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Abstract: The assignment of secondary structure elements in protein conformations is necessary
to interpret a protein model that has been established by computational methods. The process
essentially involves labeling the amino acid residues with H (Helix), E (Strand), or C (Coil, also
known as Loop). When particular atoms are absent from an input protein structure, the procedure
becomes more complicated, especially when only the alpha carbon locations are known. Various
techniques have been tested and applied to this problem during the last forty years. The application
of machine learning techniques is the most recent trend. This contribution presents the HECA
classifier, which uses neural networks to assign protein secondary structure types. The technique
exclusively employs Cα coordinates. The Keras (TensorFlow) library was used to implement and
train the neural network model. The BioShell toolkit was used to calculate the neural network input
features from raw coordinates. The study’s findings show that neural network-based methods may
be successfully used to take on structure assignment challenges when only Cα trace is available.
Thanks to the careful selection of input features, our approach’s accuracy (above 97%) exceeded that
of the existing methods.

Keywords: deep learning; machine learning; multi-class classifier; neural networks; protein secondary
structure; protein structure prediction; protein secondary structure assignment

1. Introduction

In the 1950s, Pauling and Corey identified the presence of regular substructures in
proteins called α-helices (H) and β-sheets (E) [1], which are connected with loops (C).
At first, these regions were manually assigned based on a visual inspection of the protein’s
main chain geometry. Over the years, several techniques have been devised to automate
the assignment process. The DSSP [2] algorithm, devised in the 1980s, achieves its ob-
jective by detecting hydrogen bonds along the protein chains. This method expanded
the categorization from three to eight classes: 310 helices (G), α-helices (H), π-helices (I),
β-strands (E), β-bridges (B), turns (T), bends (S), and others (C), where some states, such as
I, G, and B, are relatively infrequent. However, residue coverage for DSSP assignments is
poor when the structure is not well-defined or not well-ordered, and the stringent criteria
set for hydrogen bonds are not met. STRIDE [3] used a modified hydrogen-bond energy
function and included backbone dihedral angles in its algorithm to address this issue.
These two methods are typically seen as the reference definition for secondary structure
assignment. Indeed, the all-atom information allows a very accurate description of the
hydrogen bonding patterns between C=O and N-H groups of the protein backbone and
leads to the assignment of Secondary Structure Elements (SSEs) in the spirit of Pauling and
Corey’s observations.

Unfortunately, on many occasions, all-atom representation is not available. A number
of methods, therefore, have been devised to assign a secondary structure solely from
Cα coordinates, e.g., DEFINE_S [4], P-CURVE [5], PROSIGN [6], SACF [7], P-SEA [8],
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PALSSE [9], STICK [10], VoTAP [11], SABA [12] and SST [13]. These algorithms can be
grouped into three categories:

(i) Methods that assign SSE directly from local geometric parameters derived from Cα
positions, e.g., local distances along the chain (DEFINE_S, SABA, STICK), possibly
combined with information about close spatial neighbors (P-SEA), dihedral angles
(PALSSE), and contact map (VoTAP); fitting a curve to Cα points was also utilized [6,7].

(ii) Methods that cut the query structure into short Cα structural fragments and compare
them to structural fragments extracted from known protein structures, e.g., by means
of trained Bayesian (SST) or a Nearest-Neighbor Classifier (SACF).

(iii) Methods that use Machine Learning (ML) to infer SSE. The progress in the field of
ML observed in the twenty-first century significantly increased the popularity of
these methods in bioinformatics in general, including the problem of the secondary
structure assignment. The PCASSO [14] method uses the Random Forest classifier
technique, where 16 features are solely based on Cα coordinates. It reports a very high
accuracy reaching 96% with respect to DSSP. Another Random Forest-based approach
RaFoSA [15] uses 30 features: 1 × residue type, 6 × Cα-Cα distances, the angle
between three Cα atoms, 4 × torsional angles formed by four Cα atoms, and the
number of Cα-Cα contacts. Similarly, it is also 96% accurate with respect to DSSP.
More sophisticated methods employ Neural Networks [16] and Convolutional Neural
Networks (CNN), as observed in the DLFSA [17]. The accuracy reported by the
authors in the latter case is somewhat lower: around 83% depending on the PDB files.
A consensus approach was also described, where the final assignment was decided as
a consensus of four different ML techniques [18].

