
Citation: Karim, M.R.; Morshed,

M.N.; Iqbal, S.; Mohammad, S.;

Mathiyalagan, R.; Yang, D.C.; Kim,

Y.J.; Song, J.H.; Yang, D.U. A Network

Pharmacology and

Molecular-Docking-Based Approach

to Identify the Probable Targets of

Short-Chain Fatty-Acid-Producing

Microbial Metabolites against Kidney

Cancer and Inflammation.

Biomolecules 2023, 13, 1678. https://

doi.org/10.3390/biom13111678

Academic Editor: Alessandro

Paiardini

Received: 23 September 2023

Revised: 26 October 2023

Accepted: 17 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

A Network Pharmacology and Molecular-Docking-Based
Approach to Identify the Probable Targets of Short-Chain
Fatty-Acid-Producing Microbial Metabolites against Kidney
Cancer and Inflammation
Md. Rezaul Karim 1,2 , Md. Niaj Morshed 1 , Safia Iqbal 1,3, Shahnawaz Mohammad 4, Ramya Mathiyalagan 4 ,
Deok Chun Yang 1,5 , Yeon Ju Kim 4, Joon Hyun Song 6,* and Dong Uk Yang 1,7,*

1 Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University,
Yongin-si 17104, Republic of Korea; rezaulshimul@khu.ac.kr (M.R.K.); niajmorshed96@khu.ac.kr (M.N.M.);
safiadorin@khu.ac.kr (S.I.); dcyang@khu.ac.kr (D.C.Y.)

2 Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University,
Kushtia 7003, Bangladesh

3 Department of Microbiology, Varendra Institute of Biosciences, Affiliated University of Rajshahi,
Natore, Rajshahi 6400, Bangladesh

4 Graduate School of Biotechnology, College of Life Science, Kyung Hee University,
Yongin-si 17104, Republic of Korea; shnwzmohd@yahoo.com (S.M.); ramyabinfo@gmail.com (R.M.);
yeonjukim@khu.ac.kr (Y.J.K.)

5 Hanbangbio Inc., Yongin-si 17104, Republic of Korea
6 Department of Veterinary International Medicine, College of Veterinary Medicine, Chungnam National

University, Daejeon 34134, Republic of Korea
7 AIBIOME, 6, Jeonmin-ro 30beon-gil, Yuseong-gu 34052, Republic of Korea
* Correspondence: jh.song@cnu.ac.kr (J.H.S.); dongukyang82@gmail.com (D.U.Y.)

Abstract: (1) Background: A large and diverse microbial population exists in the human intestinal
tract, which supports gut homeostasis and the health of the host. Short-chain fatty acid (SCFA)-
secreting microbes also generate several metabolites with favorable regulatory effects on various
malignancies and immunological inflammations. The involvement of intestinal SCFAs in kidney
diseases, such as various kidney malignancies and inflammations, has emerged as a fascinating area
of study in recent years. However, the mechanisms of SCFAs and other metabolites produced by
SCFA-producing bacteria against kidney cancer and inflammation have not yet been investigated.
(2) Methods: We considered 177 different SCFA-producing microbial species and 114 metabolites
from the gutMgene database. Further, we used different online-based database platforms to predict
1890 gene targets associated with metabolites. Moreover, DisGeNET, OMIM, and Genecard databases
were used to consider 13,104 disease-related gene targets. We used a Venn diagram and various
protein−protein interactions (PPIs), KEGG pathways, and GO analyses for the functional analysis
of gene targets. Moreover, the subnetwork of protein−protein interactions (through string and
cytoscape platforms) was used to select the top 20% of gene targets through degree centrality,
betweenness centrality, and closeness centrality. To screen the possible candidate compounds, we
performed an analysis of the ADMET (absorption, distribution, metabolism, excretion, and toxicity)
properties of metabolites and then found the best binding affinity using molecular docking simulation.
(3) Results: Finally, we found the key gene targets that interact with suitable compounds and function
against kidney cancer and inflammation, such as MTOR (with glycocholic acid), PIK3CA (with
11-methoxycurvularin, glycocholic acid, and isoquercitrin), IL6 (with isoquercitrin), PTGS2 (with
isoquercitrin), and IGF1R (with 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, isoquercitrin),
showed a lower binding affinity. (4) Conclusions: This study provides evidence to support the
positive effects of SCFA-producing microbial metabolites that function against kidney cancer and
inflammation and makes integrative research proposals that may be used to guide future studies.
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1. Introduction

As kidney cancer causes more than 131,000 fatalities and 342,000 incident cases world-
wide each year, it is one of the most serious malignancies [1]. According to 2020 GLOBO-
CAN data, globally, 2.2% of total incidences and 1.8% of total cancer deaths occur in kidney
cancer annually [2,3]. Cancer research has recently shifted its attention to the link between
cancer and inflammation [4]. Numerous studies have demonstrated that the development
of cancer, including breast, pancreatic, colorectal, colon, rectal, prostate, bladder, lung, and
ovarian cancers, is strongly influenced by inflammatory chemicals and pathways [5,6].
Renal cell carcinoma (RCC) and inflammation are both closely related, and both contribute
to the growth of RCC tumors, which are thought to be immunogenic [7,8]. Surgery is
still the most effective treatment for both localized and locally progressed RCC, because
25–30% of affected patients have metastatic disease and, therefore, a poor prognosis [9].
Therefore, the current study focuses on inflammation and kidney cancer. We focused on
network pharmacology analysis to find the safer and more effective therapeutic gene targets
needed to treat inflammation and kidney cancer.

In recent years, there has been growing interest in the gut−kidney interaction as it
relates to chronic kidney disease (CKD), including kidney cancer and inflammation [10].
Microbial metabolites can function as signaling substances when circulated throughout
the body [11]. Currently, short-chain fatty acids (SCFAs) and their receptors, as well as
changes to the gut microbiome, are some of the suggested mechanisms linking dysbiotic
gut microbiota to CKD and its consequences [11–13]. As a class of metabolites, SCFAs
exert advantageous regulatory effects on blood pressure, immunological inflammation,
hormone production, and cancer [14]. A lack of gut-microbiota-produced SCFAs has
also been linked to disorders such as inflammatory bowel disease, obesity, type 1 and
type 2 diabetes, autism, major depression, colon cancer, and renal diseases, which are the
topic of this discussion [15–18]. However, the relationship between bacteria that produce
SCFAs and the various metabolites they secrete, including SCFAs, which help treat kidney
inflammation and kidney cancer, is still not entirely understood. Therefore, the current
study focuses on microbes that produce SCFAs and their metabolites to find potential
targets for the treatment of inflammation and kidney cancer using network pharmacology.

To combat the co-morbidity of these diseases, the goal of this research was to discover
the most significant gut SCFAs-producing microbial compounds that can be used to control
the expression of the hierarchical targets for treating kidney cancer and inflammation. We
also discussed the important SCFAs-producing probiotics that the molecular docking test
(MDT) determined to be the most stably bound metabolites on a significant target. As a
result, our research may identify approaches to reduce kidney cancer and inflammation by
using the effect of complex microbiome networks.

