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Abstract: Although molecular docking has evolved dramatically over the years, its application to
glycosaminoglycans (GAGs) has remained challenging because of their intrinsic flexibility, highly
anionic character and rather ill-defined site of binding on proteins. GAGs have been treated as
either fully “rigid” or fully “flexible” in molecular docking. We reasoned that an intermediate semi-
rigid docking (SRD) protocol may be better for the recapitulation of native heparin/heparan sulfate
(Hp/HS) topologies. Herein, we study 18 Hp/HS–protein co-complexes containing chains from
disaccharide to decasaccharide using genetic algorithm-based docking with rigid, semi-rigid, and
flexible docking protocols. Our work reveals that rigid and semi-rigid protocols recapitulate native
poses for longer chains (5→10 mers) significantly better than the flexible protocol, while 2→4-mer
poses are better predicted using the semi-rigid approach. More importantly, the semi-rigid docking
protocol is likely to perform better when no crystal structure information is available. We also present
a new parameter for parsing selective versus non-selective GAG–protein systems, which relies on
two computational parameters including consistency of binding (i.e., RMSD) and docking score (i.e.,
GOLD Score). The new semi-rigid protocol in combination with the new computational parameter is
expected to be particularly useful in high-throughput screening of GAG sequences for identifying
promising druggable targets as well as drug-like Hp/HS sequences.

Keywords: heparin/heparan sulfate; molecular docking; glycosaminoglycans; knowledge-based
docking

1. Introduction

High-throughput molecular docking is an oft-used computational technique in drug
discovery, which requires extensive sampling of bound conformations of each molecule in
a library and concomitant scoring of the interactions with a putative site of binding on a
protein. Popular software packages available for this purpose include AutoDock, MOE,
DOCK, GOLD and others, which purport to efficiently sample the conformational space
available to both the ligand and the protein in a short time. Unfortunately, this is achievable
only if the number of rotatable bonds is not high [1–3], which is typically possible for small,
drug-like hydrophobic molecules.

Molecular docking and scoring techniques have also been implemented for biomolecules
such as smaller peptides and nucleic acids, which have garnered much interest as therapeutics
in recent decades [4–6]. Specialized docking protocols have been designed to address their
higher flexibility [7–13]. In fact, these docking protocols have advantageously utilized the
vast amount of structural data available for peptides. For example, the ensemble docking of
pre-generated conformer libraries based on experimentally determined structures have signif-
icantly improved docking efficiency [13,14]. These structural datasets have been leveraged
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in developing forcefield parameters for on-the-fly sampling of peptide conformations using
physics based-approaches [12,15].

A super-class of arguably more flexible biopolymers—the glycosaminoglycans
(GAGs)—is a family of four unique structures including hyaluronic acid, chondroitin/
dermatan sulfate, heparin/heparan sulfate (Hp/HS), and keratan sulfate. These biopoly-
mers are made up of repeating disaccharide building blocks in which a glucuronic
acid (GlcA), iduronic acid (IdoA) or a galactose residue is connected to either a glu-
cosamine (GlcN) or galactosamine residue through 1→3 or 1→4 inter-glycosidic linkages
(Figure S1). Interestingly, except for HA, GAGs can be variably N- or O- sulfated and
N-acetylated at various positions by a panel of biosynthetic enzymes in the Golgi, which
generates an astounding level of configurational and conformational diversity. For
example, nearly 139 billion theoretical topologies are possible for a hexamer of Hp/HS
prepared from one of its 72 building blocks assuming occupancy of only two puck-
ers (1C4 and 2SO, Figure S2) for its IdoA residues. By comparison, a hexapeptide or
a hexanucleotide may occupy only about 64 million or 4000 topologies, respectively
(Table S1).

A major corollary of the topological diversity of GAGs is that these biomolecules
recognize and bind to a huge number and diversity of proteins. The latest compilation
pegs the GAG interactome to be 3464 strong [16]. Understanding such an interactome
necessitates the use of in silico approaches, which have already been used in the past to
elucidate the GAG-binding potential of proteins. Methods used so far include amino acid
primary sequence analysis [17,18], surface electrostatics [19,20], and dynamic molecular
dynamics [21,22]; a high-throughput computational approach that rapidly predicts the
strength and binding geometry of each GAG sequence in the library of millions is critically
needed to identify biologically relevant GAG–protein pairs. Unfortunately, such a com-
putational approach is a pipe-dream at this time. Although dedicated software packages
are available, including GlycoTorch Vina [23], Vina-Carb [24], and ClusPro with heparin
extension [25,26], basic GAG docking is still challenging and limited.

One major limitation faced by GAG docking approaches is the paucity of highly
efficient, and highly reliable, docking protocols. Currently, GAG docking protocols have
implemented either “rigid” or “flexible” inter-glycosidic linkages (Φ and Ψ) to predict the
strength and binding geometry of sequences. To a large extent, these approaches have been
used to predict the sites of GAG binding, the length and fine structure of the preferred
GAG sequence(s) and the native GAG binding pose. A high-throughput protocol put
forward in recent times is the combinatorial virtual library screening (CVLS) protocol,
which has achieved considerable success in the screening of a library of GAG sequences
against different proteins such as antithrombin, spike glycoprotein, heparin cofactor II,
transforming growth factor beta, and insulin-like growth factor–1 receptor [27–31]. CVLS
employs rigid Φ and Ψ values, which are taken from the literature on related sequences
and fixed at the midpoint of the known range. Many other groups, including those of
Samsonov, Gandhi, Ricard-Blum, Rusnati, and Pisabarro, have also implemented rigid
docking on a number of GAG sequences to much success, including bone morphogenetic
protein 2, αvβ3 integrin, HIV-1 matrix protein p17, CXCL12 [32–35] and many others.