Unfortunately, many of these methods are no longer being maintained. At present,
SABA is only limited to a web server, which allows users to analyze only one PDB file at
a time. Furthermore, many of the approaches (e.g., DEFINE_S, DLFSA, and P-CURVE)
feature relatively low accuracy: below 90%. Other methods that are still actively maintained
are PALSSE, SST, PSSPRED, PROSS, and PCASSO. At the same time, coarse-grained
methods are still widely applied in protein modeling. Since the seminal work of Levitt and
Warshel [19], the modeling and dynamics of the coarse-grained structures have been rapidly
growing and inspiring biomolecular modeling for a few decades now. The very recent
introduction of ML approaches such as AlfaFold2 [20] and RosettaFold [21] has colossally
influenced and dramatically changed the field of protein structure prediction. However,
to date, multiscale algorithms remain widely used methods to study long-time protein
dynamics and aggregation [22]. The original Levitt–Warshel model has been continuously
used, and its refined version has been recently published [23]. Another very successful
and popular approach is the Martini force field. Initially proposed for lipid systems, it
has been extended to proteins [24] and has been used worldwide to simulate a variety of
biological systems [25]. A detailed description of the current progress in coarse-grained
and multiscale modeling methods can be found in a very recent review article [26].

Applications of CG methods primarily focus on modeling the dynamics of large
and/or partially unstructured systems such as intrinsically disordered proteins [27,28],
prions, protein–peptide binding [29] and viral capsids [30]. In particular, the applications
of CG models also include modeling of large bio-macromolecular complexes based on
low-resolution experimental data, such as cry-EM maps [31]. Many of the CG methods
rely on Cα positions to define reduced protein representations, e.g., CABS [32], UNRES [26]
or AWSEM [27,33]. Typically, secondary structure assignment is one of the first steps to
analyze trajectories produced by such tools, followed by reconstruction of the all-atom
representation. For instance, both PCASSO and P-SEA techniques were used for protein
simulations—the first method used CG to analyze protein interactions with nanoparti-
cles [34], and the latter processed α-synuclein aggregation [35].

The newest research directions focus on the generalization of CG force fields and their
parametrization for biomacromolecular systems. These systems are generally comprised of
proteins, nucleic acids, and polysaccharides, e.g., MARTINI and UNICORN [36]. The suc-
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cess of ML methods in the field mentioned above helped close a long-lasting chapter of
protein structure prediction. However, it opened new avenues, such as training a deep
machine model to learn CG potentials. Therefore, this progress in multiscale modeling
methods increases the demand for accurate and reliable methods that assign secondary
structure to protein conformations in a reduced representation and for fast and accurate
reconstruction of atomic details from Cα coordinates. Therefore, efforts were made to
develop a new, open-source solution to this problem that will be easily accessible.

2. Methods

In this contribution, an approach called HECA (H-E-C Assigner) is proposed to assign
protein secondary structures only from Cα trace through the application of the artificial
neural network.

2.1. Network Architecture

A simple MLP (Multi-Layered Perceptron) has been used in this work. An MLP is
a type of neural network where the connections between layers are only feed-forward.
The experiment was started with four layers, where there was one input layer, one output
layer, and two hidden layers. The architecture of our network is graphically presented in
Figure 1. The input layer takes features (see below for details) computed over N Cα atoms
corresponding to a contiguous N-residue segment, i.e., N-peptide structure. The output
layer had three neurons corresponding to the three classes H, E, and C to be predicted
for the middle residue of a segment. The following values of N were tested in our study:
5, 7, 9, 11, and 13; for practical reasons, only odd values of N were used. As shown by
Kůrková [37], two hidden layers should be used to make up for the loss of efficiency when
regular activation functions are used. Therefore, in this study, a second hidden layer aims
to reduce the total number of hidden nodes substantially. Initially, the MLP had 32 × 32
hidden neurons, a learning rate of 0.001, a batch size of 10, and an epoch size of 1000. Then
gradually, 64 × 64, 96 × 96 neurons were tested, and finally, the experiment settled on
128 × 128 neurons with a learning rate of 0.01 and 3500 epochs as they gave the best results.
In total, 80% of data was used for training, while the remaining 20% was for testing. When
the training was complete, separate data sets were generated for validation.

