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Abstract: In the era of immunotherapy, identifying biomarkers of immune system activation has
become a high-priority challenge. The blood neutrophil-to-lymphocyte ratio (NLR) has been largely
investigated as a biomarker in several cancer types. NLR values have been shown to mirror the
tumor-induced inflammatory status and have been demonstrated to be a reliable prognostic tool
across stages of disease and therapeutic approaches. When integrated with other biomarkers of
response to immunotherapy, such as PD-L1, tumor mutational burden, and tumor-associated immune
cells, the NLR may allow to further stratify patients with different likelihoods of deriving a significant
clinical benefit. However, despite its accessibility, low cost, and easy interpretation, the NLR is
still poorly used as a prognostic tool in daily clinical practice. In this review, we analyze the role
of the NLR in defining the relationship between cancer and the immune system, its usefulness
in daily clinical practice, and its relationship with other established or emerging biomarkers of
immunotherapy outcomes.
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1. Introduction

The interplay between cancer and the immune system is highly complex and essential
for many steps of cancer development, growth, and spread from the organ of origin through
the organism. While the main role of immune cells towards cancer is to prevent cancer
formation by the timely recognition and elimination of transformed cells, the inflammatory
response has been proven to underlie many processes that ultimately promote cancer
growth and progression [1–3]. In recent times, advances in immunology and immuno-
oncology led to the development of a new class of anticancer agents that take advantage of
the innate ability of the immune system to kill cancer cells, generically called immunothera-
pies. By targeting the key immune checkpoints involved in the relationship between cancer
and the immune system, including the programmed cell death receptor 1 (PD-1), its ligand
(PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4), these drugs prevent immunosup-
pressive interactions that lead to immune escape and restore the killing activity of immune
cells towards tumor cells [4]. The so-called immune checkpoint inhibitors (ICI) rapidly
became part of the standard of care treatment algorithm of the majority of cancer types in
the advance setting and, more recently, in the adjuvant and neoadjuvant settings. However,
biomarkers of the efficacy of immunotherapies are still lacking for many tumors, and there
is large room for improvement for other tumor types where some biomarkers have shown
a predictive value, such as PD-L1 expression and TMB in patients with non-small cell lung
cancer (NSCLC) [5]. The expression of PD-L1, for instance, guides the choice of the first-line
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therapeutic options for patients with non-oncogene-addicted NSCLC, but its reliability in
distinguishing patients who will derive a significant benefit from immunotherapy from
those who will not is far from being perfect [6]. In this context, identifying biomarkers of in-
flammation and immune system activation that may serve as predictors of immunotherapy
outcomes has become a high-priority challenge [7–9]. Several scores taking into account
easily detectable inflammatory markers have been correlated with the survival of patients
with solid tumors, showing to have at least prognostic value. One example is the Glasgow
Prognostic Score (GPS), which considers the increase in the serum C-reactive protein and
the decrease in serum albumin concentration, two events associated with the acute inflam-
matory phase [10,11]. A high GPS score generally correlates with worse survival outcomes
in patients with solid tumors [10]. Inflammatory cytokines, lactate dehydrogenase, as well
as the presence and density of specific immune cell subsets represent additional biomarkers
mirroring the systemic inflammatory status [3,12,13]. In particular, the predominance of
neutrophils in association with low lymphocyte levels is typical of the non-specific acute
inflammatory response. Therefore, the neutrophil-to-lymphocyte ratio (NLR) has been
largely studied with the hypothesis of being a potentially reliable predictive or, at least,
prognostic factor across different cancer types [14–16]. The NLR can be easily calculated
from routine blood tests, potentially serving as an accessible and low-cost tool to help
evaluate the prognosis of patients with cancer. Despite its accessibility, low cost, and easy
interpretation, the NLR is still poorly used as a prognostic tool in daily clinical practice.