By the same token, flexible docking has also helped shed light on the GAG recognition
of proteins, especially Hp and CS [35–37]. Interesting insights can be gained through
flexible docking, as shown in a CCL5 study with a small library of Hp tetrasaccharides that
revealed a novel binding mechanism involving the protonated His23, which is populated
at pHs less than 7 [37]. Unfortunately, flexible docking generally succeeds for smaller GAG
chains [37,38]. Sometimes molecular dynamics is used as a follow up method to “clean-up”
top-ranked poses of flexible docking, which significantly restricts the application of this
approach under a high-throughput format [36,39,40]. To address this, coarse grain (CG)
modeling with full flexibility has been implemented for longer GAG oligosaccharides;
yet, even here the CG beads attempt to drastically reduce the flexibility arising from ring
substituents [41].
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We reasoned that fundamental, comparative studies on rigid and flexible docking
protocols are necessary to understand their applicability for the high-throughput screening
of a large library of GAG sequences. We also reasoned that an alternate protocol, i.e.,
semi-rigid docking, be assessed before embarking on designing a robust, high-throughput
algorithm. In this work, we report a comparative study of docking 18 Hp/HS oligosac-
charides, ranging from di- to decasaccharide, onto their targets using “rigid”, “flexible”
and “semi-rigid” protocols. We have analyzed their successes in locating the “native” pose,
as observed in the co-crystal structures. We have chosen a structurally diverse range of
proteins exhibiting a range of selectivities—from the highly selective (antithrombin) to
highly non-selective (thrombin). We find that although all three protocols succeed reason-
ably well, the rigid and semi-rigid protocols recapitulate crystal structure poses for chains
as large as a decasaccharide more often and in a reproducible manner. Our work shows
that for an unknown system, the semi-rigid protocol is a better alternative to employ in
comparison to the rigid (when the “native” Φ/Ψ are not known). Likewise, the semi-rigid
docking protocol is much better than the flexible docking protocol, especially for longer
GAGs (5→10 mers) and also for smaller sequences (2→4 mers). Finally, we present a
computational parameter that could be employed in the virtual high-throughput screening
of thousands of sequences for identifying putative drug-like Hp/HS structures.

2. Methods
2.1. Software

SYBYLX 1.3 (Tripos Associates, St. Louis, MO, USA) was used for molecular visual-
ization, minimization, and protein/ligand preparation. GOLD Version 2020 was used for
molecular docking experiments [1].

2.2. Structure Selection and Preparation

Co-crystal structures were generally selected based on the reported resolution (≤2.5 Å)
and containing the entire structure of the sequence used for crystallization (2→10-mer)
(Table S4). For 5DNF, 2VRA, 3EVJ, 7B8I, and 1E0O, no oligomer structures were available
that met the resolution cut-off and hence the next best co-crystal structure was utilized.
Unnecessary subunits, cofactors, and metal ions that did not directly bind to the ligand were
removed. The Hp/HS sequence was extracted followed by the removal of water molecules.
Hydrogens were added to the protein in SYBYL X1.3 and the protein was minimized with
fixed heavy atom coordinates using the Tripos force field for 100,000 iterations followed by
a termination gradient of 0.05 kcal/mol. Gasteiger–Hückel charges were introduced and
structure minimization was carried out with a non-bonded interaction cut-off of 8 Å and a
dielectric constant of 80.

2.3. Hp/HS Sequence Preparation

Post extraction of the sequence, structures were manually inspected to ensure correct
atom and bond typing. The Tripos force field does not contain parameters for sulfate oxy-
gens, so the carboxylate oxygen (O.CO2) atom type was used as a surrogate, as documented
in earlier studies for the parameterization of GAGs [30,42]. Hydrogen atoms were added
to the ligand in SYBYLX 1.3.

2.4. Molecular Docking

The default ligand binding site definition in GOLD was used for all studies in this
work. In this definition, all residues that are within 6 Å of the native pose are selected.
The protein was kept rigid during the docking, while the Hp/HS ligand was allowed
varying degrees of flexibility depending on the protocol being used, except for ring torsions
(see Figure 1A). Glycosidic torsions from each crystal structure were used as reference
for rigid and semi-rigid dockings. In the rigid docking protocol, the glycosidic torsions
were restricted to the initial values, while all other non-terminal single bonds were allowed
free rotation. In contrast, flexible docking allows free rotation at glycosidic linkages. For
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semi-rigid dockings, the user specifies torsional histograms for Φ and Ψ for each glycosidic
linkage, where the center of the bell curve corresponds to the initial value. Although we
chose a 30◦ cutoff in this study, the user can adjust these values if needed. To generate a
torsional histogram in GOLD, we refer the reader to the GOLD user guide, but we provide
a brief example in the Supplementary Material (Figure S7). For dockings, 100 GA and
300 GA runs were used with 10,000 genetic operations each. Each docking experiment was
performed in triplicate and the two poses from each run with the highest GOLD Scores
were retained for analysis. A total of six poses per structure were utilized for analysis of
docking protocol performance. Pairwise RMSDs and glycosidic torsions were calculated
via in-house python scripts. All molecular models were generated in PyMOL.
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Figure 1. Types of docking protocols used in the literature. (A) Two types of protocols typically used
for GAGs in the literature including “rigid” and “flexible” docking. This work reports comparative
studies of these two with a semi-rigid docking protocol, which affords better predicting success,
especially for longer GAG sequences. Whereas the rigid and flexible docking approaches hold
glycosidic torsions (Φ and Ψ) either completely invariant (±0◦) or fully flexible (±180◦), the semi-
rigid protocol allows partial flexibility (±30◦) around the most preferred torsions reported in the
literature. (B) A Ramachandran plot depicting Φ and Ψ for all 41 Hp/HS–protein complexes available
in the Protein Data Bank (www.rcsb.org, accessed on 1 July 2021). Φ and Ψ are categorized into two
groups: acid–amine (UA→GlcN) and amine–acid (GlcN→UA).