Sigmoid functions (also known as logistic functions) were used to activate input and
hidden layers, while the softmax function was used in the output layer of the network
model. The softmax function converts a vector of K real values into another vector of K real
values that results in 1 when added together. The softmax function is meant for the neural
networks that predict multinomial probability distributions. In other words, the softmax
function is used in multi-class classification problems involving more than two classes.
The output layer of our network contains three neurons to classify the middle residue of
the N-residue segment into either of the three classes. The SDG optimizer was used to
optimize the weights of the network. The categorical cross-entropy loss function was used
to assess the prediction error during training, which is the standard approach when the
classes are one-hot-encoded.

2.2. Software Implementation

The training calculations were performed with Keras and TensorFlow [38] libraries
accessed from a Python script. The final HECA tool (i.e., the actual predictor) was im-
plemented in the BioShell package for structural bioinformatics written in C++, which
has been continuously developed and maintained in our laboratory since 2006. Later on,
TensorFlow was replaced with the frugally-deep library to minimize the size of the final
executable HECA. The HECA method was also published as a web server to make it easily
accessible to users. PDB-formatted text input should be provided by a user, for which the
server returns a predicted secondary structure as a single string in a 3-letter code. BioShell
has included Python bindings since its last version, 3.0 [39]. Therefore, the Flask framework
was used on the server-side to call the appropriate Python functions bound to the C++
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library. The client part was also implemented in Python, which runs in a web browser with
the help of the Brython translator (https://brython.info, accessed on 17 June 2022). Finally,
the VisuaLife library [40] was used to render the prediction results on the web browser.

Figure 1. The network architecture. The neural network consists of an input, two hidden, and an
output layer.

2.3. Data Sets

Currently, the PDB website lists about 190,000 available deposits. However, these pro-
tein structures are redundant to a large extent. Therefore, for training, a PISCES subset [41]
with protein chains identical in no more than 40% was used; the set was also restricted to
deposits of resolution 1.6 Å or better and R-factor lower than 0.25. These criteria yielded
a set of 6695 chains; the complete list is available from the PISCES website. The BioShell
package [42,43] was used to calculate input features from Cα atoms of these chains, as
described in the following subsection. Structural analysis of PDB deposits is the main
application of the BioShell software, which has been developed for over a decade. The pack-
age provides numerous filters to detect incorrect or incomplete fragments of a protein
chain, such as missing residues, i.e., chain breaks, missing any backbone atom, or severe
stereochemical errors. Each N-residue fragment has been screened using these filters and
removed if any of them failed. These filters reduced the training set to 6396 chains; the full
list is available in supporting materials. The test set has been compiled by selecting one
remote homolog for each chain from the training set. The search has been conducted with
Jackhammer tool against the set of the sequences available from PDB deposits. For each
query, we randomly selected one sequence with an e-value around 10−7. This pool of
chains set was subsequently filtered to remove close homologs and incorrect entries, as
described above for the training set. As a result, we compiled a test set of 4401 entries. Lists
of proteins included both in the training and the test set are provided in the Supporting
Materials section.

https://brython.info
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2.4. Input Features

Before applying any ML method, a set meaningful to the nature of a problem, i.e.,
rotational-invariant features, must be computed from the raw coordinates of Cα atoms.
Three types of features were employed in the study:

(i) Local ri,i+2, r∗i,i+3, and ri,i+4, distances measured between Cα atoms along a contigu-
ous segment, referred to as local in the text (see Figure 2A). The r∗i,i+3 is a signed
value, i.e., it is the distance between atoms; i and i + 3 are multiplied by the sign
of (~vi × ~vi+1) ~vi+3. This allows the classifier to distinguish between left-handed and
right-handed conformations. All possible such distances were calculated within a
segment, e.g., for N = 7 five ri,i+2, four r∗i,i+3, and three ri,i+4 were included in the
input tensor.