2. Materials and Methods
2.1. Target Gene Prediction of SCFAs Microbial Metabolites and Diseases (Kidney Cancer
and Inflammation)

The targets and metabolites of the gut SCFA-producing microbiota were obtained
using the gutMGene v1.0 database (http://bio-annotation.cn/gutmgene/) (accessed on
10 July 2023) [19]. To retrieve kidney cancer and inflammation-related targets, we used
the DisgeNET v7.0(https://www.disgenet.org/) (accessed on 12 July 2023) [20], OMIM
(https://www.omim.org/) [21] (accessed on 13 July 2023), and Genecard databases v5.8
(https://www.genecards.org/) (accessed on 14 July 2023) [22] databases. The major targets
among the metabolites and chosen disease-related targets were identified using Venny
2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/ accessed on 15 July 2023), an online
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mapping tool. We used the overlapped genes for further analysis using GeneMANIA
(https://genemania.org/ V3.6.0 version accessed on 16 July 2023) [23] to find the target
genes that are co-expressed and that share the same protein and pathway. We then used
those genes for further analysis.

2.2. Target Gene Location in Chromosomes and Tissues

To evaluate the pathophysiology of some genes and identify the potential therapeutic
targets, the chromosomal location of the target genes needs to be determined. As a result,
the location of the genes on the chromosomes was determined using the ShinyGO web tool
v0.75 (http://bioinformatics.sdstate.edu/go/ accessed on 18 July 2023) [24]. Additionally,
the distribution of shared genes varied in other organs. So, using the Pa-GenBase dataset
from the Metascape web server v3.5.2023.05.01 (https://metascape.org/gp/index.html#
/main/ accessed on 19 July 2023) [25], we were able to determine the distribution of genes
that affect different tissues and cell types.

2.3. Analysis of Target Gene Pathways Using Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Databases

GO analysis, which was created to define the activities of the targets, included analyses
of cellular components (CC), biological function, and molecular function. The KEGG
pathway analysis shed light on the putative signaling pathways linked to the final targets
against kidney cancer and renal inflammation. The gene ratio of the differentially expressed
genes to the total number of targets in a signaling pathway serves as the foundation for
enrichment plots, which are based on a p-value and adj. p-value [26]. Gene ontology
and pathway studies were performed using the Protein Analysis Through Evolutionary
Relationships (PANTHER) program v18.0 (http://pantherdb.org/ accessed on 20 July 2023)
to determine how these frequently connected genes collectively influence the signaling
pathways [27].

2.4. Protein−Protein Interaction (PPI) Network Analysis of Targeted Gene

Protein interactions are examined throughout the early stages of drug development be-
cause they provide an immense amount of information about the functions of proteins [28].
The total number of intricate biological processes is estimated through a thorough PPI
network investigation [29]. By using the STRING dataset with NetworkAnalyst v3.0
(https://www.networkanalyst.ca/ accessed on 22 July 2023), the PPI of common genes
has been determined to examine the molecular mechanisms linked to major signaling
pathways and cellular activities [30]. The PPI network was created using the fundamental
PPI configuration, which used H. sapiens as the organism, STRING as the database, and a
confidence score cutoff of 900. After assessing the accuracy, we concluded that the common
nodes were the most likely hubs. The creation of sub-PPI networks using CytoHubba v0.1
in Cytoscape version 3.10.1 to select the suitable gene targets using the highest degree
centrality (DC) values, highest betweenness centrality (BC) values, and highest closeness
centrality (CC) values in the top 20% of the PPI networks [31].

2.5. Analysis of the Physiochemical and ADMET Characteristics of Microbial Compounds

The hit compounds were subjected to in silico physiochemical analysis. The Swis-
sADME (http://www.swissadme.ch/index.php accessed on 23–28 July 2023) [32], AD-
METlab2.0 (https://admetmesh.scbdd.com/ accessed on 23–28 July 2023) [33], and pkCSM
(https://biosig.lab.uq.edu.au/pkcsm/ accessed on 23–28 July 2023) web servers were used
for the drug-likeness analysis [34], and the Protox-II web server (https://tox-new.charite.
de/protox_II/ accessed on 23–28 July 2023) was used for the analysis of the predicted AD-
MET properties [35]. To predict ADMET properties (absorption, distribution, metabolism,
excretion, and toxicity), the PubChem Database’s canonical SMILES of the metabolites were
consulted. Finally, we rejected the protein targets connected to Lipinski’s rule of five (LO5)
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metabolites that broke more than two of its rules [36]. Investigations were conducted using
the remaining targets and metabolites.

2.6. Validation of the Expression of the Hub Targets

Information on the expression and distribution of various human proteins in diverse
tissues is made available via the Human Protein Atlas database (HPA) v23.0 (https://
www.proteinatlas.org/ accessed on 2 August 2023) [37]. Using data from the Human
Protein Atlas, we investigated the expression levels of hub targets in the kidneys and
urinary bladder.

2.7. Protein and Ligand Preparation

From the RCSB protein data bank (www.rcsb.org, accessed on 1 August 2023), the
crystal structures of MTOR (PDB:2FAP), PIK3CA (PDB:5DXT), IL6 (PDB:4ZST), PTGS2
(PDB:5IKQ), and IGF1R (PDB:5FXQ) were retrieved [38]. All of the retrieved protein
structures belonged to the human database. For the selection of protein structures, we
considered mainly the X-ray diffraction experimental method, and also the refinement
resolution range between approximately 1.5 and 2.5. The proteins were prepared by
removing the cofactors, water molecules, and metal ions from the complex structure. After
the non-polar hydrogen atoms were combined and polar hydrogen atoms were added,
Gasteiger charges for the protein were computed [39]. The aromatic carbons were located,
the non-polar hydrogens were combined, and the molecule ‘torsion tree’ was set up using
AutoDock v4 Tools. For additional screening, the PDBQT file format of these results
was used. Additionally, the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/
accessed on 14–20 August 2023) was utilized to acquire the 3D structures of the active
components [40]. Finally, SDF files were used as the download format.

2.8. Binding Site Identification and Grid Box Generation

Binding sites were found by comparing pockets from known protein−ligand interac-
tions. PDB and CASTp (http://sts.bioe.uic.edu/castp/ accessed on 14–20 August 2023) [41]
were used to extract the known and unknown active sites of the protein structures, re-
spectively, and BIOVIA Discovery Studio Visualizer v19.1 (BIOVIA) was used to examine
the binding site of the proteins [42]. The receptor grid was built using molecular docking
and the binding sites were obtained from the complex structure using the PyRx—Python
Prescription 0.8 virtual screening tool [43].

2.9. Molecular Docking Simulation

A molecular docking simulation was performed using the PyRx v0.8 tool to identify
the candidates that were most compatible with the target proteins [30]. AutoDock Vina
and AutoDock v4 are included in PyRx, a free computational screening application that
can assess a big dataset against a specific biologically targeted macromolecule. The default
setting in PyRx v0.8 is the AutoDock Vina Wizard v4 [44], which simulates molecular
docking. In comparison with other compounds, the top compounds had the highest
binding affinity (kcal/mol) to the target protein. Finally, using the default arrangement,
receptor grids were created.