In this review, we provide a comprehensive and up-to-date overview on the NLR,
its ability to serve as a mirror of the status of the immune system in patients with solid
tumors, and its role as a predictor of outcomes across cancer types, the setting of diseases,
and treatment strategies. Moreover, we discuss the usefulness of the NLR in daily clinical
practice, summarizing the evidence regarding its possible integration with other established
or emerging biomarkers of outcomes to immunotherapies to enhance their accuracy in
stratifying the likelihood of deriving a significant clinical benefit from these treatments.

2. NLR in the Relationship between Cancer and the Host Immune System

Alterations in local and systemic inflammation, myelopoiesis, and leukocyte count
are considered hallmarks of cancer evolution [17,18]. The correlation between systemic
inflammatory response and tumor behavior fostered the investigation of the NLR as a
possible prognostic and predictive biomarker for patients receiving multiple treatment
strategies, including chemotherapy and immunotherapy [19–22]. Many studies showed a
deep connection between NLR values and the activation of the innate immune response,
suggesting that the NLR might mirror the tumor-induced inflammatory status. In fact, a
high NLR was found to be correlated with increased peritumoral macrophage infiltrate and
high levels of several pro-inflammatory cytokines, including IL-1ra, IL-6, IL-7, IL-8, IL-12,
IL-17, MCP-1, and PDGF-BB [23–38]. High NLR values also showed to be associated with a
high concentration of tumor-associated neutrophils (TANs), which may play a dual role in
favoring or contrasting tumor development under different stimuli coming from cancer and
immune cells [39,40]. TANs are a heterogeneous population recruited and then polarized
from the pool of circulating neutrophils. They can be subdivided into N1 neutrophils, that
mainly elicit anti-tumor activities by activating innate and adaptive immune cells, and N2
neutrophils, that mainly favor tumor growth through the induction of neo-angiogenesis
and stroma remodeling [41]. In addition, the tumor genomic context has been shown to be
associated with neutrophil infiltration through crosstalk modulation. The loss of TP53 in a
KRAS G12D-mutated pancreatic cancer murine model modulated cytokines such as CXCL1
and CXCL and determined the enhanced infiltration of CD11b+ myeloid cells, including
monocytes, macrophages, and neutrophils [42,43].

Several studies reported that, in healthy conditions, circulating and tissue neutrophils
presented high phenotypic and functional heterogeneity, which were regulated by mat-
uration and aging levels and by the tissue microenvironment. Circadian oscillation and
aging influenced the type of chemokine receptors expressed by neutrophils, their pattern
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recognition receptors, their inflammasome, and their production of extracellular traps, such
as their capacity to migrate [41]. In normal conditions, to limit their potential damage,
circulating neutrophils do not have the capacity to produce extracellular traps before they
penetrate tissues [41].

In cancer patients, neutrophil differentiation and the maturation process seem to be
profoundly altered. In fact, in murine cancer models, neutrophils presented a transcrip-
tional program that made them able to produce reactive oxygen species (ROS), nitric oxide,
and arginase 2 with a potential inhibition on T-cell proliferation [42]. According to their
polarization in a pro-tumor sense, neutrophils also presented a high expression of ARG1,
CCL17, and CXCL14, and a low expression of CXCL10, CXCL13, CCL6, and TNF.

The ROS produced by neutrophils were associated with damage and genetic instability
in epithelial cells, and the DNA damage was also elicited through the production of
microRNAs, that promoted DNA double-strand breaks in epithelial cells [42].

Moreover, in murine models, neutrophil extracellular traps-associated molecules such
as high mobility protein B1, neutrophil elastase (NE), and metalloproteinase 9 (MMP9)
could stimulate the proliferation of cancer cells and the formation of metastases through
the entrapment of circulating tumor cells [42].