(ii) The number of spatial neighbors found around each Cα atom of a segment within
a given distance, referred to as neighbors in the text (see Figure 2B). Four distance
cutoffs were used: 4, 4.5, 5, and 6 Å. Therefore, for N = 7, the input tensor includes
7 × 4 = 28 contact counts. For example, in Figure 2B, the middle Cα atom (darkest
gray) has eight neighbors within a 5 Å radius (medium-dark). Atoms separated by at
most two residues along the sequence are also not included in the count (light gray).

(iii) The number of hydrogen bonds formed by each Cα atom of a segment, referred to as
hbonds in the text. A coarse-grained hydrogen-bonding model, which has recently
been developed in our laboratory (submitted) for the SURPASS algorithm [44,45], was
used for detecting such bonds (see Figure 2C). Detailed derivation and assessment of
the potential will be published elsewhere; a summary of the algorithm is provided
in the Supporting Materials. In brief, a triangle is constructed from every three
subsequent Cα atoms. According to our coarse-grained definition, a given triangle
may form a hydrogen bond with another triangle when specific geometry criteria
are met, i.e., when the two triangles are roughly parallel. Therefore, the criteria for
such a hydrogen-bonding event are based on the mutual orientation of two local
coordinate systems constructed on the two Cα triangles. Respective geometric criteria
were derived from PDB statistics so that they match the all-atom hydrogen bonds
observed in the PDB deposits. According to our model, each residue located in a
beta-strand may form up to two such hydrogen bonds on either side of the triangle.
Therefore, the HECA input tensor for a fragment of N residues contains N integer
hydrogen bond counts that are either 0, 1, or 2.

The general motivation for choosing features was to provide an ML model with
meaningful values that segregate the three H, E, and C classes. Structure of the input data
as well as its alignment is shown in Figure 3.

Figure 2. The spatial features computed from Cα positions that are used in the HECA method:
(A) local distances between i-th and (i + 2), (i + 3) and (i + 4) atoms, (B) the number of spatial
neighbors and (C) the number of hydrogen bonds in the Cα-only definition.
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Figure 3. The overview of the HECA prediction. A vector of input values is computed from a given
Cα-only structure for each N-residue fragment (here N = 5). Each input row is used to assign H, E,
and C classes to the middle residue of a segment. For example, the input row marked in bold font
corresponds to a segment of TEAVD residues of 2gb1 deposit and predicts the secondary structure
for the middle alanine.

3. Results and Discussion

Three different sets of input features were used to train the neural network model.
Table 1 summarizes the training outcomes, providing Q3 averaged accuracy for each of
these cases.

Table 1. The Q3 accuracy on the training and validation set for the HECA neural network with
different input data sets (in percentages).

Fragment
Length

Local Local + Neighbors Local + Neighbors + Hbonds
Training Validation Training Validation Training Validation

5 83.58 83.60 88.93 88.75 91.91 91.98
7 89.89 89.99 96.20 96.39 95.40 95.48
9 91.84 91.88 94.03 94.10 96.85 96.91