3. Results
3.1. Retrieve Metabolites and Potential Target Proteins Linked to Kidney Cancer and
Kidney Inflammation

We obtained 177 SCFA-producing microbes and 114 metabolites from the gutMgene
microbiome database. A total of 1890 metabolite-related gene targets were predicted
from the gutMgene, PubChem, and Human Metabolome (HMDB) databases, using the
similarity ensemble approach (SEA), Swiss target prediction (STP), and Chemical Entities
of Biological Interest (ChEBI) (Supplementary S1). A total of 13,104 target genes for kidney
cancer and kidney inflammation-related diseases were retrieved from DisgeNET, genecard,

https://www.proteinatlas.org/
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and OMIM (Supplementary S2). The revealed targets and compounds were regarded as
important factors for analyzing the treatment outcomes of the gut microbiota. Subsequently,
1436 overlapping targets related to kidney cancer and inflammation were identified through
a Venn diagram (Figure 1A). Therefore, the 1436 selected targets were used for further
analysis in GeneMANIA to find co-expressed genes that shared the same protein domain
and related gene regulation pathways. Finally, we found 38 gene targets that were used for
further analysis (Figure 1B, Supplementary S3).
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3.2. Distribution and Location of Genes

Identifying the exact cellular and molecular locations of the genes is required to
identify a protein at the transcription level. We used 38 final targets in the Metascape online
server for this analysis. Most of the target genes of kidney cancer and kidney inflammation
were expressed in the placenta (expressed value around 6), while others were also expressed
in smooth muscle (above 3.5) and in the lungs (above 3) (Figure 2C). Additionally, in the
analysis of kidney cancer and inflammation genes, the majority of the common target genes
(six) were present in chromosome 3, and four genes were present in chromosomes 1, 7, and
11. Except for the 4, 5, 6, 8, 14, 16, 18, 21, 22, X, and Y chromosomes, the rest were evenly
distributed throughout the genome (Figure 1A). As a cellular level, most of the genes were
expressed (above 8) in lake adult kidney C8 descending thin limb, and were also highly
expressed (around six) in the lake adult kidney C9 thin ascending limb, as well as the
travaglini lung basophil mast 1 cell (near to six). In the other kidney and lung cells, the
genes were thoroughly distributed (Figure 2B). Finally, we also analyzed and observed that
most of the genes were expressed in different renal cell carcinomas and kidney carcinomas
(Figure 2D).



Biomolecules 2023, 13, 1678 6 of 20Biomolecules 2023, 13, x FOR PEER REVIEW 6 of 21 
 

 

Figure 2. Distribution of targeted genea. (A) Chromosomal distribution. (B) Cellular distribution. 

(C) Tissue-specific distribution. (D) Distribution in different cancer types. 

3.3. Gene Ontology and Pathway Analysis of Gene Targets 

To further investigate the potential mechanism of the genes for kidney cancer and 

inflammation, GO and KEGG enrichment analyses were conducted based on 38 targets. 

We found these genes enriched in 119 biological process (BP) terms, 46 molecular func-

tions (MF) terms, and 33 cellular component (CC) terms for kidney cancer and inflamma-

tion. The top 12 entries from BP, 7 entries from MF, and 2 entries from CC terms are shown 

in Figure 3 (Supplementary S5). In the case of kidney cancer and inflammation, BP analy-

sis showed that associated targets were primarily centered on biological regulation and 

cellular and metabolic processes (Figure 3A). According to the MF analysis, potential kid-

ney cancer and inflammation targets were determined mainly based on the binding affin-

ity, catalytic activity, and molecular transducer activity. CC analysis indicated that related 

targets were primarily mainly centered on the cellular anatomical entity and protein-con-

taining complex (Figure 3C). KEGG pathway enrichment analysis was also performed to 

investigate the pathways associated with the key targets. The results showed 65 signifi-

cantly enriched signaling pathways for kidney cancer and inflammation. The top 32 sig-

nificantly enriched pathways displayed in Figure 3D were closely correlated to kidney 

cancer and inflammation (Figure 3D). So, the pathway enrichment analysis indicated that 

the gonadotropin-releasing hormone receptor pathway, inflammation-mediated chemo-

kine and cytokine signaling pathway, angiogenesis and apoptosis signaling pathway, en-

dothelin signaling pathway, interleukin signaling pathway, and nicotinic acetylcholine re-

ceptor signaling pathway were most closely related to kidney cancer and inflammation 

(Figure 3D) (Supplementary S4). 

Figure 2. Distribution of targeted genea. (A) Chromosomal distribution. (B) Cellular distribution.
(C) Tissue-specific distribution. (D) Distribution in different cancer types.

3.3. Gene Ontology and Pathway Analysis of Gene Targets

To further investigate the potential mechanism of the genes for kidney cancer and
inflammation, GO and KEGG enrichment analyses were conducted based on 38 targets.
We found these genes enriched in 119 biological process (BP) terms, 46 molecular functions
(MF) terms, and 33 cellular component (CC) terms for kidney cancer and inflammation. The
top 12 entries from BP, 7 entries from MF, and 2 entries from CC terms are shown in Figure 3
(Supplementary S5). In the case of kidney cancer and inflammation, BP analysis showed
that associated targets were primarily centered on biological regulation and cellular and
metabolic processes (Figure 3A). According to the MF analysis, potential kidney cancer
and inflammation targets were determined mainly based on the binding affinity, catalytic
activity, and molecular transducer activity. CC analysis indicated that related targets were
primarily mainly centered on the cellular anatomical entity and protein-containing complex
(Figure 3C). KEGG pathway enrichment analysis was also performed to investigate the
pathways associated with the key targets. The results showed 65 significantly enriched
signaling pathways for kidney cancer and inflammation. The top 32 significantly enriched
pathways displayed in Figure 3D were closely correlated to kidney cancer and inflammation
(Figure 3D). So, the pathway enrichment analysis indicated that the gonadotropin-releasing
hormone receptor pathway, inflammation-mediated chemokine and cytokine signaling
pathway, angiogenesis and apoptosis signaling pathway, endothelin signaling pathway,
interleukin signaling pathway, and nicotinic acetylcholine receptor signaling pathway were
most closely related to kidney cancer and inflammation (Figure 3D) (Supplementary S4).



Biomolecules 2023, 13, 1678 7 of 20Biomolecules 2023, 13, x FOR PEER REVIEW 7 of 21 
 

 

Figure 3. Gene ontology (GO) and KEGG pathway analysis of the target genes. (A) Biological pro-

cess. (B) Molecular functions. (C) Cellular components. (D) KEGG pathway analysis. 

3.4. Screening of Hub Targets and PPI Network Construction 

In the PPI network analysis, we used 38 targets. Among these targets, the kidney 

cancer and inflammation targets FAAH2 and KCNMA1 did not interact with other targets 

that consisted of 38 nodes and 150 edges (Figure 4A). For further screening, we considered 

78 nodes and 640 edges and selected the top 20% of targets based on the degree of central-

ity (DC). We also checked betweenness centrality (BC) and closeness centrality (CC) (Sup-

plementary S6). Subsequently, we found the top 20 targets that were related to kidney 

cancer and inflammation (Figure 4B–D) (Table 1). Furthermore, we selected the common 

targets among the 38 common targets of SCFA-producing microbes and kidney cancer 

and inflammation, and the top 20 PPI hub targets of kidney cancer and inflammation. 