3. Results
3.1. Basis Underlying the Semi-Rigid Docking Protocol

Although GAGs contain multiple ring substituents (–H, –OSO3
−, –NHCOCH3,

–NHSO3
−) that are flexible, glycosidic torsions (Φ/Ψ) and ring puckering (1C4/2SO) are

the bane of conformational challenges in docking studies. A typical rigid docking proto-
col assumes that glycosidic torsions and ring puckers are restricted to their initial values
during the search, while imparting flexibility to ring substituents (Figure 1A). In contrast,
a fully flexible docking algorithm imposes no constraints on glycosidic torsions and ring
substituents. Whereas the rigid docking protocol samples minimal conformational space,
the flexible protocol attempts to sample the entire conformational space. Alternatively, the
two protocols represent two extreme ends.

It has now been long known that GAG glycosidic torsions in oligosaccharides sample
a rather limited range of ~60◦. Curating Φ/Ψ values from the PDB shows two dominant
clusters corresponding to two categories (GlcN→UA and UA→GlcN) with only a few
unusual torsions (Figure 1B, Tables S2 and S3). In fact, these torsional preferences were
exploited in developing VinaCarb and GlycoTorch Vina (GTV), two computational tools
in which low-energy ligand poses are pre-generated using quantum mechanical (QM)

www.rcsb.org
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energy wells predicted by glycosidic torsion’s specific carbohydrate intrinsic (CHI) energy
functions [23,43].

With regard to ring puckers, the flexibility of IdoA is thought to be a key contributor
to selective recognition [44–46]. IdoA can sample a number of ring puckers; however,
1C4 and 2SO have been shown to be the most populated with their dynamic equilibrium
determined by the neighboring sulfation pattern [47]. Several authors have explored the
role of IdoA puckers in protein recognition [44,48,49]; however, Boittier et al. have used
GTV to elucidate the effects of IdoA puckers (especially 2SO) on the internal energy of the
GAG chain [23]. Interestingly, redocking with recalculated CHIs for seven common GAG
linkages using density functional theory resulted in the recapitulation of 5/12 test cases.
Unfortunately, GTV accuracy appears to taper off for chains longer than a hexasaccharide.

Given the current state of knowledge and challenges, we reasoned that a simple,
rapidly implementable, reasonably comprehensive approach to recapitulate native poses
of GAG oligosaccharides would be to rely on torsional probability distributions that are
derived from Φ/Ψ averages. As shown in Figure 1B, low-energy torsions are found to
populate a rather narrow range of ±30◦ (see also Tables S2 and S3 for all compiled data).
Such a probability distribution would afford the flexibility necessary for an optimal fit into
the binding pocket, which may be bypassed during a purely rigid docking search. At the
same time, the partial flexibility of ±30◦ would also avoid the massive, and unnecessary,
conformational search that accompanies a fully flexible docking search. We hypothesized
that such a probabilistic bias of ±30◦ around the common Φ/Ψ average could increase the
likelihood of finding the native pose. We call this approach the “semi-rigid” docking (SRD)
protocol. However, before implementing such a protocol for high-throughput purposes,
key questions need to be addressed, including (i) how useful are rigid and flexible docking
approaches? (ii) Can the SRD protocol better for longer GAG chain? and (iii) does it
recapitulate the native pose of a GAG–protein complex? This work addresses these and
other comparative questions.

3.2. Does Rigid Docking Recapitulate the Native Pose?

Although ligand geometries presented in the PDB entries may not necessarily be
accurate, the large majority are assumed to be the “native”, most preferred, binding
geometries [50]. It is expected that as a ligand–protein complex crystallizes, the “native”
pose outcompetes other possible poses because of stereo-electronic restrictions imposed
by a well-defined binding site. Unfortunately, most sulfated oligosaccharides bind in
a shallow, surface-exposed, flexible, highly water-laden, cationic binding site [20,26,51].
This raises a question as to whether the “selectivity” engineered by crystallization forces
represents an intrinsic property of the GAG–protein complex. In fact, the crystal structure
of a hedgehog–heparan sulfate complex exhibited dimerization by binding two different,
adjacent HS sequences on the same chain with different conformations, despite interacting
with the same five residues [52]. Likewise, the prototypic, non-selective, GAG-binder
thrombin displays at least two crystal poses for Hp/HS oligomer that differ significantly in
torsional and translational profiles (Figure S3). Given this ambiguity, it is useful to assess
whether the “native” crystal structure pose is recapitulated upon docking, especially when
the GAG is conformationally immobile during docking. As stated above, “rigid” docking
holds Φ/Ψ and ring puckers invariant during docking and equal to their crystal structure
values, while affording flexibility to ring substituents (Figure 1A).

