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Abstract: Green-synthesized gold nanoparticles demonstrate several therapeutic benefits due to their
safety, non-toxicity, accessibility, and ecological acceptance. In our study, gold nanoparticles (AuNPs)
were created using an extracellular extract from the fungus Schizophyllum commune (S. commune). The
reaction color was observed to be a reddish pink after a 24 h reaction, demonstrating the synthesis of
the nanoparticles. The myco-produced nanoparticles were investigated using transmission electron
microscopy (TEM), dynamic light scattering (DLS), and UV–visible spectroscopy. The TEM pictures
depicted sphere-like shapes with sizes ranging from 60 and 120 nm, with an average diameter of
90 nm, which is in agreement with the DLS results. Furthermore, the efficiency of the AuNPs’ anti-
fungal and cytotoxic properties, as well as their production of intracellular ROS, was evaluated. Our
findings showed that the AuNPs have strong antifungal effects against Trichoderma sp. and Aspergillus
flavus at increasing doses. Additionally, the AuNPs established a dose-dependent activity against
human alveolar basal epithelial cells with adenocarcinoma (A549), demonstrating the potency of
synthesized AuNPs as a cytotoxic agent. After 4 h of incubation with AuNPs, a significant increase in
intracellular ROS was observed in cancer cells. Therefore, these metallic AuNPs produced by fungus
(S. commune) can be used as an effective antifungal, anticancer, and non-toxic immunomodulatory
delivery agent.

Keywords: antifungal; cytotoxic; gold nanoparticles; Schizophyllum commune

1. Introduction

Human health can be negatively affected by several infectious and metabolic diseases,
including fungal infections, which are responsible for more than 1.7 million deaths. Nearly
one billion people are infected each year, where cancer is a leading cause of death world-
wide, accounting for nearly 10 million deaths in 2020 [1]. Although numerous therapeutic
drugs have been created to address infectious and metabolic diseases, their practical imple-
mentation remains significantly constrained [2]. A breakthrough in biological research has
begun with the production of nanomaterials and nanoparticles, which have potential uses
in biomedicine, pharmaceuticals, biological sensors, skincare products, food technology,
electronic devices, optoelectronic devices, dye degradation, the treatment of wastewater,
etc. [3]. Nanoparticles (NPs) are extremely tiny materials, ranging in size from 1 to 100 nm.
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Based on their characteristics, shapes, or sizes, they can be divided into many classifi-
cations [4]. Fullerenes, metallic NPs, ceramic NPs, and polymeric NPs are some of the
different categories of nanoparticles. Due to their large surface area and nanoscale size,
NPs have distinct physical and chemical characteristics [5].

Gold nanoparticles possess exceptional properties including a regulated size, stability,
and biocompatibility, and could be used to treat and diagnose cancer [6,7]. Previous reports
have suggested that reducing the corresponding gold salts of nanoparticles is the simplest
way to create them via chemical, physical, and biological processes. Physical and chemical
processes include chemical reduction, microemulsion, cavitation, irradiation, electrochem-
ical and microwave-assisted processes, the Turkevich method, laser ablation, and high-
intensity ball milling, which have all been found to be costly, hazardous, and chemically
damaging [8]. Presently, the realm of research is actively exploring biologically synthesized
gold nanoparticles, which hold substantial promise for biomedical applications [9]. Bioac-
tive compounds from natural products and nanoparticles synthesized from them have
several therapeutic properties, including antimicrobial, anticancer, antioxidant, and neu-
roprotective characteristics [10–17]. The creation of these nanoparticles involves utilizing
biological techniques, including plant extracts and microorganisms such as bacteria, yeasts,
and fungi [5]. These novel methods provide an environmentally friendly, cost-effective, and
sustainable alternative to traditional chemical synthesis approaches [18]. Gold nanopar-
ticles find diverse applications in drug delivery systems, diagnostics, therapeutics, and
imaging technologies, underscoring their versatility and potential in addressing modern
biomedical challenges [19]. Numerous biological approaches have been employed to create
nanoparticles in clean, non-toxic, safe, biocompatible, and ecologically acceptable ways
(Supplementary Figure S1) [20]. Metal ion accumulation by these organisms has been
viewed as an economical, ecologically benign, and readily achievable occurrence [21–23]. It
was observed that fast metal ion reduction produced stable NPs with a range of various
shapes and sizes.