Finally, we found nine hub targets (TP53, CTNNB1, MTOR, PIK3CA, IL6, ERBB2, PTGS2, 

IGF1R, and RELA) related to kidney cancer and inflammation. For additional confor-

mation, we checked the RNA expression of the nine final target genes in the organs of the 

urinary bladder and whole kidneys. In this analysis, we found a positive expression in 

both the urinary bladder and whole kidneys (Figure 4E). Further analysis proceeded with 

the nine final targets, which were related to kidney cancer and inflammation. 

Figure 3. Gene ontology (GO) and KEGG pathway analysis of the target genes. (A) Biological process.
(B) Molecular functions. (C) Cellular components. (D) KEGG pathway analysis.

3.4. Screening of Hub Targets and PPI Network Construction

In the PPI network analysis, we used 38 targets. Among these targets, the kidney
cancer and inflammation targets FAAH2 and KCNMA1 did not interact with other targets
that consisted of 38 nodes and 150 edges (Figure 4A). For further screening, we considered
78 nodes and 640 edges and selected the top 20% of targets based on the degree of cen-
trality (DC). We also checked betweenness centrality (BC) and closeness centrality (CC)
(Supplementary S6). Subsequently, we found the top 20 targets that were related to kidney
cancer and inflammation (Figure 4B–D) (Table 1). Furthermore, we selected the common
targets among the 38 common targets of SCFA-producing microbes and kidney cancer and
inflammation, and the top 20 PPI hub targets of kidney cancer and inflammation. Finally,
we found nine hub targets (TP53, CTNNB1, MTOR, PIK3CA, IL6, ERBB2, PTGS2, IGF1R,
and RELA) related to kidney cancer and inflammation. For additional conformation, we
checked the RNA expression of the nine final target genes in the organs of the urinary
bladder and whole kidneys. In this analysis, we found a positive expression in both the
urinary bladder and whole kidneys (Figure 4E). Further analysis proceeded with the nine
final targets, which were related to kidney cancer and inflammation.

3.5. Physiochemical and ADMET Property Analysis of Lead Compounds That Control the Hub
Targets Expression

After the PPI network analysis, we recovered nine hub targets for kidney disease
and inflammation that could be regulated by gut SCFA-producing microbial metabolites
(Table 2) (Supplementary S7). The physiochemical and ADMET (absorption, distribu-
tion, metabolism, excretion, and toxicity) features of these target-regulated metabolites
(75 metabolites) were examined. After analyzing the ADME properties, we screened and
rejected some metabolites that did not meet the drug properties (Supplementary S7). Finally,
we found metabolites that regulated the nine hub targets (Table 2), that mainly determined
by its pharmacodynamics (PD) and pharmacokinetics (PK) properties.
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MET 0.005245046 0.561643836 10 4 

SLC2A1 0.007293932 0.561643836 10 3 
IGF1R 0.000513 0.554054054 9 6 
VHL 0.003383222 0.525641026 8 7 
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CYP1A1 0.005259476 0.539473684 7 1 
FLT1 0.001178862 0.5125 7 1 

Figure 4. Hub targets and PPI network construction. (A) Identification of kidney cancer and in-
flammation hub proteins. (B) PPI network analysis. (C,D) PPI network of kidney cancer and
inflammation-related hub protein, and screening of the top 20 targets based on the degree of centrality
(the nodes represent proteins, and the edges represent protein–protein interactions). (E) RNA tissue
specificity expression profile in the urinary bladder and whole kidneys.

Table 1. Degree centrality (DC), betweenness centrality (BC), and closeness centrality (CC) of kidney
cancer and kidney inflammation genes.

Name Betweenness Centrality Closeness Centrality Degree Number of Directed Edges

TP53 0.319071552 0.872340426 35 2
CTNNB1 0.108958047 0.732142857 26 20

IL6 0.156313791 0.683333333 23 23
MTOR 0.054536656 0.672131148 22 5
PTGS2 0.064988518 0.650793651 20 35

PIK3CA 0.03684383 0.630769231 18 17
ERBB2 0.0341558 0.630769231 17 10

NFKBIA 0.010607996 0.594202899 14 26
KEAP1 0.012401937 0.585714286 13 7
SIRT1 0.020993867 0.585714286 13 6
RELA 0.003634516 0.569444444 11 18
GSTP1 0.01601626 0.554054054 11 22
MET 0.005245046 0.561643836 10 4

SLC2A1 0.007293932 0.561643836 10 3
IGF1R 0.000513 0.554054054 9 6
VHL 0.003383222 0.525641026 8 7

LRRK2 0.006013884 0.532467532 8 14
CTSD 0.006634727 0.518987342 8 8

CYP1A1 0.005259476 0.539473684 7 1
FLT1 0.001178862 0.5125 7 1
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Table 2. Microbial metabolites and hub targets after ADME property analysis.

Hub Target Genes Gene Targeted Compounds and ID Target Microbes [19]

TP53 Bile acid (439520, CHEBI:22868)
Bacteroides distasonis, Clostridium scindens,
Faecalibacterium prausnitzii, Haemophilus
parainfluenzae.

CTNNB1 2-Hydroxy-3-(5-hydroxy-1H-indol-3-yl)propanoic
acid (192215) Clostridium sporogenes.

3-Hydroxy-4-methoxybenzenepropanoic acid
(2752054, HMDB0131138) Clostridium orbiscindens, Eubacterium ramulus,

Dihydrocaffeic acid (348154, HMDB0000423,
CHEBI:48400)

Bifidobacterium, Bifidobacterium longum, Clostridium
orbiscindens, Clostridium sporogenes, Eubacterium
ramulus, Faecalibacterium prausnitzii, Lactobacillus
mucosae, Lactobacillus zeae.

Indole-3-lactic acid (92904, CHEBI:24813) Clostridium sporogenes.

MTOR 11-Methoxycurvularin (10381440) Bacillus sp.
Dihydrodaidzein (176907, HMDB0005760,
CHEBI:75842)

Blautia producta, Bacillus sp., Clostridium sp.,
Lactobacillus mucosae, Lactococcus sp.,

Glycocholic acid (10140, HMDB0000138,
CHEBI:17687)

Bacteroides fragilis, Butyricicoccus pullicaecorum,
Ruminococcus flavefaciens.

PIK3CA 11-Methoxycurvularin (10381440) Bacillus sp.
3-Hydroxyphenethyl alcohol (83404) Bifidobacterium.
Caffeic acid (689043, HMDB0001964, CHEBI:16433) Bifidobacterium, Bifidobacterium animalis.
Dihydrodaidzein (176907, HMDB0005760,
CHEBI:75842)

Blautia producta, Bacillus sp., Clostridium sp.,
Lactobacillus mucosae, Lactococcus sp.,

Dihydroglycitein (101101166, CHEBI:174736) Eubacterium limosum.
Glycocholic acid (10140, HMDB0000138,
CHEBI:17687)

Bacteroides fragilis, Butyricicoccus pullicaecorum,
Ruminococcus flavefaciens.

Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

IL6 Acetate (175, CHEBI:30089)

Bacteroides thetaiotaomicron, Bacteroidetes,
Bifidobacterium dentium, Bifidobacterium longum,
Blautia faecis, Clostridium asparagiforme, Clostridium
pasteurianum, Clostridium scindens, Clostridium sp.
L2-50, Eubacterium limosum, Eubacterium ramulus,
Eubacterium rectale, Lawsonibacter asaccharolyticus,
Ruminococcus champanellensis, Succinivibrio
dextrinosolvens,

Butyrate (104775, CHEBI:17968)

Butyricimonas synergistica, Butyricimonas virosa,
Clostridium, Clostridium butyricum, Clostridium
pasteurianum, Clostridium tyrobutyricum, Eubacterium
hallii, Eubacterium limosum, Eubacterium ramulus,
Eubacterium rectale, Faecalibacterium prausnitzii,
Firmicutes, Fusobacteriia, Lawsonibacter
asaccharolyticus, Prevotella copri, Roseburia
inulinivorans.

Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

Propionate (104745, CHEBI:17272)

Bacteroides, Bacteroides thetaiotaomicron, Eubacterium
limosum, Haemophilus parainfluenzae, Parasutterella
excrementihominis, Phascolarctobacterium succinatutens,
Propionibacterium avidum, Roseburia inulinivorans,
Ruminococcus bromii, Veillonella, Veillonella ratti.
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Table 2. Cont.

Hub Target Genes Gene Targeted Compounds and ID Target Microbes [19]

ERBB2 2,3-Dihydroxypropyl
(E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (5315606) Bifidobacterium.

2-Hydroxy-3-(5-hydroxy-1H-indol-3-yl)propanoic
acid (192215) Clostridium sporogenes.

3-Hydroxy-4-methoxybenzenepropanoic acid
(2752054, HMDB0131138) Clostridium orbiscindens, Eubacterium ramulus.

4-Hydroxy-(3′,4′-dihydroxyphenyl)-valeric acid
(52920332, HMDB0041679, CHEBI:137478) Lactobacillus plantarum.

5-(3,4-Dihydroxyphenyl)-valerolactone (45093073) Lactobacillus plantarum.
Caffeic acid (689043, HMDB0001964, CHEBI:16433) Bifidobacterium, Bifidobacterium animalis.
Ethyl phenyllactate, (-)- (9877619, HMDB0032618) Bacteroides caccae, Clostridium sp.

Hydroquinone (785, HMDB0002434, CHEBI:17594) Bacteroides, Bifidobacterium, Bifidobacterium longum,
Eubacterium.

Indole-3-lactic acid (92904, CHEBI:24813) Clostridium sporogenes.

PTGS2 (R)-3-(4-Hydroxyphenyl)lactate (9548632,
CHEBI:10980) Bacteroides caccae, Clostridium sp.

2-(4-Hydroxyphenyl)propionic acid, (2S)- (6971268) Eubacterium ramulus.
2,3-Dihydroxypropyl
(E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (5315606) Bifidobacterium,

2-Hydroxy-3-(4-hydroxyphenyl)propanoic acid
(9378, HMDB0000755, CHEBI:17385) Clostridium sporogenes.

2-Hydroxy-3-(5-hydroxy-1H-indol-3-yl)propanoic
acid (192215) Clostridium sporogenes.

3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid
(439435, HMDB0003503, CHEBI:17807) Clostridium sporogenes.

3-(3-Hydroxyphenyl)propanoic acid (91,
HMDB0000375, CHEBI:1427) Bifidobacterium.

3-(4-Hydroxyphenyl)propionic acid (10394,
HMDB0002199, CHEBI:32980) Clostridium orbiscindens, Eubacterium ramulus.

3,4-Dihydroxybenzoic acid (72, CHEBI:36062) Bacteroides sp.
3,4-Dihydroxyphenylacetic acid (547,
HMDB0001336, CHEBI:41941) Clostridium orbiscindens, Eubacterium ramulus,

3-Hydroxy-4-methoxybenzenepropanoic acid
(2752054, HMDB0131138) Clostridium orbiscindens, Eubacterium ramulus,

3-Hydroxybenzoic acid (7420, HMDB0002466,
CHEBI:30764) Eubacterium.

3-Hydroxyphenethyl alcohol (83404) Bifidobacterium.
3-Phenylpropionic acid (107, CHEBI:28631) Clostridium sporogenes
4-Hydroxy-(3′,4′-dihydroxyphenyl)-valeric acid
(52920332, HMDB0041679, CHEBI:137478) Lactobacillus plantarum.

4-Hydroxybenzoic acid (135, HMDB0000500,
CHEBI:30763) Eubacterium.

4-Hydroxyphenylacetic acid (127, HMDB0000020,
CHEBI:18101) Eubacterium ramulus,

Caffeic acid (689043, HMDB0001964, CHEBI:16433) Bifidobacterium, Bifidobacterium animalis.
D-Lactic acid (61503, HMDB0001311, CHEBI:42111) Faecalibacterium prausnitzii
Ethyl phenyllactate, (-)- (9877619, HMDB0032618) Bacteroides caccae, Clostridium sp.
Isobutyric acid (6590, HMDB0001873, CHEBI:16135) Butyricimonas synergistica, Butyricimonas virosa
Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

Leucine (6106, HMDB0000687, CHEBI:15603) Blautia, Faecalibacterium prausnitzii, Ruminococcus
Phenolic acid (CHEBI:166890) Eubacterium ramulus.
Phenylacetic acid (999, HMDB0000209,
CHEBI:30745) Bifidobacterium.
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Table 2. Cont.

Hub Target Genes Gene Targeted Compounds and ID Target Microbes [19]

Dihydrocaffeic acid (348154, HMDB0000423,
CHEBI:48400)

Bifidobacterium, Bifidobacterium longum, Clostridium
orbiscindens, Clostridium sporogenes, Eubacterium
ramulus, Faecalibacterium prausnitzii, Lactobacillus
mucosae, Lactobacillus zeae.

Pipecolic acid (849, HMDB0000070, CHEBI:17964) Lactobacillus casei.
Proline (145742, HMDB0000162, CHEBI:17203) Blautia, Ruminococcus.
Quinic acid (6508, HMDB0003072, CHEBI:17521) Bifidobacterium animalis.

IGF1R 2-Amino-1-methyl-6-phenylimidazo[4,5-b] pyridine
(1530, CHEBI:76290)

Blautia obeum, Faecalibacterium prausnitzii,
Lactobacillus reuteri.

3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid
(439435, HMDB0003503, CHEBI:17807) Clostridium sporogenes

3-(3-Hydroxyphenyl)propanoic acid (91,
HMDB0000375, CHEBI:1427) Bifidobacterium.

3-(4-Hydroxyphenyl)propionic acid (10394,
HMDB0002199, CHEBI:32980) Clostridium orbiscindens, Eubacterium ramulus.

3,4-Dihydroxybenzoic acid (72, CHEBI:36062) Bacteroides sp.
3,4-Dihydroxyphenylacetic acid (547,
HMDB0001336, CHEBI:41941) Clostridium orbiscindens, Eubacterium ramulus,

3-Hydroxy-4-methoxybenzenepropanoic acid
(2752054, HMDB0131138) Clostridium orbiscindens, Eubacterium ramulus,

3-Hydroxybenzoic acid (7420, HMDB0002466,
CHEBI:30764) Eubacterium.

4-Hydroxy-(3′,4′-dihydroxyphenyl)-valeric acid
(52920332, HMDB0041679, CHEBI:137478) Lactobacillus plantarum.

4-Hydroxybenzoic acid (135, HMDB0000500,
CHEBI:30763) Eubacterium.