We studied the rigid docking protocol on 18 proteins that had been co-crystallized
with an oligosaccharide using GOLD, a genetic algorithm (GA)-based protocol. The Hp/HS
oligosaccharides ranged in length from di- to decasaccharide. Their fine structure could
be classified into primarily two types including those containing the common repeating
sequence and some containing the rare 3-O-sulfated sequence (Table S4). Our docking protocol
implemented 100 GA runs with 100,000 operations per run, which has been employed
in numerous studies in the literature [53,54] and was found to be very useful for GAGs
also [20,30,42]. Experiments were performed in triplicate for each Hp/HS oligosaccharide,
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and the top two poses each 100 GA run, i.e., six poses in toto, were collected. Analysis of
the collected poses was performed in a quantitative manner through the use of a parameter
called RMSD, which stands for root mean square difference, between either the native and
predicted poses or between different predicted poses. In the literature, an RMSD of 2.5 Å
or less has been deemed as geometric equivalence between two poses [20,55,56]. For most
part, the cut-off of 2.5 Å typically works for small molecules and smaller oligosaccharides
(<6 mers). It is important to recognize that longer oligosaccharides may not adhere to this
arbitrary cut-off. Alternatively, RMSD cut-off may have to be scaled with chain length. Yet,
we find that the RMSD cut-off of 2.5 Å worked for several oligosaccharides longer than 6 mers
(see below).

We performed three comparisons of the docked pose(s) with the native pose observed
in the co-crystal structures (Figure 2A). (i) We first calculated RMSDAVERAGE as the differ-
ence between the native pose and the average of the top six rigid docking poses. (ii) Then,
RMSDLOWEST was calculated to quantitatively assess the difference between the native
pose and the one docked pose that most closely matches the native. This parameter has
been an oft-used method reported in the literature [57–59]. (iii) We finally calculated
RMSDINTRAPOSE, which assessed the similarity between the six docked poses. Calculation
of these three RMSDs afforded a rather clear quantitative insight into the similarity of
recognition, as evident from two representative sequences—a tetrasaccharide 6LJL and a
disaccharide 1U4L—which present successful recapitulation (RMSD ≤ 2.5 Å) of the native
pose and a not-so-successful prediction (RMSD > 2.5 Å), respectively (Figure 2B).

Figure S4 presents the comparative overlays of docked poses using rigid docking with
the native pose for all 18 sequences. As evident from visual inspection, and counter to
the simplistic expectation, rigid docking more frequently does not recapitulate the native
pose found in the PDB co-complex. In fact, RMSDAVERAGE calculation shows that only 6 of
18 HS oligosaccharides (33%) recapitulated the native pose (Figure 2C). Even when only
the best pose is compared, as in RMSDLOWEST, recapitulation increases to 44% (Figure 2E).
Curiously, none of the di- or trisaccharides recapitulated their native pose, whereas one each
of tetra-, octa- and decasaccharide and two of the penta- and hexasaccharides recapitulated
the native poses. This is interesting because the di- and trisaccharides are theoretically
expected to span much smaller conformational space than the longer oligomers.

When RMSDINTRAPOSE is calculated, 50% of sequences were found to bind very
consistently (RMSD ≤ 2.5 Å) (Figure 2D). Of these, 33% recapitulate the native pose
(Figure 2C), which implies that three sequences (1U4L(2), 1U4M(2), and 4C4N(6)) bind
consistently away from the site of the native ligand. Alternatively, these oligosaccharides
converged to a single pose, but this was significantly different from the native pose. We also
performed docking experiments using 3-fold-higher GA runs (i.e., 300 GA runs; each with
100,000 genetic operations) to assess whether more sampling helps the recapitulation of
the native form; however, this did not yield any significant improvement in recapitulation
success (Figure S5). This suggests that our genetic algorithm-based approach is not able to
identify the “native” pose in the rigid docking paradigm, especially for 2→4 mers.

3.3. How Does Flexible Docking Approach Compare to the Rigid Approach?

Next, we evaluated the impact of imparting full flexibility to all rotatable bonds in
an Hp/HS chain. Although GOLD holds pyranose ring puckers invariant from initial
assignment, a typical Hp/HS sequence still encompasses at least five and seven rotatable
bonds for all the UA and GlcN residues, respectively. This means that flexible docking
minimally requires searching conformational space for 12 to 60 rotatable bonds for di- to
decasaccharide, respectively (Figure 3A). In fact, the time for a triplicate flexible docking run
steadily increases with chain length despite the limitation of 100,000 iterations (Figure 3B).
Yet, this may not lead to the effective recapitulation of the native pose; rather, as the chain
length increases, one may predict that flexible docking will not effectively recapitulate the
native pose.
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Figure 2. Recapitulation of the native pose using a rigid docking protocol. Each sequence was
redocked back into the crystal structure in triplicate using 100 GA runs, each being allowed 100,000 ge-
netic operations. The top two poses from each replicate experiment were selected, compiled and used
for analysis. (A) The docking of each Hp/HS oligosaccharide onto its target protein was analyzed
by calculating the RMSDAVERAGE, RMSDLOWEST and RMSDINTRAPOSE, which convey the root mean
square difference (RMSD) between the native pose and the average of the top six rigid docking poses,
the difference between the native pose and the one docked pose that most closely matches the native,
and the intra-pose difference between the six docked poses, respectively. (B) Representative example
of a successful recapitulation (RMSDAVERAGE ≤ 2.5 Å) of the native pose of an Hp/HS tetrasaccharide
(left; 6LJL) and a not-so-successful predication (RMSDAVERAGE > 2.5 Å) of the native pose an Hp/HS
disaccharide (right; 1U4L). Native poses in both are shown in green, while docked poses are in orange.
(C–E) Three different RMSDs as function IDs of the co-complex structures reported in the PDB. X-axis
labels represent the PDB code followed by chain length in brackets. The red dotted line indicates the
2.5 Å cut-off.
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redocked back into the crystal structure in triplicate using 100 GA runs, each being allowed 100,000
genetic operations. The top two poses from each replicate experiment were selected, compiled and
used for analysis. (A) The flexible docking protocol affords full flexibility to glycosidic bonds and
ring substituents (shown in red). A typical HS hexasaccharide encompasses more than 36 rotatable
bonds arising from a minimum of 5 and 7 rotatable bonds in UA and GlcN residues (labeled 1→7
in blue). Ring puckers are held invariant from their starting state in the flexible docking protocol.
(B) As expected, GOLD dock time for fully flexible docking increased linearly with chain length;
although this does not imply that flexible docking yields recapitulation of the native pose (see text
for details). (C–E) Three different RMSDs as function IDs of the co-complex structures reported in
the PDB. X-axis labels represent the PDB code followed by chain length in brackets. Red dotted line
indicates the 2.5 Å cut-off.

