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Abstract: Cancer metabolic reprogramming is essential for maintaining cancer cell survival and
rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism
which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant
production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene
expression and signaling. As a result of these functions, one-carbon and polyamine metabolism
have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that
target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The
significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer
therapy are discussed in this review.

Keywords: methionine; one-carbon metabolism; polyamines; cancer; metabolic therapy; reactive
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1. Introduction

For cancer cells to multiply quickly and unchecked, altered metabolism is essential,
and a range of modifications to their metabolism are known to enable increased survival
and multiplication. A key element in this is the generation of sufficient nucleotides and
lipids, both of which are dependent on the availability of methyl groups from the one-
carbon metabolic pathways. These methyl groups are necessary for the biosynthesis of
compounds such as nucleic acids, amino acids, and the major membrane lipid phosphatidyl
choline [1,2], among many others.

The methionine and the folate cycles (Figure 1) are crucial interrelated pathways
in one-carbon metabolism that provide methyl groups for the creation of DNA, amino
acids, creatine, polyamines, and phospholipids [3]. Nucleotide metabolism and epigenetic
regulation of DNA and histones, whose aberrant expression is a distinguishing feature
of tumor cells, both depend on one-carbon metabolism to maintain genomic integrity.
Studying one-carbon metabolism offers the prospect of precision medicine intervention
for disease prevention, the discovery of biomarkers, and the diagnosis and treatment of
different illnesses, particularly cancer [1,4].
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Figure 1. One-carbon metabolism includes the methionine cycle, which is linked to the folate
cycle, polyamine synthesis, and the trans-sulphuration pathway. Enzymes catalyzing significant
reactions are shown in italics. Metabolite abbreviations are: SAM: S-adenosyl methionine; SAH:
s-adenosyl homocysteine; dcSAM: decarboxy-s-adenosyl methionine; ROS: reactive oxygen species;
THF: tetrahydrofolate; m-THF: methyl-THF; me-THF: methylene-THF; F-THF: formyl-THF.

2. One-Carbon and Polyamine Metabolism
2.1. The Methionine Cycle

The first phase of the methionine cycle is the synthesis of S-adenosylmethionine
(SAM) from methionine using the enzyme methionine adenosyl transferase (MAT) [5,6].
While MAT II (a dimer) is expressed in the majority of other cell types and is encoded
by MAT2A, MAT I (a tetramer) and MAT III (a dimer) are often expressed in the liver,
where substantial SAM synthesis occurs [7,8]. Then, SAM is used by numerous methyl
transferases to donate a methyl group to their diverse targets. This loss of a methyl group
changes SAM into S-adenosylhomocysteine (SAH). To complete the methionine cycle, SAH
is hydrolyzed to homocysteine by the enzyme SAH hydrolase (AHCY or SAHH) [5,6].
Homocysteine can then be re-methylated to methionine by the enzymes methionine syn-
thase (5-methyltetrahydrofolate-homocysteine methyltransferase; MTR or MS) or betaine-
homocysteine methyltransferase (BHMT). Alternatively, cystathionine-β-synthase (CBS)
can divert homocysteine into the transsulfuration route to become cystathionine, which
is subsequently changed into cysteine by cystathionase (CTH) for use in the synthesis of
glutathione and the preservation of redox equilibrium [5,9]. To summarize, SAM is pri-
marily used to donate a methyl group, then is either recycled to methionine by receiving a
methyl group from the folate cycle or is converted to cysteine/glutathione. Methyl groups,
a single carbon plus three hydrogens, are usually stable and unreactive, so the use of SAM
and methyl transferases is essential for a wide range of biosyntheses and modifications
that regulate gene expression, epigenetics, detoxification, and more [10]. To maintain
metabolite levels, the methionine and folate cycles are closely connected [11]. SAM inhibits
the enzymes methylenetetrahydrofolate reductase (MTHFR) and (betaine-homocysteine
methyltransferase) BHMT to limit the conversion of homocysteine to methionine, allowing
homocysteine to be diverted for transsulfuration when SAM is abundant, a sign of high
methionine levels [8,11]. Additionally, SAM stimulates CBS, which directs homocysteine
into transsulfuration [11,12]. Low methionine levels cause SAM levels to drop, freeing
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inhibition of MTHFR and BHMT and restraining activation of CBS to keep the methionine
cycle in flux and regenerate SAM. 5-methyltetrahydrofolate (5-mTHF) builds up as a result
of low methionine synthesis, and it inhibits glycine N-methyltransferase (GNMT), which
would otherwise be a significant sink for SAM [11]. These feedback inhibitions act to
maintain homeostasis in SAM levels.