11 92.37 92.46 94.51 94.57 97.29 97.33
13 92.53 92.61 94.68 94.89 97.39 97.48

As expected, the more features are used, the better the prediction. Similarly, longer
fragments yield better accuracy. However, the improvement made by moving from 11-mers
to 13-mers is marginal. Interestingly, local distances are already a pretty good discriminator
between the secondary structure types. Even for the shortest fragments N = 5 and only
local features, the method reaches 83.6% accuracy, which means that the Cα geometry of
a helical pentapeptide differs considerably from its extended counterpart. The label H is
the easiest to predict due to its unique, tight geometry that can be easily described even
by local distances alone. However, the distinction between an extended coil fragment and
a beta-strand is more subtle. Extended polypeptide chain fragments can often be found
in loops, and their local geometry might be very similar to twisted strands. Therefore,
the proper assignment of secondary structure would require detecting a regular pattern
of hydrogen bonds. This information, however, is not available in Cα-only representation.
The majority of methods applied so far to this problem used statistics describing close-range
neighbors, i.e., counts how many other Cα can be found within a certain cutoff distance to
the Cα under consideration. This is motivated by the observation that less-tightly packed
fragments have a higher chance of being a loop, which typically occurs in the outer parts
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of a protein where it forms fewer interatomic contacts. To the contrary, regular secondary
structure elements are often found in a densely packed protein core and have more spatial
neighbors. In this work, the number of Cα neighbors within a 4, 4.5, 5, and 6 Å radius
from a given Cα were counted. These features raise the fraction of successfully assigned
H, E, and C classes by more than 5% points for the shortest segments (N = 5) and by
approximately 2% points for N = 11 and N = 13.

This improvement in the classification accuracy shows that, indeed, the information
about non-local interactions can differentiate between the different SSEs. This information,
however, does not encode the specific geometry of interacting protein chain segments.
For example, the hydrogen-bonding pattern imposes a specific spatial arrangement of
atoms that cannot be encoded by only counting the closest Cα neighbors in space. Therefore,
a coarse-grained description of a hydrogen bond based on Cα coordinates was also included
to improve the classification further. Even though positions of backbone atoms responsible
for hydrogen bonding are not available, the arrangement of Cα atoms in the Cartesian
space is tightly restricted by the geometry of SSEs. One can thus consider the count of
such coarse-grained hydrogen bonds as the count of Cα atom neighbors, restricted to the
very specific locations, that are relevant to a given secondary structure type (H or E). This
spatial dependency makes our H-bond features improve the overall predicted accuracy (as
measured by Q3), although the increase is not very high. Indeed, including this information
increased the success rate in validation runs by another 2.6 and 2.8 percent points for
fragment lengths N = 11 and N = 13, respectively. A summary assessment of the HECA
method for selected values of fragment length N are given in Table 2. The success rate
computed for the test set (4401 chains) for the best predictor is 97.48%, which is one of the
highest values ever reported in the literature to date. Moreover, in Figure 4, we present a
histogram of Q3 accuracy obtained on the test set by HECA and PCASSO methods (white
and dark bars, respectively) with bins 2.5 percent points wide. The distribution of HECA
results are shifted towards the larger Q3 values; the most populated bin is 92.5–95.0% with
1463 observations (87.5–90.0% with 1268 observations, respectively, for PCASSO).

Figure 4. Q3 accuracy of the HECA method compared to the PCASSO approach (white and dark
bars, respectively).
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Table 2. The summary of the HECA algorithm performance measured on a test data set.

Fragment length 5 7 9 11 13

No. of ideally predicted proteins 144 246 406 465 491

Differences between predicted
and true classes

H: 6.97%
E: 5.16%
C: 2.27%

H: 2.87%
E: 4.55%
C: 7.69%

H: 2.78%
E: 4.30%
C: 4.04%

H: 2.05%
E: 3.44%
C: 4.50%

H: 1.88%
E: 3.63%
C: 4.44%

Average differences 8.13% 5.03% 3.70% 3.33% 3.31%

Confusion matrices (Table 3) show that misprediction of true E as C is more common
than predicting E when C is the correct answer. Information on spatial neighbors and
hydrogen bonds (neighbors and hbonds features) helps resolve these ambiguities. Includ-
ing this additional information improves the classification of E and C types. For example,
the confusion matrix for the local-only variant of the predictor at N = 13, for 13.63% of
strands (E) returns C. Including the non-local features lowers this misprediction rate to
3.49% (also for N = 13).

Table 3. Confusion matrices for all (local + neighbors + hbonds) features and segments N = 5, 11, 13
compared to local features and N = 13 (bottom right).