Figure 3C–E show RMSDAVERAGE, RMSDINTRAPOSE and RMSDLOWEST profiles for the
18 proteins at 100 GA runs. RMSDs were within the 2.5 Å threshold for 2, 3 and 5 Hp/HS
chains out of 18 when “average”, “intrapose” and “lowest”, respectively, were compared
to the native pose. As predicted, these successes are much lower than the corresponding
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results for rigid docking (six, eight and nine, respectively). Increasing the number of
GA runs to 300 does not yield any significant improvement (Figure S6). Yet, some very
interesting results can be gleaned from flexible dockings.

One, the flexible docking of two HS oligosaccharides appears to consistently converge
to the native pose. These include a pentasaccharide (1TB6), which is universally recognized
as the prototypic high-affinity, high-specificity antithrombin-binding Hp/HS oligosaccha-
ride [60], and a tetrasaccharide cleavage product (6LJL), which is generated by a unique
exolytic heparinase [61] with a high level of substrate specificity. Thus, flexible docking
appears to work primarily for sequences that exhibit a high level of selectivity.

Two, if only the most native-like pose of top six docked poses is taken, as in RMSDLOWEST,
the performance improves to 5 out of 18 chains (Figure 3E). Interestingly, these five sequences
are tetrasaccharide or longer. Alternatively, none of the di- and trisaccharides recapitulated
the native pose, results similar to those in the rigid docking study. In fact, a correspondence
between rigid and flexible dockings can be noted for longer HS chains also.

Three, when RMSDINTRAPOSE values are considered, only three HS chains pass the
threshold, including 3B9F, 6LJL, and 1TB6. This result is dramatically different from that
of the rigid docking protocol, wherein 44% of HS oligosaccharides converged to a single
pose. This result reiterates that the flexible docking protocol tends to yield a wider array
of significantly different poses, which also turn out to be different from the native pose.
Alternatively, the flexible docking of GAGs appears to be inherently beset with a huge
conformational space that is difficult to sample comprehensively within a reasonably
short time.

3.4. Can Semi-Rigid Docking Approach Offer a Better Alternative?

To assess whether a rational, balanced docking approach can offer a better alternative,
we studied a semi-rigid docking (SRD) protocol. As described in the section on rationale
above, this protocol relies on the well-established understanding that glycosidic torsions Φ
and Ψ prefer a rather narrow range of±30◦, irrespective of the local structural heterogeneity
(Figure 1B, Tables S2 and S3). More specifically, it is usually Ψ, rather than Φ, that tends to
vary more [23,62,63]. Further, two fairly defined Φ and Ψ minima are generally observed
for the more flexible UA→GlcN torsions (~−80◦/−100◦ and ~−80◦/65◦), whereas only
one Φ and Ψ minimum is typically populated for GlcN→UA torsions (~80◦/−145◦) [62]
(Figure 1B). Thus, a better docking approach would be to pre-generate torsional probability
distributions around the well-known Φ and Ψ, then harness the power of GA to enhance
the probability of finding the native pose. Although the current approach utilizes Φ
and Ψ torsions derived from crystallographic and/or NMR studies, in principle, other
computational calculations such as DFT, QM, and/or MM [64–67] may also be used. Briefly,
our SRD protocol utilized a torsional probability distribution function (Figure S7) around
pre-chosen Φ and Ψ torsions corresponding to the typical minima observed in solution.
GOLD docking and analysis was performed as described for the rigid and flexible docking
methods above.

Figure 4 presents the RMSDAVERAGE, RMSDLOWEST and RMSDINTRAPOSE analyses
following SRD re-dockings using 100 GA runs. This protocol demonstrated accuracies
similar to that of the rigid protocol, with rates of 33%, 44%, and 55%, respectively, which
did not change even at 300 GA runs (see Figure S18). Interestingly, the SRD was also unable
to recapitulate the native pose for smaller chains, i.e., all di-/tri- and most tetra- saccharides
(Figure 4A). Yet, SRD was much better than the flexible protocol, especially for sequences
longer than pentasaccharide. In fact, for longer chains (≥5 mers), RMSDAVERAGE exhibits
a success rate of 45% for the SRD protocol in comparison to 9% for the flexible approach
(Figures 3C and 4A). More importantly, SRD was able to predict the crystal structure poses
of longer sequences very well, as exemplified by 3UAN and 1E0O (Figure 4D).
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To gain more insight into variances from consistent recognition, we calculated the 
deviation of each torsion from the native pose following SRD and flexible docking. Fig-
ure 5 presents the results for two octa- and one decasaccharide, whereas Figure S19 pre-
sents the results for all 18 chains. Although both φ and ψ deviated more for the flexible 
protocol in comparison to the semi-rigid, ψ exhibited huge deviations (Figure 5C,D), 
which appears to be the foundational reason for the lack of recapitulation of the native 
pose. When the differences are averaged across all glycosidic linkages, the flexible pro-