Dihydrocaffeic acid (348154, HMDB0000423,
CHEBI:48400)

Bifidobacterium, Bifidobacterium longum, Clostridium
orbiscindens, Clostridium sporogenes, Eubacterium
ramulus, Faecalibacterium prausnitzii, Lactobacillus
mucosae, Lactobacillus zeae.

Dihydrodaidzein (176907, HMDB0005760,
CHEBI:75842)

Blautia producta, Bacillus sp., Clostridium sp.,
Lactobacillus mucosae, Lactococcus sp.,

Ethyl phenyllactate, (-)- (9877619, HMDB0032618) Bacteroides caccae, Clostridium sp.
Glutathione (124886, HMDB0000125, CHEBI:16856) Bacteroides thetaiotaomicron.
Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

Phenolic acid (CHEBI:166890) Eubacterium ramulus.

RELA 2,3-Dihydroxypropyl
(E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (5315606) Bifidobacterium.

Caffeic acid (689043, HMDB0001964, CHEBI:16433) Bifidobacterium, Bifidobacterium animalis.

As per Lipinski’s rule of five, an orally administrated drug must have HBA ≤ 10,
log P ≤ 5, HBD ≤ 5, and molecular weight (MW) < 500 Daltons [45]. Due to the vio-
lation of Lipinski’s rules, we rejected (20S)-protopanaxadiol, aglycone, beta-D-Gal-(1-
>4)-beta-D-GlcNAc-(1->3)-beta-D-Gal-(1->4)-D-Glc, and ginsenoside Rh2, as well as be-
cause of the violation of ADME properties, such as the plasma-protein binding prop-
erty. The level of plasma-protein binding impacts the drug’s effectiveness, clearance,
and possible interactions. Only the unbound fraction of the drug is prone to clearance
from the liver and is available for binding to the molecular target [46]. As such, we
rejected molecular candidates that did not have plasma-protein binding values below
<90%. Candidates rejected based on the criterion included 10-keto-12Z-octadecenoic
acid, 2,3-bis(3,4-dihydroxybenzyl) butyrolactone, 6,7,4′,rihydroxyisoflavone, 6′-hydroxy-
O-desmethylangolensin, 8-prenylnaringenin, apigenin, arctigenin, chrysin, daidzein, de-
oxycholic acid, dihydrodaidzein, dihydroglycitein, equol, folic acid, genistein, glycitein,
hesperetin dihydrochalcone, kaempferol, naringenin, norathyriol, O-desmethylangolensin,



Biomolecules 2023, 13, 1678 12 of 20

palmitic acid, phloretin, protopanaxadiol, quercetin, and secoisolariciresinol. Finally, we
select 9 targets with 41 compounds for further analysis (Table 2, Supplementary S7).

3.6. Molecular Docking of a Bioactive Compound with Its Target

Molecular docking was used to examine the molecular interactions between the
kidney cancer and inflammation-related targets described above, as well as the SCFAs
that produce microbial metabolites. As a control, belzutifan (for kidney cancer) [47] and
levofloxacin (for kidney inflammation) [48] were used, and the critical active site residues
were flexibly maintained. The findings of the interaction were confirmed by the formation
of hydrogen bonds and the binding energy to the necessary active residues and ligands. In
molecular docking, we addressed the top nine targets for kidney cancer and inflammation.
Supplementary S4 relays information on the selected targets with ligands and the binding
affinity. Among all of the molecular docking results, the maximum binding energy was
observed to be −2.9 kcal/mol for kidney cancer and inflammation, whereas the minimum
binding energy was observed to be –9.5 kcal/mol. After analyzing the obtained binding
affinities, we obtained five targets (IGF1R, IL6, MTOR, PIK3CA, and PTGS2) for kidney
cancer and inflammation (Table 3). After evaluating the docking results, we predict that
2-amino-1-methyl-6-phenylimidazo (4,5-b) pyridine and isoquercitrin with IGF1R target;
isoquercitrin with IL6 target; 11-methoxycurvularin and glycocholic acid with MTOR
target; 11-methoxycurvularin, glycocholic acid, and isoquercitrin with PIK3CA target; and
isoquercitrin with PTGS2 target showed a lower binding affinity and better stability than
the control ligands.

Then, the results were visualized using Discovery Studio (Figure 5). We observed
the 3D interaction modes of SCFA microbial metabolites with the kidney cancer and
inflammation proteins targets.

We predict that the IGF1R target interacted with 2-amino-1-methyl-6-phenylimidazo
(4,5-b) pyridine via MET1082 (hydrogen bond), as well as LEU1005, VAL1013, LYS1033,
and MET1156 (other bonds), and showing a binding affinity of −7.4 kcal/mol. Another
compound, isoquercitrin interacted via MET1082, MET1156, and THR1083 (hydrogen
bond), as well as GLY1085, ARG1084, LEU1005, and SER1089 (other bonds), and with a
binding affinity of −7.9 kcal/mol. Meanwhile, belzutifan (control drug for kidney can-
cer) interacted via SER1089 (hydrogen bond), as well as LEU1005, ASP1086, MET1142,
MET1156, and VAL1013 (other bonds), with a binding affinity of −7.3 kcal/mol. Lev-
ofloxacin (control drug for kidney inflammation) interacted via LEU1005 (hydrogen bond),
as well as MET1156, VAL1013, and ILE1160 (other bonds), and also with a binding affinity
of −7.6 kcal/mol (Figure 5A, Table 3, Supplementary Figure S1A).

Then, the IL6 target interacted with isoquercitrin via ALA177, GLN114, GLY43, and
THR44 (hydrogen bond), as well as VAL94, GLU157, and PRO158 (other bonds), and with
a binding affinity of −7.9 kcal/mol, whereas both controls drugs showed the same binding
affinity. Such as, belzutifan (control drug for kidney cancer) interacted via ARG103, LEU4,
SER64, and TRP49 (hydrogen bond), as well as ALA99, LEU47, ARG103, and VAL100
(other bonds), and with a binding affinity of −7.5 kcal/mol, and levofloxacin (control drug
of kidney inflammation) interacted via HIS173 and LEU139 (hydrogen bond), as well as
SER141, GLY171, and PHE175 (other bonds), and with a binding affinity of −7.5 kcal/mol
(Figure 5B, Table 3, Supplementary Figure S1B).

Moreover, MTOR target interacted with glycocholic acid via TYR82 (hydrogen bod)
with a binding affinity of −6.5 kcal/mol, whereas, both controls drugs showed different
binding affinity. Such as, belzutifan (control drug for kidney cancer) interacted via GLU54
(hydrogen bond), as well as PHE46 (other bonds), with a binding affinity of −7.4 kcal/mol,
and levofloxacin (control drug of kidney inflammation) interacted via GLU54 (hydrogen
bond), as well as TYR82, ILE56, and VAL55 (other bonds), with a binding affinity of
−6.3 kcal/mol (Figure 5C, Table 3, Supplementary Figure S1C).
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Table 3. Molecular docking simulation between five targets and their associated compounds.