5-mer
Predicted

11-mer
Predicted

H E C H E C

H 93.026% 0.035% 6.938% H 97.953% 0.036% 2.009%

E 0.180% 94.840% 4.978% E 0.123% 96.559% 3.317%

C 11.089% 1.179% 87.731% C 2.771% 1.730% 95.498%

13-mer
Predicted

13-mer
Predicted

H E C H E C

H 98.11% 0.028% 1.859% H 97.680% 0.205% 2.114%

E 0.134% 96.37% 3.49% E 0.684% 85.680% 13.634%

C 2.80% 1.634% 95.563% C 3.398% 7.043% 89.557%

An interesting comparison can be made with the work of Sallal et al. [18]. This group
has trained a very sophisticated classifier, essentially based on a logistic regression of four
distinct ML approaches: Random Forest, Support Vector Machine, Multilayer Perceptron,
and eXtreme Gradient Boosting. Any of these four classifiers alone is probably capable
of solving the SSE assignment problem. Their approach, however, is solely based on
local features such as distances and angles; they achieved 93% accuracy as to the PDB
annotation, which is very similar to the classification by a simpler network described in this
contribution. In another very recent work, Nasr et al. [16] described a deep neural network
that is quite similar to the HECA method. Their approach employed a network that is
much deeper and wider (6 hidden layers, up to 379 neurons) than that of HECA (2 hidden
layers, 128 neurons each). Nasr et al. utilized both local features (angles and distances) as
well as the number of spatial neighbors and achieved Q3 = 0.931 on their set of 72 chains,
while HECA reached Q3 = 0.942 on the very same benchmark set (see Table 4 for detailed
comparison). These two examples underpin the importance of non-local features, most
importantly, the coarse-grained hydrogen-bond model utilized in this work.
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Table 4. Q3 accuracy of the HECA method compared with PCASSO and results by Nasr et al. [16].

PDB Nres Type HECA PCASSO Nasr et al. PDB Nres Type HECA PCASSO Nasr et al.