Fungi are an appealing choice for generating different NPs due to their excellent metal-
lic tolerance, great efficacy at attaching to the cell wall, rapid up-scaling, capacity to produce
enormous amounts of enzymes, and capability of accumulating metals through physico-
chemical and biological processes [24]. Extracellular proteins with a variety of attributes are
released in large quantities by fungi. All of the proteins and extracellular enzymes involved
in metal salt reduction and capping in NPs are collectively referred to as the “secretome”
and are released into the extracellular environment [25]. In order to biosynthesize gold
nanoparticles, these fungal filtrates contain NADPH enzyme-dependent reductase that
converts Au3+ to Au0 through the enzymatic process of metal reduction [26–28]. Aspergillus
terreus has been used in the biological synthesis of gold nanoparticles (AuNPs), which led
to the development of microbicidal characteristics that were specifically directed against
Escherichia coli, a pathogenic Gram-negative bacterium [29]. Additionally, Penicillium rugu-
losum has been used to synthesize gold nanoparticles, and an endophytic fungus, Fusarium
acuminatum, has been used to synthesize silver nanoparticles. These green-synthesized NPs
offer a wide range of potential applications in combating human pathogenic organisms
and cancer pathogenesis. There has been significant advancement in the application of
AuNPs produced in different shapes, like spheres, nanorods, nanoshells, nanocages, etc., in
cancer therapies [28,30,31].

S. commune belongs to the large and remarkable group of mushrooms, and it is known
as the split gill mushroom. It is able to produce a variety of useful metabolites and is known
to possess various medicinal properties, such as antimicrobial, anti-inflammatory, and
antiparasitic characteristics [32]. Previously, we have reported mycologically synthesized
silver and copper nanoparticles by utilizing S. commune fungal extracts, which can be
used in both medical and non-medical applications due to their potential antibacterial and
antibiofilm properties against multidrug-resistant microorganisms [33]. However, there
was no information available on the synthesis of AuNPs by utilizing S. commune.
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Therefore, our group planned to focus on novel therapeutic approaches by applying
green synthesis of nanomaterials with the help of fungus extracellular materials and
elucidate their antifungal and cytotoxic potentials. Thus, the goal of the current work is to
create AuNPs from extracellular matrix of S. commune. These mycologically synthesized
gold nanoparticles have undergone evaluation for their potential antifungal and cytotoxic
activities as well as intracellular ROS production in A549 cell lines.

2. Materials and Methods
2.1. Myco-Synthesis of AuNPs from S. commune

The fungus was cultivated in MGYP broth (Hi-media), which consisted of malt extract,
glucose, yeast extract, and peptone (0.5%, 1%, 0.3%, and 0.5%). The culture was maintained
at 28 ◦C for an additional 72 h to allow for full growth before being harvested by straining
through a polypropylene sieve. Using Whatman filter paper, 20 gm of mycelia was then
collected, rinsed with sterile water, and transferred to 150 mL of deionized water. To secrete
extracellular enzymes, the mycelial biomass was additionally stirred at 150 rpm for 72 h at
pH 7.2 and 28 ◦C [27,28]. When 1 mm hydrogen tetrachloroaurate (HAuCl4) was added,
the process continued with the production of AuNPs. After drying the sample, we obtained
gold nanoparticles. and thereafter we made certain dilutions. Using “UVWinlab” software
(version 1.05), the information was further examined. Salt-free supernatant was utilized in
a Beckman DU-20 UV–Vis spectrometer, SpectraLab Scientific Inc., Markham, ON, Canada,
as a control.

2.2. Characterization of Nanoparticles
2.2.1. Ultraviolet–Visible Spectroscopy

The emergence of reduced gold nanoparticles in colloidal suspension has been ob-
served using the Beckman DU-20 spectrophotometer. For AuNPs, the absorbance spectra
were measured in the range of 400–650 nm [34]. Using the “UVWinlab” tool (Version 1.05),
the outcomes were further explored and documented. A Beckman DU-20 UV–Vis spec-
trometer was used to measure distilled water as the standard, and the salt-free supernatant
served as the negative control in the experiment.

2.2.2. Differential Light Scattering (DLS)

Before conducting the size measurements, gold nanoparticles (AuNPs) were prepared
in double-distilled sterile water (dH2O) using a bath sonicator (ULTRAsonik 57 X, 50/60 Hz,
NEY DENTAL INC, Bloomfield, MI, USA). The viscosity of dH2O at 25 ◦C was determined
through viscosity measurements (Viscometer-SV-10; A&D Instruments Ltd., Abingdon,
UK), and these recorded values were used for all dynamic light scattering (DLS) size calcu-
lations. The viscosity of dH2O at 25 ◦C was measured to be 0.887 centipoise. The average
diameter, peak diameter distribution, and polydispersity index (PdI) were determined
using a Malvern Zeta Sizer-Nano ZSTM (Malvern Instruments, Malvern, UK) with Disper-
sion Technology Software v.5.1 (Malvern Instruments Ltd., Malvern, United Kingdom. The
scale range for PdI was set from 0 to 1. Prior to each measurement, the samples for DLS
were equilibrated at 25 ◦C for 2 min. The powder of the sample was further diluted to a
concentration of 0.5% (w/v) in deionized water and sonicated for 1 min prior to estimation.
The sample was placed in a DTS0112 low-volume dispensable measuring cuvette of 1.5 m.
The refractive index (RI) of AuNP.dH2O was determined to be 1.4303 [35].