Targets Compound Binging
Energy

Hydrogen
Bond Other Bonds Grid Box Center Dimension

IGF1R

2-Amino-1-methyl-6-
phenylimidazo(4,5-b)
pyridine_CID_1530

−7.4 MET LEU, VAL, LYS, MET

x= 20.89, y = 3.76,
z= 45.48

x = 74.703,
y = 55.85,
z = 62.013

Isoquercetin_COMPOUND
_CID_5280804 −7.9 MET, THR GLY, ARG, LEU, SER

Control_Belzutifan_Cancer
_CID_117947097 −7.3 SER LEU, ASP, MET, VAL

Control_levofloxacin__inflam-
mation_CID_149096 −7.6 LEU MET, VAL, ILE

IL6

Isoquercetin_CID_5280804 −7.9 ALA, GLN,
GLY, THR VAL, GLU, PRO

x = 16.06, y = 14.52,
z = 22.37

x = 64.69,
y = 83.398,
z = 56.699

Belzutifan_Cancer_CID
_117947097 −7.5 ARG, LEU,

SER, TRP
ALA, LEU, ARG,
VAL

levofloxacin__inflammation
_CID_149096 −7.5 HIS, LEU SER, GLY, THR

MTOR

2fap_Glycocholic
acid_COMPOUND_CID
_10140

−6.5 TYR

x = −6.45, y = 21.63,
z = 43.68

x = 35.723,
y = 45.28,
z = 33.53

2fap_Belzutifan_Cancer
_COM-
POUND_CID_117947097

−7.4 GLU PHE

2fap_levofloxacin__inflam-
mation
_COM-
POUND_CID_149096

−6.3 GLU TYR, ILE, VAL

PIK3CA

5dxt.p_11-
Methoxycurvularin_COMP-
OUND_CID_10381440

−8.2 GLN, SER VAL, GLU, PRO

x = −1.83, y = 5.71,
z = 17.04

x = 79.48,
y = 96.48,
z = 89.84

5dxt.p_Glycocholic
acid_COMP-
OUND_CID_10140

−9.3 MET, GLU,
ASP

5dxt.p_Isoquercetin_CID
_5280804 −8.4 GLN, LYN,

SER, ASN ASP

5dxt.p_Belzutifan__CID
_117947097 −7.3 ARG, HIS SER, PHE, LEU

5dxt.p_levofloxacin__inflam-
mation_COMP-
OUND_CID_149096

−8.1 ARG, ASN GLU, LEU, GLN

PTGS2

5ikq.pp_Isoquercetin_COMP-
OUND_CID_5280804 −9.5 TYR, ASN PRO, CYS, ASP

x = 27.15, y = 38.38,
z= 41.79

x = 82.98,
y = 83.28,
z = 104.06

5ikq.pp_Belzutifan_Cancer
_COM-
POUND_CID_117947097

−9.1 ARG, GLN,
ASN LEU, GLY, PHE

5ikq.pp_levofloxacin__inflam-
mation_COMPOUND
_CID_149096

−9 CYS PRO, TYR, GLN

In addition, PIK3CA target interacted with 11-methoxycurvularin via GLN682 and
SER464 (hydrogen bond), as well as VAL680, GLU135, and PRO466 (other bonds), with a
binding affinity of −8.2 kcal/mol. Then, glycocholic acid interacted with MET811, GLU259,
and ASP258 (hydrogen bod) with a binding affinity of −9.3 kcal/mol. Finally, isoquercitrin
interacted via GLN682, LYN678, SER464, ASN428 (hydrogen bond), and ASP133 (other
bonds) with a binding affinity of−8.4 kcal/mol, whereas belzutifan (control drug for kidney
cancer) interacted via ARG818 and HIS670 (hydrogen bond), as well as SER629, PHE666,
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and LEU755 (other bonds) with a binding affinity of −7.3 kcal/mol, and levofloxacin
(control drug of kidney inflammation) interacted via ARG683 and ASN428 (hydrogen
bond), as well as GLU135, LEU645, and GLN643 (other bonds), with a binding affinity of
−8.1 kcal/mol (Figure 5D, Table 3, Supplementary Figure S1D).
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Figure 5. The 3D interactions of kidney cancer and inflammation-related targets with their related
SCFA-producing microbial metabolites and control (Belzutifan_ Cancer and Levofloxacin_ inflam-
mation). (A) (a) IGF1R with 2-amino-1-methyl-6-phenylimidazo(4,5-b) pyridine (CID 1530); (b) iso-
quercitrin (CID 5280804); (c) belzutifan (CID 117947097); (d) levofloxacin (CID 149096). (B) (a) IL6
with isoquercitrin (CID 5280804); (b) belzutifan (CID 117947097); (c) levofloxacin (CID 149096).
(C) MTOR with glycocholic acid (CID 10140); belzutifan (CID 117947097); levofloxacin (CID 149096).
(D) PIK3CA with 11-methoxycurvularin (a) (CID 10381440); (b) glycocholic acid (CID 10140); (c) iso-
quercitrin (CID 5280804); (d) belzutifan (CID 117947097); (e) levofloxacin (CID 149096). (E) PTGS2
with (a) isoquercitrin (CID 5280804), (b) belzutifan (CID 117947097), and (c) levofloxacin (CID 149096).

Finally, PTGS2 target interacted with isoquercitrin via TYR136 and ASN34 (hydrogen
bond), as well as PRO156, CYS36, PRO154, and ASP157 (other bonds), with a binding
affinity of−9.5 kcal/mol, whereas belzutifan (control drug for kidney cancer) interacted via
ARG376, GLN375, and ASN376 (hydrogen bond), as well as LEU224, GLY225, and PHE142
(other bonds), with a binding affinity of −9.1 kcal/mol. Levofloxacin (control drug of
kidney inflammation) interacted via CYS39 and CYS47 (hydrogen bond), as well as PRO156,
TYR136, PRO154, and GLN328 (other bonds), with a binding affinity of −9 kcal/mol
(Figure 5E, Table 3, Supplementary Figure S1E).

4. Discussion

According to epidemiological data for kidney cancer (KC) as a whole, renal cell carci-
noma (RCC) represents the vast majority (90%) of KC cases, with clear cell RCC (ccRCC;
70%), papillary RCC (pRCC; 10–15%), and chromophobe RCC (5%) being the most common
types [49]. Recently, research topics like kidney cancer are a major challenge for scien-
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tists. To address challenges like the lack of efficacy and the development of resistance to
single-targeted drugs, drug discovery frequently necessitates a system-level pharmacol-
ogy approach. Network pharmacology techniques are created and used more frequently
to identify new therapeutic possibilities and repurpose current medications [50]. To as-
sess the pharmacological significance of the primary target discovered using microbiome
analysis, we conducted a network pharmacology inquiry. Using data-driven analysis,
we investigated the interaction of kidney cancer and inflammation with gut microbiome
metabolites. Malnutrition, hypertension or hypotension, microinflammation, immune
system dysbiosis, and numerous oxidative stresses are frequently associated with kidney
illness and can all be treated with SCFAs [14]. SCFA-producing microbes also release
different types of metabolites. However, currently, there is a lack of information on the role
and interaction of gene targets with SCFA-producing microbial metabolites in regulating
kidney cancer and inflammation. To investigate such a novel hypothesis, we performed
several network pharmacology-based analyses. In this study, we analyzed SCFA-producing
microbial metabolites and disease-related targets to investigate SCFA-producing microbial
metabolites and disease networks.