2.2. The Folate Cycle

The water-soluble B vitamin folic acid is obtained from food and transformed by
the body into tetrahydrofolate (THF). Through folate-mediated one-carbon metabolism
(FOCM), THF can provide the necessary nucleotides for replication and one-carbon groups
for DNA methylation, which are important for epigenetic gene regulation [13]. Serine is a
key methyl donor in the folate cycle, though there are many other ways that cells can obtain
one-carbon groups, including choline, betaine, glycine, histidine, and sarcosine [14,15]. THF
can either be used for nucleotide synthesis or regenerate methionine from homocysteine
in the one-carbon cycle (Figure 1). So, it can be seen that FOCM regulates the production
of S-adenosylmethionine (SAM), nucleotides, certain amino acids, glutathione, and other
cellular processes critical for the proliferation of cancer cells [15]. FOCM distributes carbon
atoms among the various acceptor molecules required for biosynthesis in addition to
controlling the nutritional status of cells through their redox and epigenetic states.

2.3. Polyamine Synthesis

The other major metabolic pathway that relies on SAM is the synthesis of polyamines.
Spermidine, putrescine, and spermine are polycationic alkylamines that interact with
negatively charged macromolecules [16] because they have protonated amino groups at
physiological pH levels. They are involved in a number of cellular processes, such as
chromatin organization, cellular proliferation, gene regulation and proliferation, immune
system function, and cell death [17–20]. All cells produce polyamines in their cytoplasm,
and their synthesis requires SAM plus ornithine, an amino acid from the urea cycle [21].
SAM is decarboxylated by SAM decarboxylase (SAMDC) to generate s-adenosyl methioni-
namine or dcSAM, which is a key aminopropyl donor used to form spermidine (Figure 1).
The other part of spermidine comes from ornithine via ornithine decarboxylase (ODC),
which generates putrescine. Putrescine plus dcSAM is used by spermidine synthase to
generate spermidine. A further aminopropyl group from dcSAM can be added to spermi-
dine by spermine synthase to generate spermine, the final product in this pathway. We
do not address the interesting topic of polyamine degradation in this review; it is covered
in detail elsewhere [16,17]. To this point, we have considered the three main outputs of
one-carbon metabolism: methyl groups, cysteine/glutathione, and polyamines. We now
move to examine how these pathways impact carcinogenesis.

3. The Implications of One-Carbon and Polyamine Metabolism for Cancer
3.1. Folate Metabolism and Cancer

Due to its range of roles in protein and DNA synthesis, methylation processes, and
redox homeostasis, folate metabolism can contribute to oncogenesis. In tumor treatment,
drugs that specifically target folate metabolism have been employed frequently, particularly
against dihydrofolate reductase (DHFR) [22]. These inhibitors stop the growth of cancer
by preventing the production of nucleic acids, which are needed for DNA replication and
cell proliferation. DHFR inhibitors block the production of tetrahydrofolate, which thus
inhibits purine and thymidylic acid synthesis [22]. However, antifolate medications have
an adverse effect on normal cells when used to treat cancer because one-carbon metabolism
is also required for healthy cells, particularly in the immune system. Nonetheless, nu-
merous cancers have been treated with DHFR inhibitors, such as methotrexate, which
was introduced in 1947 but is still very widely prescribed. Like other chemotherapeutic
treatments, these drugs may fail because cells develop resistance by, for instance, impairing
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drug absorption, decreasing drug retention inside the cell, and decreasing drug affinity [23].
There is a need to develop further therapies that specifically target folate metabolism.