1EAR_A 135 β 0.957 0.936 0.956 4MNC_A 299 α+β 0.950 0.849 0.930

1GQI_A 702 α 0.971 0.879 0.925 4MYD_A 246 α+β 0.972 0.857 0.947

1NUY_A 322 α+β 0.960 0.859 0.891 4OH7_A 296 α 0.953 0.427 0.909

1OK0_A 68 β 0.972 0.972 0.926 4P3H_A 184 α+β 0.921 0.473 0.918

1SDI_A 207 α 0.962 0.901 0.981 4WKA_A 363 α+β 0.962 0.853 0.909

1UJ8_A 66 α 0.917 0.794 0.939 4ZDS_A 125 α 0.939 0.825 0.960

1Z6N_A 160 α 0.945 0.867 0.950 5CKL_A 175 α 0.933 0.883 0.937

2FGQ_X 324 β 0.954 0.921 0.920 5CL8_A 225 α 0.948 0.852 0.951

2FP1_A 159 α 0.963 0.890 0.981 5CVW_A 142 β 0.946 0.773 0.831

2FVY_A 298 α+β 0.977 0.898 0.953 5GZK_A 412 α 0.935 0.861 0.876

2I5V_O 239 β 0.979 0.951 0.954 5JUH_A 130 α+β 0.948 0.627 0.862

2JDA_A 131 β 0.920 0.791 0.756 5LT5_A 198 α+β 0.960 0.877 0.909

2O1T_A 428 α+β 0.907 0.847 0.930 5T9Y_A 312 α+β 0.915 0.598 0.933

2OPC_A 109 β 0.956 0.930 0.908 5TIF_A 176 α 0.961 0.839 0.955

2QKV_A 85 α+β 0.923 0.945 0.976 5UEB_A 136 α+β 0.943 0.829 0.956

2RIN_A 282 α+β 0.895 0.788 0.901 5W53_A 297 α 0.963 0.947 0.970

2RIQ_A 129 α 0.888 0.903 0.938 5WEC_A 104 β 0.946 0.866 0.981

2Z6R_A 256 α+β 0.958 0.852 0.930 5YDE_A 105 α+β 0.936 0.891 0.924

2ZDP_A 104 α+β 0.972 0.798 0.904 5ZIM_A 222 α 0.942 0.912 0.959

3BQP_A 74 α 0.937 0.900 1.000 6A2W_A 159 α 0.957 0.831 0.975

3D2Y_A 251 α+β 0.968 0.914 0.952 6E7E_A 163 α 0.970 0.905 0.982

3DXY_A 200 α+β 0.932 0.869 0.970 6ER6_A 82 α 0.931 0.886 0.976

3KYJ_A 123 α 0.961 0.658 0.992 6GEH_A 250 α+β 0.968 0.910 0.956

3LFK_A 115 α+β 0.909 0.811 0.930 6I1A_A 352 α 0.946 0.731 0.932

3NJN_A 108 β 0.903 0.517 0.861 6IY4_I 86 α+β 0.881 0.838 0.907

3OBQ_A 135 α+β 0.950 0.907 0.956 6JH9_B 22 α 0.655 0.689 0.773

3Q40_A 169 α 0.964 0.946 0.975 6JM5_A 114 α+β 0.918 0.886 0.904

3R87_A 125 α+β 0.984 0.916 0.960 6JU1_A 387 α+β 0.961 0.785 0.925

3RT2_A 165 α+β 0.959 0.935 0.964 6JWF_A 400 β 0.973 0.899 0.915

3V4K_A 180 α+β 0.967 0.672 0.967 6KTK_A 362 α+β 0.956 0.495 0.945

3VK5_A 247 α+β 0.956 0.889 0.976 6NEY_A 119 α 0.936 0.880 0.933

3VMK_A 363 α+β 0.924 0.523 0.898 6NZS_A 581 β 0.950 0.873 0.880

3WDN_A 119 α+β 0.952 0.872 0.933 6P80_A 312 α 0.952 0.874 0.942

4AYO_A 428 α 0.965 0.875 0.914 6TM6_A 90 β 0.855 0.876 0.878

4B20_A 264 α+β 0.950 0.662 0.930 6TZX_A 217 α 0.950 0.865 0.926

4GMU_A 604 α+β 0.960 0.863 0.904 6ULO_A 310 α 0.940 0.340 0.923

4JUI_A 463 α+β 0.970 0.704 0.935 6YDR_A 122 α 0.976 0.860 0.992

4L9E_A 108 α+β 0.947 0.904 0.917 average 0.942 0.820 0.931

4. Summary

Despite the recent progress in atomistic simulations of biological molecules, coarse-
grained modeling is still an invaluable method in computational biophysics [46]. They
facilitate studies at a biologically meaningful timescale with limited available computation
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power. Algorithms for secondary structure assignment from Cα-only representation, such
as the HECA method presented in this contribution, are essential tools for analyzing the
results of these simulations. Moreover, coarse-grained methods are often combined with
higher accuracy approaches into multiscale modeling protocols [47]. Such an approach
was also employed to fit protein chains into EM electron density when solving challenging
targets [31]. Proper secondary structure annotation is very helpful to reconstruct all-atom
representation from the reduced one [48] and may have a significant impact on the whole
multiscale protocol.

The HECA method could also be helpful in detecting secondary structure elements
in experimental structures. At present, about 0.5% of all protein chains (or 0.6% of all
residues) available from the PDB contain only Cα atoms. This problem is indeed not very
common. The majority of these deposits are quite old, as the crystallography methods
have significantly improved during the past decades and can nowadays deliver structures
of sub-angstrom accuracy. However, for challenging targets such as fibers (1EI3, 2000),
collagen (3HQV, 2009), spliceosomes (5O9Z, 2017), ribosomes (4ADX, 2012) or viruses
(7V3I, 2021), experimental methods such as electron microscopy can provide only a low-
resolution structural description. Overall, we found nineteen Cα-only deposits added to
PDB since January 2020, all of them established by EM. Delineation of a Cα into secondary
structure segments is often the first step in fast protein structure comparison and alignment
procedures. This may also be the case for computed models. By providing both a stand-
alone package published under the Apache 2.0 Open Source license and a web server, we
believe the method will be easy to apply and widely accepted in the field.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
biom12060841/s1, Table SUP1: Test set, Table SUP2: Train set, SUP3: Hbonds definition for HECA.
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