2.2.3. Transmission Electron Microscopy Analysis (TEM)

Following the transfer of the synthesized AuNPs onto a gold-coated negative grid,
the solvent was allowed to evaporate. The TEM examination was performed using a
Perkin-Elmer model (JEM-1000; JEOL (UK) Ltd., Welwyn Garden City, UK) operating at an
accelerating voltage of 1000 kV.
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2.3. Antifungal Efficacy

The antifungal potential of biologically synthesized AuNPs was assessed against Tricho-
derma (NCIM, Accession No: 1458) and A. flavus (NCIM, Accession No: 1316), obtained from
the National Center of Cell Science (NCCS). Inoculums containing 107 spores/mL were pre-
pared in sterilized phosphate-buffered solution (PBS) with a pH of 7.0 and recorded using
a cell counter. Each fungal solution (1 mL) was evenly spread on PDA plates. Wells with a
diameter of 0.5 cm were created using a sterile cork borer and filled aseptically with control
(fungal extract) at 50 µg/mL, gold precursor [HAuCl4] (1mM at 50 µg/mL) and AuNPs at
various concentrations (1.5 µg/mL, 5.7 µg/mL, 8.6 µg/mL, and 11.4 µg/mL), antibiotic
(fluconazole) at 50 µg/mL (Hi-media), AuNPs + antibiotic (fluconazole) at 1.5 + 50 µg/mL.
The plates were incubated at 28 ± 4 ◦C for 7 days, and the average inhibition zone was
determined for each case. A salt-free filtrate was used as a negative control [36].

2.4. Preparation of Fungal Cells for SEM Analysis

The morphology of fungal cells and the cellular alterations induced by AuNPs in
A. flavus were examined using scanning electron microscopy (FESEM Model No. GEMI-
NISEM 300). The plates were subjected to a laser for a short period of time to observe the
morphological modifications in fungal mycelia and spores caused by AuNPs at 8.6 µg/mL.
As a control, untreated samples maintained in nutrient broth were used. These fungus
cells were washed and then again resuspended in PBS buffer. After that, samples were
placed on membrane filters and fixed for 4 h in 2% (v/v) glutaraldehyde. Following that,
samples were washed repeatedly in phosphate-buffered saline (PBS) and allowed to fix for
1 h in 1% (w/v) osmium tetra oxide. Further, the solvent was removed by using ethanol
series at various concentrations, including 25%, 35%, 55%, 75%, 85%, and 100%, before
being gold-plated [37]. The semi-quantitative chemical composition of each sample was
determined using a SEM device connected to an energy dispersive X-ray microscope–EDX
(OCTANE ELECT PLUS), AMETEK Instruments India Pvt Ltd., Bangalore, India.

2.5. Cytotoxicity Assay
2.5.1. Maintenance of Cell Lines

The Central Drug Research Institute’s Animal Tissue Culture laboratory (CDRI-ATCL)
maintained a cell line of lung cancer epithelial cells termed A549 (86012804-CDNA-20UL).
Using conventional cell culture techniques, cells were kept alive in Dulbecco’s modified
Eagle’s medium (DMEM) along with 1% antibiotic–antimycotic solution and 10% fetal calf
serum (FCS) [38].

2.5.2. MTT Assay

The cellular viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny-
ltetrazolium bromide (MTT) transformation test. Initially, cells were plated at a density of
1 × 104 cells/mL on 96-well culture plates and incubated at 37 ◦C for 24 h in an incubator,
allowing them to grow up to 80% confluence. After the incubation period, the medium
was removed, and the cancer cells were treated with biosynthesized AuNPs at increasing
concentrations of 5–25 µg/mL in triplicate; non-treated cells were used as a control and
incubated for 24 h. Each well received MTT dye, and the plate was allowed to incubate at
37 ◦C for 24 h. Using a PowerWave XS “BIOTEK, USA” spectrophotometer, the absorbance
of insoluble formazan salts was observed at 550 nm. The data used to form a dose–response
graph were used to compute the dose of these metallic nanoparticles required to kill half of
the cell population (IC50) [39].

Cell viability (%) = [Mean OD/Control OD] × 100

To perform the morphological assay, A549 cells were exposed to nanoparticles (NPs)
at different concentrations. Following exposure, the cells were fixed using a solution of
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ethanol and acetic acid in a ratio of 3:1 (v/v). Subsequently, a cover slip was delicately
mounted on a glass slide to examine the morphological alterations.

2.6. ROS Estimation

Intracellular oxidative stress was assessed using fluorescent dye (DCFH-DA: 2′,7′-
dichlorofluorescin di-acetate) that is known as a fluorescent indicator for the study of
internally generated hydroperoxides [40,41]. The experiment was performed according to
the methods described by Goswami et al. [42] with minor modifications. Briefly, a specific
concentration (1000 cells/well) of A549 cell lines was seeded in 96-well black-bottomed
plates and allowed to adhere for 24 h before being exposed to AuNPs. Subsequently, A549
cells were plated and dispersed in triplicate for the purpose of quantifying ROS. We used a
negative control containing 20 µM DCFH-DA solution in PBS, while the positive control
had 20 µM DCFH-DA solution in PBS with 1 µM hydrogen peroxide (H2O2). In the test
samples, we incubated the positive control mixture with AuNPs at two concentrations
(15 µg/mL and 25 µg/mL) for 2–6 h. A “BIOTEK-FLX800-USA” fluorometer with emission
at 520 nm was used to measure the fluorescence intensity of cells to track the pace of
intracellular oxidative stress (by 485 nm excitation).