In a review of the mRNA profiles of 1981 tumors, MTHFD2 and SHMT2 were shown
to be among the top five genes with the highest levels of expression, demonstrating the
carcinogenic influence of mitochondrial folate metabolism [24,25]. Similar studies on the
mitochondrial folate metabolism enzymes revealed a link between cancer and aberrant
SHMT2 and MTHFD2 expression [26,27]. Aberrant SHMT2 and MTHFD2 expression
might impair DNA synthesis and damage redox balance, which is important for cancer cell
survival [28]. Other folate metabolism enzymes, such as SHMT1 and MTHFD1L, have also
reportedly been linked to cancer. Disrupting SHMT1 interferes with the incorporation of
dUMP into DNA, causing DNA double-strand stability to be disturbed [29]. Additionally,
ovarian cancer is prevented from spreading and growing by SHMT1 knockdown [29].
Lung cancer cells are also affected by SHMT1 knockdown [30]. According to a recent study,
MTHFD1L knockdown caused tongue squamous cell carcinoma cells to die under redox
stress via lowering the concentration of NADPH [31]. These results suggest that folate
metabolism is a desirable target for the therapy of cancer if the problems of toxicity and
resistance can be overcome.

3.2. Serine Metabolism in Cancer

Changes in serine metabolism may have significant consequences that may lead to
the development of cancer as well as other illnesses [32,33]. Serine can be absorbed by the
cell or produced by the serine synthesis pathway from glycolytic intermediates. It has long
been recognized that serine, whether from diet or generated endogenously, is linked to
cancer, and actively promotes its growth [34,35]. Serine can also be produced by breaking
down cell proteins, such as through autophagy, and by converting glycine [36]. The process
of serine synthesis (SSP) is one of numerous glycolysis side branches that allows carbons
obtained from glucose (or pyruvate under gluconeogenic circumstances) to be redirected to
the production of serine and is upregulated in many cancers [37]. Glucose is the primary
source of carbons for de novo serine synthesis in people and rats that are well-fed, but
under starving conditions, gluconeogenesis can contribute up to 70% of the total serine
produced [38].

Serine is necessary for the creation of phospholipids such as sphingolipids and phos-
phatidylserine, as well as other amino acids like cysteine and glycine. Serine is a key
methyl donor, though there are many other ways that cells can obtain one-carbon groups,
including choline, betaine, glycine, histidine, sarcosine, and the formate that is produced
when tryptophan is broken down [14,15]. Studies in yeast and mammalian cells revealed
that serine catabolized in the mitochondria is the source of the majority of the cytosolic
one-carbon units [29,39,40], and blocking one-carbon metabolism in both the mitochondria
and cytoplasm precludes cell growth [37].

Serine’s role in generating methylene-THF makes it a key contributor to avoiding
the toxic consequences of homocysteine build-up. Homocysteine is the link between
the transsulfuration pathway and the methionine cycle, and the building blocks for the
synthesis of cysteine are homocysteine and serine. Serine depletion results in lower amounts
of glutathione [41] because glycine and cysteine are by-products of serine degradation,
whereas activation of serine synthesis enables glucose-derived carbon to be channeled
towards glutathione synthesis for antioxidant defense [32,42]. This has implications for
tumor oxidative stress tolerance that have not been fully examined (see 4.2 below).

3.3. SAM-S Metabolism in Cancer

Methionine, which makes up half of the body’s daily requirement for amino acids, is
the primary amino acid used in the liver to produce SAM [43,44]. SAM is produced by MAT
(SAM synthase) from methionine in an ATP-dependent mechanism [43]. The adenosyl
moiety of ATP is combined with methionine during this process to change it into a high-
energy reagent that can carry a sulphonium ion. SAM can then transfer a methyl group to



Biomolecules 2022, 12, 1902 5 of 24

a variety of substrates, including proteins, DNA, RNA, and lipids [45]. The cellular level
of SAM can be affected by impaired dietary intake, absorption, transport, metabolism, or
enzymatic processing of methionine [6,46–48]. For instance, dietary methionine limitation
lowers SAM levels and increases the longevity of certain species [49–51].