Figure 4. Recapitulation of the native pose using a semi-rigid docking (SRD) protocol. As for rigid
and flexible protocols, each sequence was redocked back into the crystal structure in triplicate
using 100 GA runs, each being allowed 100,000 genetic operations. (A–C) Three different RMSDs
as function IDs of the co-complex structures reported in the PDB. X-axis labels represent the
PDB code followed by chain length in brackets. The red dotted line indicates the 2.5 Å cut-off.
(D) Successful recapitulation of native poses of 3UAN and 1E0O by rigid (left) and semi-rigid
(middle) docking protocols but not by the flexible docking protocol (right). Docked poses (shown
in orange) are superimposed on native poses (green) for the two sequences. The protein ribbon is
shown in light grey.

The RMSDINTRAPOSE analysis of the SRD results reveals some interesting insights. Four
of six smaller chains (2→4-mers) demonstrate highly consistent recognition, albeit different
from the native pose (Figure 4B). This proportion is nearly two-fold higher than that
observed for rigid docking (71% vs. 43%), suggesting that limited flexibility is important for
convergence. In fact, the SRD approach is more effective in identifying proteins that exhibit
significant levels of consistent recognition in comparison to rigid and flexible protocols. For
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example, trisaccharide 5DNF displayed RMSDINTRAPOSE of 1.28 Å for SRD in comparison
to 3.95 Å and 4.02 Å for rigid and flexible protocols, respectively. Similar results were
observed for the 3B9F and 2HYV sequences.

To gain more insight into variances from consistent recognition, we calculated the
deviation of each torsion from the native pose following SRD and flexible docking. Figure 5
presents the results for two octa- and one decasaccharide, whereas Figure S19 presents the
results for all 18 chains. Although both ϕ and ψ deviated more for the flexible protocol in
comparison to the semi-rigid, ψ exhibited huge deviations (Figure 5C,D), which appears
to be the foundational reason for the lack of recapitulation of the native pose. When the
differences are averaged across all glycosidic linkages, the flexible protocol consistently
predicts deviations in excess of 20◦ (Figure 5E,F). Interestingly, the deviations in ϕ increase
with the length of the chain, while those for ψ remain high essentially independently of
chain length. These results convey the importance of affording only limited flexibility, if
any, to both glycosidic torsions, especially ψ, during docking operations for better success
in native pose predictions.
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Figure 5. Variation in observed Φ/Ψ from the native pose following semi-rigid and flexible dockings.
Shown are ∆ϕ and ∆ψ, the differences in ϕ (A,C,E) and ψ (B,D,F) between the native pose and
the average of the docked poses obtained following semi-rigid (A,C) and flexible (B,D) dockings,
respectively, as a function of the co-complex structure and glycosidic bonds (2→1, 3→2, etc., where
2→1 refers to the glycosidic bond between the reducing end residue #1 and the penultimate residue
#2). Although the difference (∆ϕ and ∆ψ) could be either negative or positive, only the magnitude
is shown (i.e., mod of ∆ϕ and ∆ψ). (E,F) show the average ∆ϕ and ∆ψ, respectively, across all
18 sequences from di- to decasaccharide for SRD and flexible docking protocols. See text for details.

3.5. The Enigma of Disaccharides Finding the Native Pose?

A priori, docking a disaccharide onto a pre-determined site of binding should be
the easiest and most likely to succeed because of its small size, smaller conformational
search space, etc. The literature reports many studies on Hp/HS disaccharides binding
to different proteins [68–71] Yet, none of these studies appear to have studied docking
consistency with the co-crystal structure. In this connection, we were very surprised with
the results for disaccharides observed in this study. None of our three protocols succeeded
to any extent. In fact, the RMSDAVERAGE across the library of sequences ranged from 5 to



Biomolecules 2023, 13, 1633 12 of 20

8 Å, which was several-fold higher than the threshold (≤2.5 Å) set for the assessment of
consistency. Figure 6 shows a comparison of the poses observed following rigid, SRD and
flexible docking to the native, co-crystal structure pose for all three disaccharides studied
(see Figures S20–S22 for other 15 sequences). All three disaccharides, and especially the
3B9F sequence, prefer to bind in a pocket adjacent to the native binding pocket. Thus, our
results raise two possibilities: (i) either crystallization induces smaller sulfated glycans into
non-native poses, or (ii) the GA-based docking algorithm fails miserably because the in
silico affinity of smaller glycans is not high.
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Figure 6. Comparison of docked poses with the native pose of disaccharides. The disaccharide
sequence from 1U4L, 1U4M and 3B9F was docked onto the protein in triplicate using 100 GA runs
(100,000 genetic operations) using either rigid, semi-rigid or flexible docking protocols. The top two
poses from each replicate experiment were selected, compiled and used for visualization. The native
pose is shown in green. Docked poses are in orange.