2.7. Statistical Analysis

Three replicates were conducted for each study and the results were represented as
the mean ± standard deviation of three individual experiments where * p < 0.05; ** p < 0.01;
*** p < 0.001 represent significant difference from control group. To analyze the data with
normally distributed values and homogeneous variance, one-way analysis of variance
(ANOVA) with a t-test was performed.

3. Results
3.1. Preparation of AuNPs and Characterization of AuNPs
3.1.1. Surface Plasmon Resonance

Gold nanoparticles (AuNPs) were mycologically synthesized using S. commune fungi.
The fungal filtrate was utilized as a reducing agent in 1 mM gold-chloride tetrahydrate
solutions. As the biosynthesis progresses, the color shifts from light yellow to red in about
24 h. A control solution of 1 mM HAuCl4 without fungal extract did not demonstrate any
color change when subjected to similar conditions (Figure 1A).
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Figure 1. (A) Glass tubes showing gold solution with fungal filtrate, 1 mM solution of HAuCl4, and
fungal mediated AuNPs (B) UV–Vis absorption spectra of AuNPs, HAuCl4, and fungal filtrate.

3.1.2. Spectrophotometric Analysis

In the 400–650 nm spectrum, the fungal extract shows no sign of absorbance. However,
fungal extracts treated with HAuCl4 salt exhibit a prominent absorption peak at 545 nm,



Biomolecules 2023, 13, 1785 6 of 18

strongly suggesting the successful synthesis of AuNPs (Figure 1B). Similar results have
been seen in earlier reports, where it has been demonstrated that the absorbance of gold
NPs was in the range of 540–570 nm [43–45].

3.1.3. Differential Light Scattering of AuNPs

The results presented in Figure 2 show the scattering intensity as a function of the
logarithm of the particle diameters. In both cases, bimodal distributions were observed,
with the peaks of the larger diameter exhibiting most of the intensity. The average particles
size is approximately 90 nm, having a spherical morphology. We observed a peak from
40 nm to 250 nm in the DLS parameter, and this distribution of size may be due to the
aggregation of nanoparticles. However, we have noticed the highest percentage peak
intensity for particle sizes between 90 nm and 105 nm. The nanoparticles synthesized by
this fungal mode were found to be homogeneous and show various sizes. Thus, the result
clearly shows that most NPs were spherical in shape and have different size ranges. These
synthesized AuNPs were polydisperse in nature as their PDI value was 0.3.

Biomolecules 2023, 13, x FOR PEER REVIEW 6 of 19 
 

Figure 1. (A) Glass tubes showing gold solution with fungal filtrate, 1 mM solution of HAuCl4, and 

fungal mediated AuNPs (B) UV–Vis absorption spectra of AuNPs, HAuCl4, and fungal filtrate. 

3.1.2. Spectrophotometric Analysis 

In the 400–650 nm spectrum, the fungal extract shows no sign of absorbance. How-

ever, fungal extracts treated with HAuCl4 salt exhibit a prominent absorption peak at 545 

nm, strongly suggesting the successful synthesis of AuNPs (Figure 1B). Similar results 

have been seen in earlier reports, where it has been demonstrated that the absorbance of 

gold NPs was in the range of 540–570 nm [43–45]. 

3.1.3. Differential Light Scattering of AuNPs 

The results presented in Figure 2 show the scattering intensity as a function of the 

logarithm of the particle diameters. In both cases, bimodal distributions were observed, 

with the peaks of the larger diameter exhibiting most of the intensity. The average parti-

cles size is approximately 90 nm, having a spherical morphology. We observed a peak 

from 40 nm to 250 nm in the DLS parameter, and this distribution of size may be due to 

the aggregation of nanoparticles. However, we have noticed the highest percentage peak 

intensity for particle sizes between 90 nm and 105 nm. The nanoparticles synthesized by 

this fungal mode were found to be homogeneous and show various sizes. Thus, the result 

clearly shows that most NPs were spherical in shape and have different size ranges. These 

synthesized AuNPs were polydisperse in nature as their PDI value was 0.3. 

 

Figure 2. Distribution of gold nanoparticles analyzed through dynamic light scattering (DLS) data. 

3.1.4. Transmission Electron Microscopic (TEM) Analyses 

The specimen photos taken from the drop-coated surface of the AuNPs uniformly 

dispersed over the grid further supported the observation made by TEM micrographs that 

they have a circular form. The AuNPs ranged in size from 60 nm to 120 nm, while the 

average size of nanoparticles is around 90 nm (Figure 3). Similar results were seen in DLS 

data of the diameter of each individual particle, helping the analysis of particle size. 