Higher levels of TAN were found to be associated with higher serum IL-8 levels and
worse survival and ICI efficacy in two studies including patients with advanced NSCLC,
melanoma, urothelial carcinoma, and renal cell carcinoma [44,45]. Interestingly, antago-
nizing neutrophils with a CXCR1 and CXCR2 inhibitor improved the sensitivity to PD-1
inhibition in a preclinical model of lung carcinoma [46]. Circulating neutrophils can also be
categorized based on their cellular density into low- or high-density neutrophils following
the Ficoll-Hypaque centrifugation [47]. High-density neutrophils demonstrated anti-tumor
functions, while low-density neutrophils have mainly immunosuppressive activity and
have been consistently associated with high NLR and poor prognosis in patients with
cancer [47,48]. Myeloid-derived suppressor cells (MDSC) are immature myeloid cells re-
cruited from the bone marrow by tumor-derived factors, such as the vascular endothelial
growth factor (VEGF) and granulocyte-macrophage colony-stimulating factors (GM-CSF).
In humans, MDSC can be divided into monocytic MDSC (M MDSC), polymorphonuclear
MDSC (PMN MDSC), which also comprise immature neutrophils, and early MDSC [49].
In humans, granulocytic MDSC are represented by CD66b+ CD14− CD11b+ CD15+ cells,
while monocytic MDSCs are represented by CD11b+ CD14+ HLA-DRlow CD15− cells [50].
Several studies suggested that the tumor can enhance myelopoiesis in the bone marrow
and in extramedullary organs by producing the granulocyte colony-stimulating factor,
which acts by expanding granulocyte myelocyte progenitor cells and other early neutrophil
progenitors’ clones [51,52]. When accumulated in the tumor microenvironment, MDSCs
produce and release IL-10, TGF-β, and other molecules that promote neo-angiogenesis
and exert immunosuppressive activity, facilitating tumor growth, survival, and progres-
sion [41,47,48]. NLR and PMN MDSC values are strongly correlated with each other, as
PMN MDSC as a group also comprise neutrophils that are accounted for in the calculation
of NLR [53]. Consistently with their biologic function, high levels of PMN MDSC and
low-density neutrophils have been associated with a more advanced stage of disease and
a poorer cancer prognosis [47,48,53–55]. Neutrophils have been shown to exert a direct
procarcinogenic effect by producing reactive oxygen species that amplify the DNA damage
initiated by the exposure to a carcinogen, and to facilitate the interaction between melanoma
cells and the endothelium to promote cancer spreading through blood vessels [56,57]. While
in the bloodstream, the presence of clusters of cancer cells and neutrophils has shown a
higher metastasizing potential compared to cases where cancer cells do not form clusters
with neutrophils [58]. Moreover, even before metastasizing, cancer-induced neutrophil
accumulation and extracellular matrix remodeling in distant sites from the primary tumor
form favorable premetastatic niches for future cancer spread [59,60]. However, neutrophils
can also act by limiting tumor proliferation and killing cancer cells through the produc-
tion of H2O2 and the interaction with the transient receptor potential cation channel M2
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(TRPM2) [61]. Given the complexity of the interactions between the immune system and
cancer, the NLR was questioned to be an oversimplifying tool as it only includes neutrophils
and lymphocytes in its assessment. Differently from the NLR, the derived NLR (dNLR)
indirectly takes into account immune cells other than neutrophils and lymphocytes as it is
calculated from neutrophils (ANC) and white blood cell (WBC) counts with the formula
dNLR = ANC/(WBC-ANC) [23]. Similarly to the NLR, the dNLR has been associated
with poor outcomes by many studies across cancer types and may serve as a surrogate of
the density of some type of tumor-associated immune cells [25]. In a retrospective study
conducted on 221 patients with advanced NSCLC and a high programmed cell death
ligand 1 (PD-L1) tumor proportion score (≥50%) treated with first-line pembrolizumab,
patients with low dNLR (<2.6) had significantly increased tumor-associated CD8+, FOXP3+,
and PD-1+ immune cells, and PD-1+ CD8+ T cells identified by multiplexed immunoflu-
orescence compared to patients with high dNLR (≥2.6) [62]. This study, among others,
established the close connection between the dNLR and specific immune features in the
tumor immune microenvironment. The main immune correlates of the NLR and dNLR
values are summarized in Figure 1.

Biomolecules 2023, 13, x FOR PEER REVIEW  4  of  15 
 

presence of clusters of cancer cells and neutrophils has shown a higher metastasizing po-

tential compared to cases where cancer cells do not form clusters with neutrophils [58]. 