Because cancer is frequently characterized by abnormal methylation states and methio-
nine or SAM dependency, SAM has been explored as a therapeutic target in the treatment
of cancer [52,53]. For example, rats have been used in tests to determine how SAM treat-
ment affected the growth of neoplastic liver lesions. The percentage of the liver that was
occupied by GST-P-positive lesions significantly decreased when SAM was administered
to rats during the clonal expansion of initiated cells (promotion), primarily as a result of a
reduction in the size of the lesions [54–60]. The number and size of liver nodules decreased
after receiving the same SAM doses for 11 weeks [54,55]. A consistent decrease in incidence
and multiplicity of neoplastic nodules could be observed when SAM medication was
continued for up to six months [61]. On a cellular level, SAM’s chemopreventive action
is linked to an increase in remodeling and a dose-related reduction in DNA synthesis in
preneoplastic and neoplastic lesions [54,58,59]. Additionally, rats given SAM showed an
increase in apoptosis in neoplastic nodules and hepatocellular carcinoma [55,58]. SAM
therapy decreased carcinogenesis and metastasis in vivo while increasing apoptosis and
decreasing the proliferation and invasiveness of breast cancer cells in vitro [62]. SAM treat-
ment has been shown to be effective in inhibiting the proliferative and invasive potential of
many cancer cell lines [63,64]. SAM selectively inhibits the proliferation and invasiveness
of liver cancer cells by changing the transcriptome and methylome [65]. Although SAM
has positive impacts on the treatment of cancer, more research is needed to establish SAM
as a cancer therapy, as in many cases, the specific metabolic changes responsible for the
observed anti-cancer effects are unclear.

3.4. Methionine Dependency in Cancer

Methionine metabolism and cancer have been linked on several levels. Even though
they easily convert homocysteine into methionine, the majority of cancer cells are unable to
proliferate if methionine in the media is replaced by homocysteine. Surprisingly, intracellu-
lar methionine levels in breast cancer cells remained substantially stable when they were
transferred to homocysteine media and analyzed; however, in this situation, SAM levels
were strongly depleted [66]. Homocysteine substitution for methionine has no effect on
non-cancerous cells, suggesting they have less need for SAM. Cancer and normal cells are
different in their growth rates with different metabolic needs, so it is frequently challenging
to interpret the differences between the metabolic dependencies of normal and cancer cells.
Perhaps unsurprisingly, there are some methionine-independent tumor cell lines, and in
these cases, SAM levels are relatively normal [67,68].

According to the Hoffman effect, methionine is metabolized differently by cancerous
and non-tumorigenic cells. Using 11C-methionine positron emission tomography, human
cancers may be easily seen and distinguished from normal tissue, demonstrating this higher
need (Met-PET). Met-PET imaging often outperforms 18F-deoxyglucose PET (FDG-PET)
imaging, particularly in glioma, as the increased brain glucose metabolism interferes with
tumor-specific FDG signals. However, multiple myeloma and other malignancies have also
been studied with Met-PET [69].