During data collection, we selected microbes that produce SCFAs (177 different species,
114 metabolites, and 1890 gene targets from gutMgene [19]) and 13,104 disease targets from
the DisgeNET [20], Genecard [22], and OMIM [21] database platforms. For validation of the
data, we collected gene targets from three different platforms. Furthermore, we performed
PPI network analysis; the physical connections between proteins in a cell were mathemat-
ically modeled by PPI networks. These unique interactions between specified binding
sites in the proteins have a particular biological significance (i.e., they perform a particular
function) [51]; therefore, we found functionally correlated genes. For further validation,
we observed the RNA expression in different organs, and found a positive expression in
the urinary bladder and kidney (Figure 4E). Absorption, distribution, metabolism, and
excretion are together referred to as ADME. This group of characteristics is essential for
a drug molecule to be an acceptable drug candidate within the human body. The ADME
profile is affected by a number of variables, including physicochemical qualities, protein
binding, solubility, permeability, and inhibitory screening results. A drug’s probability of
success will also be significantly influenced by its ADME profile [52]. As a result, ADME
features were used to select potentially significant substances. Finally, we performed a
molecular docking simulation to predict possible targets. Due to its capacity to predict the
binding conformation of small molecule ligands to the proper target binding site, molecular
docking is one of the most widely utilized techniques in structure-based drug design. The
rational design of medications and understanding of the basic biological processes both
benefit greatly from the characterization of the binding behavior [53,54]. Therefore, after
PPI network analysis, RNA expression validation, ADMET properties screening, and molec-
ular docking simulation, we selected five (5) different targets (IGF1R, IL6, MTOR, PIK3CA,
and PTGS2) and four (4) different metabolites including different targets (isoquercitrin,
glycocholic acid, 11-methoxycurvularin, and 2-amino-1-methyl-6-phenylimidazo (4,5-b)
pyridine). Among our selected metabolites, isoquercitrin prevents the spread of blad-
der, pancreatic, and liver cancer. The main mechanisms are that isoquercitrin activates
caspase-3, -8, and -9; reduces the phosphorylation of ERK; and promotes the phosphory-
lation of c-Jun N-terminal kinase (JNK). Additionally, isoquercitrin blocks the cell cycle
in the G1 phase to promote the death of cancer cells through apoptosis [55–57]. Further,
isoquercitrin dramatically reduces the mRNA expression of proinflammatory factors such
as tumor necrosis factor-, interleukin (IL)-1, IL-6, monocyte chemoattractant protein-1,
and prostaglandin E synthase 2 (PTGES2). As a result, isoquercitrin serves as a possi-
ble pharmaceutical substitute for the treatment of diseases caused by inflammation [58].
Through our network pharmacology study, we found that the isoquercitrin compound can
be isolated from Bacillus sp., Bacteroides sp., and Eubacterium ramulus [19] SCFA-producing
microbes, and can be used to treat kidney cancer and inflammation-related diseases by
regulating PIK3CA, IL6, PTGS2, and IGF1R gene targets (Table 4). Another compound,
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glycocholic acid, was discovered to be a highly effective and secure anti-inflammatory
medication. It is a lead compound that can be utilized to treat an overactive immune
system [59]. We also found that glycocholic acid can be isolated from Bacteroides fragilis, Bu-
tyricicoccus pullicaecorum, and Ruminococcus flavefaciens [19] SCFA-producing microbes, and
can be used to treat kidney cancer and inflammation-related diseases through regulating
MTOR and PIK3CA targets (Table 4). Furthermore, 11-methoxycurvularin derived from
a fungal strain Penicillium sp. and acts as an anti-inflammatory compound that exhibits
strong inhibitory effects on nitric oxide (NO) and prostaglandin E2 (PGE2), with IC50 values
ranging from 1.9 to 18.1µm, and also on IC50 values from 2.8 to 18.7 µM, respectively, in
RAW264.7 cells induced by LPS [60]. In our study, we found that the 11-methoxycurvularin
compound could be isolated from Bacillus sp. SCFAs produce microbes [19] and can be
used to treat kidney cancer and inflammation-related diseases through regulating MTOR
and PIK3CA targets (Table 4). Finally, pathway analysis and gene−gene interactions show
that 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) regulates STAT3-regulated
genes and starts leptin signaling through the JAK/STAT and MAPK pathway cascades.
PhIP can be isolated from Blautia obeum, Faecalibacterium prausnitzii, and Lactobacillus reuteri
SCFA microbes [19]. As a result of the many limitations and toxicity of this compound, it
cannot be used as a postbiotic compound [61]. However, further experiments need to be
conducted to confirm the role and relation of these compounds with the IGF1R target of
kidney inflammation and kidney cancer.

Table 4. Final targets, compounds, and microbial sources for kidney cancer and inflammation-related
diseases.

Final Target Gene Gene Targeted Compounds and ID Target Microbes [19]

MTOR
11-Methoxycurvularin (10381440) Bacillus sp.
Glycocholic acid (10140, HMDB0000138,
CHEBI:17687)

Bacteroides fragilis, Butyricicoccus pullicaecorum,
Ruminococcus flavefaciens.

PIK3CA
11-Methoxycurvularin (10381440) Bacillus sp.
Glycocholic acid (10140, HMDB0000138,
CHEBI:17687)

Bacteroides fragilis, Butyricicoccus pullicaecorum,
Ruminococcus flavefaciens.

Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

IL6 Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

PTGS2 Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

IGF1R
2-Amino-1-methyl-6-phenylimidazo[4,5-b]
pyridine (1530, CHEBI:76290)

Blautia obeum, Faecalibacterium prausnitzii,
Lactobacillus reuteri.

Isoquercitrin (5280804, HMDB0037362,
CHEBI:68352) Bacillus sp., Bacteroides sp., Eubacterium ramulus.

5. Conclusions

Our findings imply that a variety of microorganisms can offer crucial metabolites
against kidney cancer and disorders linked to inflammation. We found four typical micro-
bial metabolites along with five gene targets related to kidney cancer and inflammatory dis-
eases. SCFA-producing microbial metabolites, such as isoquercitrin, 11-methoxycurvularin,
and glycocholic acid, are involved in regulating kidney cancer and inflammation-related
diseases, and could be useful as postbiotics. Moreover, isoquercitrin with PIK3CA, IL6,
PTGS2, and IGF1R gene targets; 11-methoxycurvularin; and glycocholic acid with MTOR
and PIK3CA gene targets are all involved in controlling kidney cancer and diseases related
to kidney inflammation.

However, there are certain limitations on the amount of information that has been
assembled on the microbiome. Because of the limitations of bioinformatics and chem-
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informatics, we propose conducting additional preclinical or clinical experiments to confirm
these findings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13111678/s1. Supplementary S1. SCFAs microbe’s database
(compounds and targets). Supplementary S2: Kidney cancer and inflammation database (diseases
targets). Supplementary S3: GeneMANIA analysis result (suitable target genes). Supplementary S4:
Molecular docking simulation results (between all selected compounds and targets). Supplementary S5:
GO and KEGG pathway analysis. Supplementary S6: PPI network analysis. Top 20 target selection.
Supplementary S7: ADME properties of selected compounds. Supplementary Figure S1: Molecular
docking analysis of selected compounds and targets showing different bond attractions between the
compounds and targets.
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