Moreover,  even  before  metastasizing,  cancer-induced  neutrophil  accumulation  and 

extracellular matrix remodeling in distant sites from the primary tumor form favorable 

premetastatic niches for future cancer spread [59,60]. However, neutrophils can also act 

by limiting tumor proliferation and killing cancer cells through the production of H2O2 

and the interaction with the transient receptor potential cation channel M2 (TRPM2) [61]. 

Given the complexity of the interactions between the immune system and cancer, the NLR 

was questioned to be an oversimplifying tool as it only includes neutrophils and lympho-

cytes  in  its assessment. Differently  from  the NLR,  the derived NLR  (dNLR)  indirectly 

takes into account immune cells other than neutrophils and lymphocytes as it is calculated 

from neutrophils  (ANC) and white blood cell  (WBC) counts with  the  formula dNLR = 

ANC/(WBC-ANC) [23]. Similarly to the NLR, the dNLR has been associated with poor 

outcomes by many studies across cancer types and may serve as a surrogate of the density 

of some type of tumor-associated immune cells [25]. In a retrospective study conducted 

on 221 patients with advanced NSCLC and a high programmed cell death ligand 1 (PD-

L1) tumor proportion score (≥50%) treated with first-line pembrolizumab, patients with 

low dNLR (<2.6) had significantly increased tumor-associated CD8+, FOXP3+, and PD-1+ 

immune  cells, and PD-1+ CD8+ T  cells  identified by multiplexed  immunofluorescence 

compared to patients with high dNLR (≥2.6) [62]. This study, among others, established 

the close connection between the dNLR and specific immune features in the tumor im-

mune microenvironment. The main immune correlates of the NLR and dNLR values are 

summarized in Figure 1. 

 

Figure 1. Association between neutrophile-to-lymphocyte ratio (NLR), immune cells, and survival 

outcomes.   
Figure 1. Association between neutrophile-to-lymphocyte ratio (NLR), immune cells, and sur-
vival outcomes.

3. Clinical Applications of NLR and Derived Scores
3.1. Prognostic Value under Chemotherapy

NLR is a cost-effective and reliable tool that can be exploited in a wide number of
scenarios during daily clinical practice. High NLR values have been associated with
features of tumor aggressiveness across many cancer types, including the presence of
microvascular invasion and lymph node involvement in early-stage operable cancers
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or with the presence of multiple distant metastases in advanced tumors [25–27]. NLR
values have been demonstrated to be reliable predictors of prognosis for patients with
different malignancies across stages of disease and therapeutic approaches. In patients with
metastatic colorectal cancer, a high NLR (>5) was found to be independently associated with
reduced overall survival (OS) [63]. In addition, after one cycle of chemotherapy, patients
with high NLR values (>5) who had a decrease in the NLR under the value of 5 achieved a
significantly longer progression-free survival (PFS) compared to patients who still had an
NLR > 5 [63]. Similarly, a high NLR predicted shorter disease-free survival (DFS) and OS
in patients with early-stage gastrointestinal tumors who received neoadjuvant treatment
followed by surgery, despite showing no association with a pathological response [27–37].
A higher risk of disease recurrence was observed among patients with hepatocellular
carcinoma (HCC), who underwent living-donor liver transplantation and had high pre-
transplantation NLR levels [23]. In addition, a study showed an increased mortality risk
among patients with localized NSCLC who had undergone complete surgical resection
and had a high pre-operative NLR [24]. Consistently, a high NLR was associated with
worse outcomes to chemotherapy and other treatment strategies in patients with advanced
cancers, including colorectal, prostate, head and neck, and lung [63–65]. Variations in
the NLR following anti-cancer treatments may also have an important prognostic role
in patients with advanced solid tumors, as suggested by a systematic review of studies
showing a correlation between the decrease in the NLR after chemotherapy and better
outcomes [27].