Figure 2. Distribution of gold nanoparticles analyzed through dynamic light scattering (DLS) data.

3.1.4. Transmission Electron Microscopic (TEM) Analyses

The specimen photos taken from the drop-coated surface of the AuNPs uniformly
dispersed over the grid further supported the observation made by TEM micrographs that
they have a circular form. The AuNPs ranged in size from 60 nm to 120 nm, while the
average size of nanoparticles is around 90 nm (Figure 3). Similar results were seen in DLS
data of the diameter of each individual particle, helping the analysis of particle size.
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3.2. Antifungal Activity of AuNPs

In this study, the inhibitory activity of AuNPs on colony development was studied
under in vitro conditions.

3.2.1. Agar Well Assay

The findings showed that the development of A. flavus and Trichoderma sp. was sup-
pressed, creating an inhibition zone by AuNPs under in vitro conditions, demonstrating
significant (p < 0.05) antifungal effect on A. flavus and Trichoderma sp. as well as inhibitory
actions on mycelial hyphae and spore germination (P). According to earlier studies, S. com-
mune extract has very low antifungal activity against pathogenic fungi [46,47]. In this
instance, the values for the zone of inhibition (ZOI) of the fungal filtrate assumed as control
are taken to be 0 cm. Similarly, the gold precursor did not exhibit any antifungal activity.
Furthermore, it was found that as the concentration of AuNPs increased, there was a
decrease in the spore-forming ability of the organisms. At a concentration of 11.4 µg/mL,
Trichoderma sp. exhibited an inhibition zone with a diameter of 2.3 cm, while A. flavus dis-
played an inhibition zone measuring 2.7 cm. However, when these AuNPs are conjugated
with antibiotic fluconazole, the ZOI is increased by 2.5 cm and 2.9 cm in Trichoderma sp.
and A. flavus, respectively (Figure 4) (Supplementary Figure S2). Fluconazole is a member
of the triazole family and one of the most popular antifungal medications. It is a prominent
medicine that most researchers use in their studies [48]. However, secondary metabolites
present in the fungal extract of S. commune at a very higher concentration might inhibit the
growth of the pathogenic fungi [46,49].
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3.2.2. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectra (EDX) of Fungi
Treated with AuNPs

SEM examination was carried out to observe the inhibitory effect of AuNPs (11.4 µg/mL)
on the spores of A. flavus. The hyphae seemed distorted, smaller, less rigid, and lacking
in structure. Additionally, spore wall disintegration and damage were seen following
treatment with AuNPs in varied degrees. The cytoplasm of the spore wall displayed
significant pitting, ripping, and piercing in addition to the visible uneven and rough cell
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walls and widespread blebbing (Figure 5). Clusters of the spore’s outermost layer also
began to form when the outer wall’s integrity was visibly disturbed [50].
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Figure 5. Scanning electron micrographs of A. flavus with 11.4 µg/mL of AuNPs. (A) Mycelia of A.
flavus (Control: Working distance (4.6 nm)). (B) Treated: Working distance (3.9 nm) at 5 µm. (C) Spore
of A. flavus (Control: Working distance (4.6 nm)). (D) Treated: Working distance (4.7 nm) at 1 µm.
Magnification: 12.85 KX; Signal A = InLens; I Probe = 200.0 nA; ESB Grid = 1105 V; Column Analytic;
GeminiSEM 300-8202017231 was used.

Mycelial abnormalities in the EDX spectra demonstrated the creation of AuNPs, in
contrast to the microorganism utilized in this investigation, as they contained a peak
consistent with the formation of pure gold (Figure 6). The EDX spectrum also exhibits
peaks for carbon, nitrogen, sodium, and oxygen, indicating the existence of proteins and
several fungal remnants within in the interstitial spaces of the fungus.
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Figure 6. SEM images with EDX analysis of gold nanoparticles synthesized using fungal extract of
S. commune. The graph represents the elemental analysis of AuNPs within the fungal mycelia while
the inset picture contains the position where the AuNPs affected the fungal mycelia.

3.3. In Vitro Cytotoxicity Assay

In order to create a xenograft lung cancer model, particularly for non-small cell lung
cancer (NSCLC), the A549 cell line is a well-known and commonly utilized human cell
line. For the cytotoxicity assay, we opted for A549 cell lines as they are very prominent
and have been widely used in cancer research [51]. Thus, by using the cell viability MTT
test, we further evaluated the cytotoxicity of AuNPs on A549 cells. Up to concentrations of
25 µg/mL, AuNPs exhibited maximum cytotoxicity, whereas the viability of cells exhibited
a notable decrease when the doses reached 15 µg/mL, 20 µg/mL, and 25 µg/mL (Figure 7).

