, 388 vs. 9.9 ng/mg Cr, p < 0.001; plasma,
median, 791 vs. 212 µg/mL, p < 0.001).

There was a significant correlation of plasma C3d
with SLEDAI (rs = 0.67, p < 0.001) and renal

SLEDAI (rs = 0.44, p = 0.03).
There was a significant correlation of urine C3d

with SLEDAI (rs = 0.433, p < 0.001) and renal
SLEDAI (rs = 0.35, p < 0.001).

Treatment responders at 6 months showed a
significant fall in urine C3d at 3 months.
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Table 2. Cont.

Reference Author, Year Sample Number of Subjects Key Findings

[72] Martin, 2017 Plasma C4d 69 SLE
97 HC

C4d levels were negligible in HC subjects and
significantly increased in patients with SLE

(p < 0.001).
C4d levels discriminated between higher and lower
disease activity according to ROC curve analysis

(AUC 0.64, p < 0.001).
At higher disease activity, C4d levels correlated

with the modified SLEDAI (rs = 0.26, p = 0.011) and
predominantly with LN (p = 0.003).

[73] Martin, 2020 Plasma C4d
22 SLE without LN

71 LN
145 HC

In comparison to HCs, plasma C4d levels were
significantly increased in SLE patients (0.33 mg/L
vs. 0.94 mg/mL, p < 0.001) with significantly higher
levels in LN patients (1.02 mg/L) than in non-renal

SLE patients (0.57 mg/L, p = 0.004).
C4d levels correlated significantly with

urine-albumin to creatinine ratio (rs = 0.43,
p = 0.011), renal activity index (rs = 0.37, p = 0.002)
and glomerular deposits of C4d in kidney biopsies

(rs = 0.7, p = 0.0002).
Plasma C4d declined significantly after treatment

in patients that experienced favourable clinical and
histopathological response (p < 0.0001), while levels

remained mainly unchanged in non-responders.

[75] Ma, 2018 Plasma C5a
Urinary C5a

66 SLE
40 HC

Plasma C5a levels were dramatically elevated in
patients with active LN compared to those in

remission and HCs.
Urinary C5a were significantly elevated in LN

patients compared to HCs (p < 0.001).
Correlation analysis showed that the plasma C5a

levels were positively correlated with 24h
proteinuria in LN patients (rs = 0.47, p = 0.002) and
SLEDAI scores in SLE patients (rs = 0.28, p = 0.02).

[76] Song, 2017 Plasma Bb, C1q,
C4d, and C5a

82 SLE without LN
222 active LN

34 LN in remission
39 HC

Plasma Bb levels were significantly higher in
patients with active LN compared with patients in

remission, active SLE without LN, and HCs
(1.24 ± 0.75 vs. 0.78 ± 0.45 vs. 0.90 ± 0.49 vs.

0.69 ± 0.45 µg/mL, p < 0.001).
Plasma Bb level was significantly correlated with
some renal disease activity indices and was a risk

factor for renal outcomes (Hazard ratio = 1.75; 95%
confidence interval = 1.106−2.754; p = 0.017) in the

LN group.

LN, lupus nephritis; SLE, systemic lupus erythematosus; HC, healty control; SLEDAI, SLE disease activity index;
ROC, receiver operating characteristic; AUC, area under the curve.

8.3. Cell-Bound Complement Activation Product (CB-CAP)

C4d is not only present in plasma, but it is also bound to the surface of blood cells. It
is known as CB-CAP, which binds to erythrocytes, platelets, and B cells. C4d on each cell
surface is measured using a flow cytometer. In 2004, erythrocyte C4d was measured and re-
ported to be a biomarker with better sensitivity and specificity than traditional complement
markers for the diagnosis of SLE [78]. It was later shown to be measurable on platelets, T
cells, and B cells [79,80]. In the diagnosis of SLE, erythrocyte C4d and B-lymphocyte C4d
could be used to observe elevated C4d on the surface of each cell, even in cases negative
for anti-dsDNA antibodies [81]. Thus, a multianalyte assay panel, commercially known as
the AVISE Lupus test (Exagen Inc., Vista, CA, USA), which combines erythrocyte C4d and
B-lymphocyte C4d with eight lupus and non-lupus autoantibodies, has recently been used
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in distinguishing SLE from a variety of other rheumatic diseases [82,83]. In monitoring SLE
activity, C4d on each cell surface was more sensitive and specific than serum C3 and C4,
which acutely reflected activity even in cases with normal or no fluctuation in serum C3 and
C4 levels [84,85]. In addition, platelet C4d was a useful marker for predicting thrombosis
and vascular events [86–88].

C4d also deposits in renal tissue. Strong C4d deposition was consistently present in
immune-complex glomerulonephritis, including lupus nephritis [89], and C4d deposition in
renal peritubular capillaries is an important finding in the diagnosis of antibody-mediated
rejection in kidney transplantation [90]. C4d deposition was common in the renal tissues
of patients with lupus nephritis [91,92]. These deposits were localized in the glomeruli
in almost all cases, followed by tubular basement membrane, arterioles, and peritubular
capillaries [92]. Tubular basement membrane C4d deposition was related to the disease
activity, and arteriolar C4d deposition was associated with worse renal outcomes [92].

9. Conclusions

This study summarized the usefulness of complement as a biomarker in the SLE clini-
cal practice. Serum C3 and C4 levels, which are frequently used in routine clinical practice,
are included in the classification criteria for SLE and disease activity indices. They are
also considered useful SLE biomarkers. However, they are not absolute indicators that can
be determined by complement alone. Therefore, the characteristics and limitations of the
complement test must be fully understood and comprehensively evaluated in conjunction
with clinical signs and anti-dsDNA antibody titers. The complement split products and
CB-CAP might reflect SLE activity more sensitively than traditional complement markers
and are expected to become more widely used.
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