3.2. Prognostic Value under Immunotherapy

As previously described, an immunosuppressive tumor microenvironment charac-
terized by low-density neutrophils, M2 polarized macrophages, and FOXP3+ regulatory
T cells may facilitate the progression of tumorigenesis [18,66,67]. Recently, the advent of
ICI targeting PD-1 or PD-L1 has drastically changed the outcomes of patients with solid
tumors [68]. These monoclonal antibodies prevent inhibitory interactions between immune
and cancer cells, restoring the activity of the immune system against the tumor. However,
only a minority of patients respond to ICI, and an even lower proportion of them derive
durable clinical benefit [69–72]. Identifying biomarkers able to maximize the accuracy of the
selection of patients who will achieve a meaningful benefit is therefore crucial to offer more
effective therapies to patients who are not likely to benefit from these agents and, at the
same time, to avoid unnecessary potential toxicities to patients who will not benefit from ICI.
PD-L1 expression and tumor mutational burden (TMB) are both considered independent
predictive biomarkers of response to immunotherapy; however, they still lack complete
reliability, as objective and durable responses can be observed among patients with low
levels of one or both biomarkers, while both primary and acquired resistance are frequent
events, even in the presence of high PD-L1 and/or TMB levels [73–75]. The complex and
dynamic interaction between cancer and the immune system during ICI-based treatments
can hardly be predicted by the evaluation of a single biomarker [76–83]. Instead, integrating
together multiple variables, such as PD-L1, TMB, genomic alterations (e.g., KRAS, STK11,
and KEAP1 molecular status in the case of NSCLC), and inflammatory markers may result
in enhanced predictive accuracy. A correlation between high baseline NLR and worse
outcomes to IL-2 and nivolumab therapies was initially observed among patients with
renal cell carcinoma and NSCLC [84,85]. Many other studies have investigated the poten-
tial correlation between the NLR and response to immunotherapy among patients with
different malignancies, especially lung cancer and melanoma [20,86–92]. In a retrospective
study that included 221 patients with advanced NSCLC and high PD-L1 expression (≥50%)
who received first-line pembrolizumab, low levels of dNLR (<2.6), compared to high levels
(≥2.6), were found to be associated with a significantly higher objective response rate
(52.4% vs. 24.7%, p < 0.001) and longer median PFS (10.4 vs. 3.4 months, p < 0.001) and OS
(36.6 vs. 9.8 months, p < 0.001). The statistical significance of these findings was maintained
even after adjusting for potential confounders in a multivariable model, suggesting the role
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of dNLR as an independent prognostic factor [62]. A consistently independent effect of the
NLR on OS in patients with NSCLC, renal cell cancer, and melanoma was observed in a
sub-analysis of the INCIDIa-2 study, which showed a significantly longer OS in patients
with low NLR levels (<3.4) [93]. Moreover, as already observed with chemotherapy, a
dynamic evaluation of the NLR may help with monitoring the efficacy of ICI. An early
decrease in the NLR during treatment with anti-PD-(L)1 agents was shown to correlate with
an enhanced INF-γ response, improved antitumor activity, and significantly better survival
outcomes [81,82]. On the contrary, an early increase in the NLR after two cycles of treatment
with nivolumab in patients with NSCLC was associated with significantly shorter PFS [83].
Similar results were observed in patients with renal cell carcinoma treated with ICI, as the
reduction in the NLR after 6 ± 2 weeks from ICI initiation compared to baseline levels was
significantly associated with improved outcomes [84,85]. Some studies have also tried to
improve the predictive accuracy of the NLR by combining it with other easily detectable
markers, therefore without altering accessibility complexity compared to the evaluation of
the NLR as a single biomarker. An example is the Lung Immune Prognostic Index (LIPI),
which is a simple risk-stratification score based on LDH levels and dNLR [94]. LDH is the
enzyme responsible for transforming pyruvate to lactate, and its levels increase in the case
of high cellular metabolic activity and turnover. For these reasons, LDH can be often found
elevated in patients with aggressive solid tumors, such as melanoma, and hematological
malignancies, and high levels have been associated with poor prognosis in several tumors,
including melanoma and renal carcinoma [95–97]. The retrospective study by Mezquita
et al. was the first to evaluate the utility of the LIPI score in clinical practice [94]. According
to the LIPI score, 466 patients with advanced NSCLC treated with PD-1/PD-L1 inhibitors
or standard chemotherapy were classified into three prognostic groups (good, intermediate,
and poor) based on LDH and dNLR levels. Compared to patients in the good prognostic
group, those in the intermediate and poor prognostic groups had significantly shorter me-
dian PFS and OS when treated with immunotherapy, but no difference was observed among
patients receiving chemotherapy [94]. Subsequent studies have confirmed the reliability
of the LIPI score in stratifying the prognosis of patients treated with immune-checkpoint
inhibitors in several other cancer types, including melanoma, renal cancer, small cell lung
carcinoma, head and neck squamous cell carcinoma, urothelial cancer, and triple-negative
breast cancer [98–105].