In our investigation, A549 cells treated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide revealed morphological changes caused by AuNPs, as shown in
Figure 8. MTT was used to dye A549 cells, where the treatment caused most of the cells to
shrink and separate from the culture dish’s substratum, while the control cells maintained
their original appearance. To further confirm the results obtained from treating malignant
cell lines with metallic nanoparticles, the effects of 5 µg/mL and 25 µg/mL AuNPs on
cell morphology were examined. The cells exhibited significant alterations, including a
noticeable reduction in cell membranes, indicating severe cellular damage and cell death,
along with the presence of other cellular debris. AuNPs were shown to be toxic to cells at a
concentration of 5 µg/mL and more toxic at 25 µg/mL, where the allegation that malignant
cells are killed by metallic nanoparticles has been supported by the changes in the cell
shape and a reduction in cell quantity. The synthesized gold nanoparticles appeared to be
more toxic towards cancerous cells when compared to control cells (Figure 8).
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3.4. ROS Activity

The intracellular level of reactive oxygen species of control and AuNP-treated (15 and
25 µg/mL) lung carcinoma A549 cells is shown in Figure 9. We have observed a significant
(p < 0.001) rise of around 40% and 60% in ROS content which was observed in cells treated
with 15 and 25 µg/mL of AuNPs, respectively. It indicates the instigation of oxidative stress
by the biosynthesized AuNPs that was the reason for the increased number of apoptotic
cells observed in DCFDA staining (Figure 10).

The production of ROS is a sign of oxidative stress, where biological components suffer
oxidative damage, which finally results in cell death. One of the main causes of AuNP
toxicity is oxidative stress over cancerous cells, which can trigger apoptosis in response
to a number of signals [39,52]. DCFH-DA has been utilized in our research to determine
ROS generation. Fluorescence pictures of A549 cells were obtained after 4 h with AuNP
concentrations of 0 µg/mL (control) and 15 µg/mL. Unlike the AuNP-treated cells, the
control sample did not exhibit any green fluorescence, indicating that H2O2 was not formed
(Figure 10).
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(B) Exposed for 4 h to a 15 µg/mL concentration of AuNPs.

4. Discussion
4.1. Preparation of AuNPs and Characterization of AuNPs by Surface Plasmon Resonance,
Spectrophotometric Analysis, Differential Light Scattering, and Transmission Electron Microscopic
(TEM) Analysis

Gold nanoparticles (AuNPs) were mycologically produced using S. commune fungal
extract. The appearance of a red color in the solution provided convincing evidence that
AuNPs were being synthesized inside the reaction mixture [53–55]. The color shift is caused
by the surface plasmon resonance of the metallic gold nanoparticles. The reduction of
HauCl4 salts to AuNPs is supported by a previous report on Yarrowia lipolytica, where
the contribution of redox mediators for AuNP production from a fungal source was ob-
served. Melanin was secreted by that fungus, and intriguingly, it seems to convert Au3+ to
AuNPs [56,57]. The enzymes nicotinamide adenine dinucleotide (NADH)/nicotinamide
adenine dinucleotide phosphate (NADPH) oxidoreductase, which can be found on the
outermost layer of the cell or within the cytoplasm, catalyze the reduction of Au ions. In
R. oryzae, X-ray photoelectron spectroscopy revealed that the concentrations of Au+ and
Au0 changed as the biosynthetic process progressed, indicating that Au3+ ions were first
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reduced to Au+ and further to Au0 [57]. The absorption band’s intensity is increased with
time and was maximum after 24 h. Beyond this point, no more fluctuations in the spectrum
were observed, suggesting that the gold salt precursors had been fully consumed [58]. In
DLS, we observed a peak from 40 nm to 250 nm, and this distribution of size may be due to
the aggregation of nanoparticles. The primary cause of the size change is the formation
of the corresponding nanostructures by the oxidation of metallic salts in the presence of
protein [59]. This approach enables the assessment of random fluctuations in the light
diffused from a colloidal suspension, providing a means to measure the particle size. The
size variability is caused by the metal reduction to their corresponding NPs by the influence
of reductase enzyme. This method allows for the measurement of the random variations in
light intensity dispersed from a supernatant [39,60]. Similarly, in TEM micrographs, it was
observed that the material produced using this biological mode was more homogeneous
and had a number of particles of different sizes. This outcome demonstrates the varied
size range and generally spherical shape of the particles. Similar results were observed in
previous studies, which supports our findings [61].

4.2. Antifungal Activity of AuNPs by Agar Well Assay and Their Scanning Electron Microscopy
(SEM) and Energy Dispersive Spectra (EDX)

The biological synthesis of nanoparticles offers a promising and advantageous alterna-
tive to traditional chemical methods due to its eco-friendliness, cost-effectiveness, milder
reaction conditions, specificity, biocompatibility, and reduced generation of hazardous
byproducts. The biologically produced nanoparticles were found to be polydisperse in
nature. The fundamental properties, such as electronic, optical, magnetic, and catalytic
properties, are controlled by the size and shape of the nanoparticle. The level of unifor-
mity or dispersity in biologically produced nanoparticles can vary based on the specific
biological method, the involved organisms or biological materials, and the process condi-
tions [62,63]. A few studies also reported that biologically synthesized AuNPs might be a
suitable alternative in comparison to chemically synthesized AuNPs for coating antimicro-
bial medicines in the pharmaceutical industry. As they are less toxic and less destructive to
probiotics present in the human gut in the form of probiotic bacteria, the outer coatings of
nanoparticles on the drugs may be more effective for destroying pathogenic bacteria and
safe for humans [64]. Gold precursors, such as chloroauric acid, have limited antifungal
effectiveness due to their molecular form, hindering direct interaction with fungal cells
unlike nanoparticles. Unlike nanoparticles, gold precursors have smaller surface areas,
necessary for effective contact with fungal cells. Moreover, their larger size and chemical
structure limit penetration through fungal cell walls, reducing direct interaction and leading
to their insufficient antifungal action [65,66].