To assess the two scenarios, we first reviewed the RMSDINTRAPOSE calculated for
the three disaccharides. For rigid and SRD protocols, these RMSDs were noted to be
within the set threshold (≤2.5 Å), suggesting that the three disaccharides appear to
recognize their target proteins consistently (Figures 2D and 4B), albeit in non-native sites.
Even for the flexible docking protocol, RMSDINTRAPOSE was found to be very consistent
for one of the three disaccharides (Figure 3D). Over the past decade or so, we have
demonstrated that a high level of docking consistency, i.e., RMSD ≤ 2.5 Å, correlates
well with a high level of selectivity of protein recognition [20,30,42,49]. Thus, it is very
likely that the three disaccharides demonstrate non-native binding poses in the co-crystal
form, while in solution they are likely to engage an altered site. Another support for
this hypothesis arises from the GOLD Score, a measure of in silico affinity (Figure 7A).
The three disaccharides demonstrate a reasonably high GOLD Score, which implies that
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the second possibility presented above is unlikely to be true. Thus, our studies raise an
alert for both biologists and molecular modelers to be particularly careful in interpreting
experiments on smaller sulfated glycans. Rather, our studies point to the importance
of simultaneously performing both crystallography and computational experiments,
especially on smaller sulfated glycans.
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Figure 7. Identifying high-affinity, high-selectivity GAG sequences. (A) Average GOLD Scores
calculated for six docked poses following rigid, semi-rigid and flexible docking of the 18 Hp/HS
sequences onto their target proteins. GOLD Scores reported here were calculated for the protocols
with 100 GA runs, each with 100,000 operations. X-axis labels represent the PDB code followed
by chain length in brackets. Errors show the standard deviation of scores observed in triplicate
docking experiments. (B) A plot of the ratio of the average GOLD Score to RMSDAVERAGE for rigid,
semi-rigid and flexible docking of the 18 Hp/HS sequences. The black dotted line shows an arbitrary
cut-off (Ratio ≥ 50) that can be used to identify high-affinity, high-selectivity sequences. From the
18 sequences studied here, only one tetra- (6LJL), one penta- (1TB6), two hexa- (4AK2 and 3UAN),
one octa- (3INA) and one decasaccharide (1E0O) are predicted to pass the threshold.

3.6. A Parameter for Identifying Putative Drug-Like GAG Sequences

A key question stymieing efforts on discovering drug-like GAGs is identifying protein
targets that bind sulfated sequences in a highly selective manner. As stated above, we
have previously used RMSD as a measure of selectivity for parsing a library of thousands
of sequences into selective and non-selective ones [20,27,42]. Do any of these exhibit
drug-like characteristics? This work affords a unique opportunity to parse the 18 Hp/HS
sequences into putative drug-like sequences. A re-review of results (Figures 2C and 4A)
for rigid and SRD docking protocols reveals that one tetra- (6LJL), one penta- (1TB6),
two hexa- (4AK2 & 3UAN), one octa- (3INA) and one decasaccharide (1E0O) exhibit an
RMSDAVERAGE less than the pre-set threshold for selectivity (≤2.5 Å). On the other hand,
the flexible docking protocol predicts only two high-selectivity sequences (6LJL & 1TB6)
(Figure 3C). Yet, for drug-like properties, high docking scores are critical because these
serve as surrogates for solution affinity. Unfortunately, the non-selective recognition of
GAGs can also yield high docking scores, as shown by the disaccharides (Figure 6A). We
reasoned that the ratio of GOLD Score to RMSD would emphasize both high-affinity and



Biomolecules 2023, 13, 1633 14 of 20

high-selectivity, and thereby better identify drug-like sequences from the rest. This new
parameter (GOLDScore/RMSD) was found to vary from a low of ~7 to a high of ~200
across the three docking protocols (Figure 7B). Interestingly, the most selective six sequences
identified by RMSD analysis also stood out above the others, especially for rigid and SRD
protocols. In a quantitative manner, the GOLDScore/RMSD parameter appears to have a
clear threshold of 50 for segregating selective versus non-selective systems (dotted line in
Figure 7B). Such a quantitative threshold, if supported in future experiments, is likely to
provide excellent insight into the GAG recognition of proteins.

4. Discussion

Studying GAG binding to proteins has remained challenging for multiple reasons, of
which the difficult synthesis of a library of homogeneous sequences [72,73] and the lack
of rigorous computational tools for high-throughput studies [41] are the primary barriers.
In the latter case, the two major hurdles have been the large number of rotatable bonds
within a relatively small structural frame and the shallow, surface-exposed, cationic binding
sites on proteins. A good number of efforts have been directed to resolve these challenges
including hybrid fragment-based/coarse grain docking [41], QM restraints on glycosidic
torsions [23,43], and molecular dynamics methods [21]. In this context, our current work
attempts to show that a knowledge-driven algorithm based on pre-generated low-energy
glycosidic torsions offers an attractive alternative for most chains, especially those that are
longer. Following a rigorous comparative study on a structurally diverse group of proteins
exhibiting diversity of GAG recognition selectivities, we conclude the rigid and semi-rigid
protocols recapitulate crystal structure poses for longer chains (5→10 mers) more often.
Between the two protocols, differences observed for smaller sequences convey the special
value of the SRD approach over the rigid docking approach. More importantly, for systems
lacking co-crystal structure information (i.e., “native” Φ/Ψ not known), the SRD protocol
is a safer alternative to employ over the rigid protocol. Likewise, the SRD is a much better
approach than flexible docking for all oligosaccharide sequences, but especially for longer
GAGs (5→10 mers).

Our work has revealed some interesting results and insights into the different docking
protocols and GAG recognition. One striking finding was that smaller oligosaccharides
appear to bind to sites other than the crystal structure-determined binding sites, irrespective
of the protocol used. Most probably, this arises from crystallization artifacts and will have
to be followed up in rigorous computational and solution-based validation experiments.