4. Relationship of NLR with Other Biomarkers
4.1. PD-L1 Expression and Tumor-Infiltrating Lymphocytes

The role of PD-L1 expression in predicting outcomes to ICI remains controversial in
several advanced malignancies, as discordant results have been frequently reported [106–108].
Even in cancer types where PD-L1 has a key role in the decisional treatment algorithm, such
as NSCLC, it is considered an imperfect biomarker since tumor responses occur even in
patients with low or absent PD-L1 expression, and poor outcomes are not uncommon
even in patients with high PD-L1 expression of ≥50%. Besides PD-L1, several other
biomarkers have been shown to predict ICI efficacy, such as the density of tumor-infiltrating
lymphocytes (TILs) and TMB [109–114]. Different studies showed that combining the NLR
with other biomarkers might enhance their accuracy in identifying patients who derive a
significant benefit from immunotherapies as well as the general prognostic value of NLR
when evaluated alone (Table 1).

Because high NLR and low TILs density, when evaluated as single biomarkers, were
significantly correlated with survival among patients with laryngeal cancer, the relation-
ship between NLR, TILs, and PD-L1 expression and their impact in predicting disease-free
survival (DFS) was investigated in patients with this tumor [106]. Patients with a PD-L1
combined proportion score (CPS) ≥1% and a TILs count rate ≥30%, both of which were
associated with a lower median NLR, achieved a significantly prolonged DFS compared
to patients with negative PD-L1 CPS or a TILs count rate <30% [106,115]. Specific sub-
populations of lymphocytes might be associated with blood NLR levels, as suggested by
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a study conducted in 288 patients undergoing curative surgery for gastric cancer [116].
CD4+ immune cell density was significantly higher among patients with a low NLR; on
the contrary, CD3+ or CD8+ immune cell densities did not show an association with the
NLR [116]. The ATTRACTION-2 was a randomized phase three clinical trial that showed a
survival benefit with nivolumab versus a placebo in patients with advanced gastric cancer
that was refractory to two or more lines of chemotherapy [117]. Although the primary
endpoint of OS was met, the ORR to nivolumab was as low as 11.2%, highlighting the need
for predictive biomarkers of immunotherapy benefit. In a post hoc analysis of the same trial,
patients treated with nivolumab, as compared to those who received a placebo, seemed
to show numerically improved PFS in the case of the positive tumor PD-L1 CPS (≥1%)
and a low NLR at baseline, while no improvement was observed in patients with negative
PD-L1 CPS (<1%) and a high baseline NLR [118]. Similarly, in another study, the NLR was
proved to increase the accuracy of other biomarkers, including PD-L1 CPS and TILs den-
sity, in predicting the PFS and OS of patients with locally advanced gastric cancer treated
with neoadjuvant chemotherapy, highlighting the importance of a combined biomarker
evaluation [119]. High NLR values were found to correlate with low TILs also in patients
with colorectal cancer, and a combined evaluation of these two biomarkers improved the
prediction of survival compared to TILs alone in patients with resected stage III colorectal
cancer who received adjuvant FOLFOX chemotherapy [120,121]. The retrospective study
by Gawinski et al. analyzed 50 patients with locally advanced left-sided colorectal cancer
who underwent surgery with radical intent, dividing them into groups according to high
or low NLR, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio [122]. The
study assessed the density of CD3+ and CD8+ lymphocytes in resected specimens in the
center of the tumor and in the invasive margin, finding that the levels of CD3+ lymphocytes