Mycelial abnormalities in EDX spectra demonstrated the creation of AuNPs, with
peaks for C, N, Na, and O2 indicating the existence of proteins and several fungal remnants
present within in the interstitial spaces of the fungus. As stated in the procedure, the
high carbon content of the growth media is a requirement for the fungus to carry out its
metabolic activities.

4.3. In Vitro Cytotoxicity Assay

In our investigation, A549 cells treated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide revealed morphological changes caused by AuNPs. Previous reports
observed that AuNP-treated cells showed the existence of MTT-stained cells that had
apoptotic aggregates, blebbing membrane, and constricted nuclei [67]. Moreover, husk-like
zinc oxide nanoparticles showed promising significance for chemotherapy in MTT assay,
the investigation of reactive oxygen species (ROS) release, and condensation of chromatin
studies towards the human epidermoid carcinoma (HEC) A431 cells [68]. According to
several studies, S. commune extract has very low cytotoxic activity against cancerous cell
lines. The cytotoxicity investigation indicated that 1 mg/mL of S. commune extract exhibit
only 37% inhibitory effect on the survival of DF-1 cell lines, and it was concluded that the
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extract does not have significant cytotoxicity because there was no 50% cell death observed
even at 100 mg/mL [69]. Similarly, MTT assays were also carried out on Chinese hamster
ovary (CHO) cell lines that showed negligible toxicity of S. commune fungal extract [70].

The biologically produced gold nanoparticles were found to be significantly toxic to
cancerous cells (MDA-MB-231) with an IC50 value of 43.09± 1.6 µg/mL. However, even at a
higher concentration of 150 µg/mL, they exhibited minimum toxicity on human embryonic
kidney cells. Morphological data also showed similar activity where nanoparticles caused
apoptosis to kill cancer cells but had little or no negative impact on healthy cells, which
could be a promising tool in a range of biomedical applications [71]. B16F10 (non-cancerous)
cells exhibited greater resistance towards AuNPs than HeLa cells (cancerous cells) in
cytotoxicity experiments. Decreased systemic cytotoxicity to non-cancerous cells allowed
the 20 nm AuNPs to exhibit improved therapeutic efficacy. As a result, 20 nm AuNPs may
be thought of as a great substitute for human cervix carcinoma treatment since they may be
safely delivered into the bloodstream while having few adverse effects on non-cancerous
cells. It has been summarized that AuNPs of various sizes, therefore, displayed varying
degrees of cytotoxicity in various cell types [72]. Gold nanoparticles effectively reduced the
proliferation of breast cancer cells throughout time and at different doses. El-Sayed et al.
revealed that there was no cytotoxic effect on healthy cells (MCF-10A) [73]. Similar to this,
the AuNPs absorb 6 times more in cancer cells than in healthy human cells. More crucially,
they were able to demonstrate that cancer cells are more likely to be killed than normal
cells after four minutes [74].

Based on the dose-dependent suppression of A549 cells’ proliferation, the MTT experi-
ment demonstrated that AuNPs are hazardous. In A549 cells, treatment with AuNPs up-
regulates the expression of antiapoptotic proteins while activating caspase expression [52].
In a few studies, it was clearly mentioned that the AuNPs exhibit selectivity in the toxicity
effect against cell lines. The biosynthesized AuNPs were present in the cytosol, and their se-
lectivity toward cancer cells can be optimized for their potential use in biomedical research
on cell biology, cancer therapy, and targeted drug delivery. Similar research was performed
that showed the effect of AuNPs on human fibroblast cell line CIRC-HLF [75], cervical
cancer cells (HeLa) [76,77], and a human colorectal carcinoma cell line (HCT-116) [78]
showing toxicity in a dose-dependent manner. Various reports suggested that cytotoxicity
also depends on the type of cells used. The 33 nm citrate-capped AuNPs were found to be
non-toxic to baby hamster kidney and human hepatocellular liver carcinoma cells but toxic
to a human carcinoma lung cell line [79]. Therefore, these studies provide clear evidence
that metallic nanoparticles induce cell death, supporting our findings regarding the efficacy
of myco-synthesized AuNPs against A549 cells. This further emphasizes their potential as
a valuable tool in the arsenal for cancer treatment.