A key observation of this work was that several co-crystal poses simply could not be
recapitulated in any of the three docking approaches. These include RANTES, thrombin,
platelet factor 4 (PF4), annexin A2, robo, and hedgehog. While it is difficult to ascribe the
exact underpinnings of this result, several possibilities can be postulated. First, the algorithm
used in all three protocols, i.e., the GA-based approach with an artificially defined limit
of termination, is not sufficient to sample the entire conformational space of longer chain
oligosaccharides, i.e., hexasaccharides. Second, the energy terms of the docking program
(GOLD) may be better suited for certain types of interactions, e.g., hydrophobic, and not for
others, e.g., ionic. Third, our algorithm excluded the effects of hydration and protein flexibility
to cut down on computational costs, despite their well-established importance in ligand
binding [74–76]. Fourth, we used Gasteiger–Hückel partial charges and a particular force
field (Tripos) to parameterize each sequence. These charges and forcefields are estimations
at best and may carry inaccuracies in energy calculations of GAG–protein systems, as any
other parameterization protocols would carry. It is likely that GAG-specific parameters
would be more suitable. Finally, the nature of Hp/HS binding to these proteins is likely to
be predominantly non-selective, which could result in many equivalent, but non-identical,
binding poses [46]. In fact, RANTES [37,77,78], thrombin [79–81], PF4 [82–85], annexin
A2 [86–88], robo [89–92], and hedgehog [52,93,94] appear to not bind to a specific Hp/HS
motif (Table S3). In fact, RANTES and thrombin have been shown to bind GAGs other than
Hp/HS [95–97]. Of all the above explanations, the final explanation presents a significant
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new insight into the GAG recognition of proteins with possible biological consequences. Yet,
much work is needed on all the above explanations to gain the confidence regarding the new
insight on the GAG recognition of proteins.

To our knowledge, this work on the SRD protocol is the first study of its kind for
GAGs, although it has been used in the fields of proteins/peptides, nucleic acid docking
and the de novo design of protein binders [8,98–100]. Glycosidic Φ/Ψ minima can be
availed from NMR, crystallographic, and/or QM/MM methods. In this work, we have
primarily relied on crystallographic reports from the protein data bank (PDB), which are
not very structurally diverse. Computational experiments have documented variations in
preferred Φ/Ψ for some 3-O-sulfated sequences, i.e., compact geometries [62]. It would be
important to study and validate the applicability of the SRD protocol for such alternative
geometries too.

In this study, we selected GOLD as the docking platform and utilized Gasteiger–
Hückel charges, because together they have been successfully used in the past in identifying
selective sequences, which were validated through biophysical experiments [28,30,101].
Yet, the performance of GOLD has not been fully investigated in a comparative manner
for GAGs, as done for other docking programs [102,103]. Thus, a comparative study of
different parameters and docking programs in the application of the SRD protocol for the
prediction of GAG binding geometries should be performed in the future. Likewise, it
would also be important to test the applicability of the SRD protocol using GAG-specific
parameters, including partial charges, which are absent in the current protocol [26,104].
We also emphasize that protein flexibility is currently neglected in the SRD protocol, and
is likely to be important in GAG binding. Protein flexibility is often neglected in the
virtual screening of GAGs to make the protocol computationally tractable. However, a
two-step approach could be envisaged wherein the protein is held rigid in the first step to
identify high-scoring sequences, which are then studied in the second step with binding
site flexibility.

A specific point related to the use of other docking platforms is whether multiple
top geometries are accessible in the tool (and not necessarily only the topmost geometry).
Here, each docking platform inherently calculates such geometries, which our work
attempts to convey are important to analyze in a logical manner for specificity analysis.
Thus, the principles enunciated here should be applicable irrespective of the docking
platform used for the prediction of GAG, peptide, or drug complexes with proteins.
Finally, the fundamental work continuing in the direction of developing better force-field
parameters for GAGs, e.g., GLYCAM and others [46,47] will help build a better SRD
protocol in the future.

This work presents a very useful parameter—GOLDScore/RMSD—that can be used
to parse selective versus non-selective GAG–protein systems. In this work, we utilized
RMSDAVERAGE to identify some highly selective GAG–protein systems. Yet, it is impor-
tant to speculate whether RMSDAVERAGE or RMSDINTRAPOSE should be used. We used
RMSDAVERAGE because co-crystal structures were available in the PDB. However, a large
majority of GAG–protein complexes have not been crystallized. Thus, computationally
derived RMSDINTRAPOSE will be the only option for exploratory studies. While it may ap-
pear that the lower values of RMSDINTRAPOSE may help identify more selective sequences,
it is important to note that GOLD Score is also an important determinant in recognition
and has to be reasonably high for the suggested threshold of 50. However, more work is
needed to assess the validity of this parameter and the suggested threshold. Yet, this simple
parameter is likely to find major value in virtual high-throughput screening studies for the
rapid identification of putative drug-like sequences against targets of interest.

5. Conclusions

This work presents foundational experimentation on developing a protocol for use
in the high-throughput screening of Hp/HS oligosaccharides for protein recognition.
Protein binding sites generally accommodate Hp/HS chains that are 4- to 8 mers in
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length [28,101,105,106]. The majority of proteins have not been crystallized with GAG
partners. Thus, “native” Φ/Ψ remain unknown. Thus, for de novo applications, SRD
seems to be more suitable. In this connection, the ratio parameter based on GOLD Score
and RMSD values, which could be easily implemented in the virtual high-throughput
screening of thousands of sequences, would be particularly useful in identifying putative
drug-like Hp/HS structures.
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