in the center of the tumor were significantly higher in patients with low pre-treatment
NLR than in patients with high pre-treatment NLR. The five-year OS rate was significantly
higher in patients with a high lymphocyte-to-monocyte ratio value compared to that of
patients with a low lymphocyte-to-monocyte ratio; a similar difference was observed in
patients with a low NLR value, which had a better OS than patients with a high NLR. No
statistically significant difference in terms of OS was detected in the low and high platelet-
to-lymphocyte ratio group [122]. The prognostic impact of tumoral PD-L1 expression in
relationship with NLR in patients with resected stage I lung squamous cell carcinoma was
evaluated by Tashima et al. [108]. A positive PD-L1 expression in tumor cells (≥1%) was
significantly associated with shorter survival only in patients with low NLR, while it was
not found to have an impact on survival among patients with high NLR; moreover, having
a low NLR and a negative PD-L1 expression was independently associated with improved
recurrence-free survival and OS in a multivariate model [108]. These results have been
replicated in a cohort of patients with resected stage I–III NSCLC, in which the population
having high NLR and positive PD-L1 expression (≥1%) achieved significantly shorter DSF
and OS compared to the rest of the cohort; these findings were further confirmed in a
study conducted by Xia et al., which reported consistent results [112,123]. In patients with
previously treated advanced NSCLC, the POPLAR and OAK randomized clinical trials
established the superiority of atezolizumab, a PD-L1 inhibitor, over standard chemotherapy
with docetaxel, leading to the approval of the PD-L1 inhibitor as a second-line treatment
option after progression to first-line platinum-based chemotherapy, regardless of PD-L1
expression levels [124,125]. A post hoc analysis of these two studies was focused on the role
of NLR as an additional biomarker other than PD-L1 expression [126]. The study found
that the combination of the NLR and PD-L1 expression was more accurate in predicting the
outcomes to atezolizumab compared to the single evaluation of PD-L1 expression. Patients
with both a high NLR and negative PD-L1 expression (<1%) treated with atezolizumab had
a significantly shorter OS than patients with both a low NLR and positive PD-L1 (≥1%)
or than patients with NLR low/PD-L1 negative or NLR high/PD-L1 positive status, who
showed intermediate outcomes [126].
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Table 1. Main studies conducted on patients with NSCLC or gastrointestinal neoplasms, investigating
the association between neutrophils-to-lymphocyte ratio (NLR), other biomarkers, and immune-
checkpoint inhibitors (ICI) efficacy.

First Author Cancer Type Setting Treatment Combined Biomarker Effect on Outcomes

Alessi et al. [62] NSCLC Advanced, first-line Pembrolizumab PD-L1 (population with
PD-L1 TPS ≥ 50%)

ORR, PFS, and OS
improvement in the
low-NLR group

Cortellini et al. [126] NSCLC Advanced,
second-line Atezolizumab PD-L1 (TPS< vs. ≥1%)

PFS and OS
improvement with
low-NLR/positive-
PD-L1

Kao et al. [127] NSCLC Advanced, first- or
subsequent- line

Immune checkpoint
inhibitor

TMB (< vs.
≥10 mut/Mb)

OS improvement with
low-NLR/high-TMB

Xia et al. [123] NSCLC Advanced, any line,
with brain metastasis

Chemotherapy or
EGFR-TKI PD-L1 (TPS< vs. ≥1%)

OS improvement with
low-NLR/negative-
PD-L1

Tashima et al. [108] NSCLC Resected, stage I Surgery only PD-L1 (TPS< vs. ≥1%)

RFS and OS
improvement with
low-NLR/negative-
PD-L1

Wang et al. [112] NSCLC Resected, stage I–III
Surgery only or
followed by adjuvant
therapy

PD-L1 (TPS< vs. ≥1%)

DFS and OS
improvement with
low-NLR/negative-
PD-L1

Kim et al. [118] Gastric cancer Advanced, third- or
later line Nivolumab Serum Na (< vs.