4.4. ROS Activity

The production of ROS is a sign of oxidative stress, where biological components
suffer oxidative damage, ultimately resulting in cell death. One of the main causes of
AuNPs’ toxicity is oxidative stress over cancerous cells which can trigger apoptosis in
response to a number of signals [39]. In A549 cells treated with AuNPs, the greatest
intensity of green fluorescence was seen at 4 h. Thus, cells exposed to AuNPs produced
ROS that have the potential to cause cellular disruption and ultimately result in cell
death [80]. These findings concur with the published studies that show DNA adducts
were created as a result of the treatment with AuNPs, increasing the levels of intracellular
ROS and eliminating antioxidants such as reduced glutathione or antioxidant enzymes
like glutathione peroxidase and superoxide dismutase [81]. It has been suggested that
intracellular ROS is a key indication of the toxic effect of NPs for cancerous cells. Recent
research has shown that AuNP-mediated ROS production in various cell types led to cell
death [82].

From previous studies, biological and chemically synthesized AuNPs were com-
pared, and it was found that chemically produced nanoparticles (citrate-capped particles)
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were only able to kill about 20–25% of cancerous cells even at a high concentration of
400 µg/mL, while the IC50 value for biologically synthesized AuNPs was found to be
around 200 µg/mL. The greater cytotoxic efficiency of biologically synthesized AuNPs
compared to chemically synthesized AuNPs was demonstrated by colony suppression
tests, intracellular ROS quantification, deregulation of mitochondrial membrane potential,
and cell cycle arrest [83]. Due to stabilization by biological metabolites, AuNPs contribute
significant cytotoxic activity. A few studies have suggested that biologically manufactured
AuNPs would be a better choice for coating antimicrobial drugs in the pharmaceutical
business than chemically synthesized AuNPs [84]. The exterior coatings of nanoparticles on
the medications may be more effective at killing pathogenic microbes and safe for humans
since they are less toxic and harmful to probiotics existing in the human gut. These findings
point to the possible application of AuNPs as an antifungal agent in the biomedical field.
Furthermore, since these AuNPs are readily conjugated with drugs, they can also function
as an excellent drug in biomedical applications [85,86].

Considering the reduced cytotoxicity of biologically synthesized gold nanoparticles
(AuNPs) compared to chemically prepared ones, the size of the particles plays a significant
role. Biologically synthesized AuNPs often exhibit a more controlled and uniform size
distribution compared to their chemically synthesized counterparts [9]. The controlled size
of biologically synthesized AuNPs is advantageous in mitigating cytotoxic effects. Smaller
nanoparticles typically have larger surface-area-to-volume ratios, and their interactions
with cells are influenced by factors such as cellular uptake, internalization, and bioavail-
ability. Biologically synthesized AuNPs, often in the nanoscale range, are more efficiently
internalized by cells due to their optimized size, promoting cellular compatibility [87].
In contrast, chemically prepared AuNPs may exhibit a broader size distribution, includ-
ing larger particles that could induce increased cytotoxicity through mechanisms such as
enhanced oxidative stress and inflammation [88].

Furthermore, the surface coating of biomolecules on biologically synthesized AuNPs
not only enhances biocompatibility but also contributes to the overall stability of the
nanoparticles. This stability is crucial for maintaining consistent size characteristics over
time and under different environmental conditions [18]. In contrast, chemically prepared
AuNPs may be more prone to agglomeration, leading to variations in size and potentially
exacerbating cytotoxic effects. Thus, the controlled and often smaller size, along with the
protective biomolecular coating, makes biologically synthesized AuNPs less cytotoxic to
cells compared to chemically prepared counterparts [89]. These factors collectively con-
tribute to the safer interaction of biologically synthesized AuNPs with biological systems,
emphasizing their potential for applications in medicine and biotechnology.

5. Conclusions

In conclusion, S. commune fungus was effectively used to produce a simple, reliable,
and ecologically friendly method of biosynthesizing AuNPs. UV–visible spectroscopy
was employed to evaluate the intensity of the pink color at various wavelengths between
400 and 600 nm to determine the highest surface plasmon resonance (SPR). The greatest
peak, as indicated by the UV–visible chart, was found at a wavenumber of 545 nm, cor-
responding to the SPR of AuNPs. DLS and TEM analysis indicated that mycologically
synthesized AuNPs were spherical in shape within the size range of 60 nm to 120 nm.
Additionally, as antifungal agents, these modified AuNPs were more effective against
pathogenic fungus. After treatment with AuNPs, several mycelial abnormities were found
during SEM analysis. Moreover, the AuNPs were also found to be cytotoxic against the
A549 cell line (adenocarcinoma alveolar basal epithelial cells). The fungal strain utilized in
this work is therefore likely to have several benefits, including its efficiency in producing
AuNPs, which can act as powerful fungicides and be used as a cytotoxic agent, leading
to the production of intracellular ROS that can be helpful to cure cancer. Therefore, this
method of AuNP production development leads to disease therapies that are less expensive,
safe, biocompatible, and result in reduced generation of hazardous byproducts.
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