≥135 mmol/L)

ORR and PFS
improvement with
low-NLR/high-Na

Zurlo et al. [119] Gastric cancer Locally advanced Chemotherapy TILs (< vs. ≥0.2) and
PD-L1 CPS (< vs. ≥1%)

PFS and OS
improvement with
low-NLR/low-
TILs/high-PD-L1

Cha et al. [121] Colorectal cancer Resected stage III,
adjuvant Chemotherapy TILs (score) OS improvement with

low-NLR/high-TILs

Valero et al. [128] Pan-cancer Advanced, any line Immune checkpoint
inhibitor

TMB (< vs. ≥20th
percentile in each
tumor type)

ORR, PFS, and OS
improvement with
low-NLR/high-TMB

NSCLC: non-small cell lung cancer; PD-L1: programmed death receptor ligand 1; TPS: tumor proportion score;
CPS: combined proportion score; NLR: neutrophil-to-lymphocyte ratio; TILs: tumor-infiltrating lymphocytes;
ORR: objective response rate; RFS: relapse-free survival; DFS: disease-free survival; PFS: progression-free survival;
OS: overall survival; EGFR-TKI: epidermal growth factor receptor tyrosine kinase inhibitor.

4.2. Tumor Mutational Burden

As the TMB has been demonstrated to be a reliable predictive factor of ICI efficacy
in patients with various tumors, including NSCLC, some studies investigated whether
combining its evaluation with that of NLR may improve the predictive accuracy of these two
biomarkers when assessed separately. The study by Valero et al. analyzed a retrospective
cohort of 1714 patients with 16 different types of cancer to investigate the value of combining
NLR and TMB to predict tumor response and patients’ survival to ICI [128]. This study
showed that combining the two biomarkers can stratify patients that benefit from ICI
more accurately compared to when they were evaluated separately [128]. Patients with
a low NLR and high TMB showed the highest ORR (38.3%) and the longest median PFS
and median OS to ICI. Conversely, patients with a high NLR and low TMB showed the
lowest ORR (16.8%) and the shortest median PFS and OS, while intermediate outcomes
were observed in those with a high NLR and high TMB or low NLR and low TMB. In a
multivariable analysis, patients with a low NLR and high TMB had a more than three-fold
enhanced likelihood of deriving clinical benefits from ICI compared to patients with a
high NLR and low TMB (odds ratio 3.48, p < 0.0001). Importantly, these findings were
confirmed in a recent retrospective study that enrolled patients with advanced NSCLC
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treated with ICI, which showed that combining TMB, PD-L1 expression, and NLR improves
the accuracy of predicting the ORR, time to disease progression, and OS compared to the
TMB when evaluated alone, highlighting again the importance of a combined biomarker
approach [127]. Prospective trials are necessary to evaluate the predictive worth of the
NLR in the effectiveness of immunotherapy and its association with tumor load, systemic
inflammation, and the tumor microenvironment, given their critical prognostic significance.

5. Conclusions

The NLR was demonstrated to have a strong prognostic value in patients with solid
tumor across cancer types, stages of disease, and treatment strategies. However, the close
relationship between the NLR and specific immune markers reflecting immune system
activation might suggest that the NLR is even more accurate in predicting survival among
patients treated with immunotherapies. When evaluating other biomarkers of response
to ICI, such as PD-L1 expression, TMB, and tumor-associated immune cells (e.g., TILs
density), combining the assessment of the NLR may allow to further stratify patients with
different likelihoods of deriving a significant clinical benefit while not increasing costs nor
adding complexity to the evaluation. It is noteworthy that the evidence substantiating the
predictive capability of NLR is rather low and predominantly rests on retrospective or post
hoc analyses. Therefore, given the high accessibility of the NLR and the consistent results
showing its reliability in predicting the prognosis of patients with different cancer types
reported in the literature, the evaluation of the NLR or its validated derived measures, such
as the dNLR and LIPI score, should serve as a prognostic tool in daily clinical practice.
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