3.5. Homocysteine Metabolism and Cancer

Hyperhomocystinuria and cancer have been shown to be closely related by recent
scientific developments. Homocystinuria is defined by a rise in the level of homocysteine
(Hcy) in the serum and can come from an inborn mistake in the metabolic pathways of
sulfur-containing amino acids [70]. Cancer patients have also been found to have increased
plasma homocysteine concentrations. There are strong clinical correlations between a
number of polymorphisms in the enzymes implicated in the Hcy detoxifying pathways
and various cancer types [71–81]. Many cancer types exhibit high plasma Hcy levels in
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the advanced stages, although there may be little to no change in plasma Hcy levels in the
earlier stages of the disease [73,82–91]. Why the Hcy levels differ between the early and late
stages of cancer is unclear. However, since Hcy promotes the growth of cancer cells [92],
increased generation and secretion of Hcy seems likely to be an adaptive metabolic mutation
acquired during cancer progression. Caco-2 cell lines with higher homocysteine levels
exhibit greater cellular proliferation. By including more folate in the culture media or by
supplementing it with its metabolites, such as 5-MTHF [93], this increased proliferation
can be reduced. However, because a very high Hcy concentration may potentially be lethal
to the cancer cells, advanced-stage cancer cells may release Hcy. Clinically, the situation is
less clear—in some studies, there is no evidence of a correlation between Hcy levels and
cancer risk [94]. Further investigations are required to reveal the precise mechanism of how
cancer patients deal with Hcy metabolism.

3.6. The Role of One-Carbon Metabolism in Nucleotide Synthesis in Cancer

The synthesis of purine and pyrimidine nucleotides, which are required for the syn-
thesis of DNA and RNA, depends on the one-carbon cycle [95]. A single carbon, typically
from serine, is transferred during one-carbon metabolism to create the pyrimidine and
purine bases [52], hence the significance of serine in the production of nucleotides. During
glycolysis, serine is produced from 3-phosphoglycerate (3-PG) [96]. Serine-derived one-
carbon transfer to tetrahydrofolate results in 5,10-methylenetetrahydrofolate (CH2-THF),
a substance essential for the synthesis of pyrimidines [97]. CH2-THF is also the methyl
donor used to regenerate methionine from homocysteine, so there is a balance between its
use in pyrimidine synthesis versus providing the methyl group to SAM for use in DNA or
protein methylation, polyamine synthesis, or the generation of glutathione.

The subsequent transformation of CH2-THF into 10-formyltetrahydrofolate (CHO-
THF) is an essential component of purine synthesis [97]. Therefore, the synthesis of both
pyrimidines and purines depends on a carbon donor such as serine and the tetrahydrofolate
carrier. Due to the need for a large quantity of DNA nucleotides, one-carbon metabolism
is crucial for cancer cells to proliferate quickly. As a result, one-carbon metabolism is
a prospective target for reducing cell growth. It was shown that lowering serine levels
or blocking particular mitochondrial folate metabolic enzymes decreased the number of
purine nucleotides, which in turn prevented proliferation [41,98,99]. As a result, researchers
are actively looking at anticancer medications that target one-carbon metabolism [100,101].

3.7. Polyamine Metabolism in Cancer

Prostate cancer cell proliferation and differentiation, often controlled by androgen
hormones, are correlated with levels of polyamines, particularly spermine [102] which
is plentiful in the human prostate. Spermine may serve as a biomarker to distinguish
between low-grade and high-grade prostate cancers because its content is lower in the
latter [103]. In prostate cancer, the most significant metabolic disturbance observed was
increases in polyamine metabolites and in dcSAM [104]. The PTEN-PI3K-mTOR complex
1 (mTORC1) pathway was shown to regulate the stability of SAMDC (AMD1), which
controls the use of SAM for polyamine synthesis in prostate cancer [104,105]. Inhibitors of
mTORC1 or SAMDC were able to significantly impede growth in prostate cancer cell lines,
and this could be partly rescued by supplementing with spermidine. In this case, the role
of ODC1 in polyamine regulation downstream of mTORC signaling was excluded—it was
just via SAMDC regulation. However, in c-MYC transgenic mice, c-MYC has been shown
to promote prostate cancer carcinogenesis by boosting polyamine production through the
transcriptional control of ODC [106]. This is significant because ODC1 has been identified
as a c-Myc-responsive rate-limiting step in polyamine synthesis [107]. Notably, PGC-1α
inhibits c-MYC and hence ODC, which reduces polyamine production and lowers the
aggressiveness and spread of prostate cancer [106]. By contrast, the androgen receptor
typically acts in prostate cancer to upregulate ODC1 expression [108], and indeed ODC1
overexpression alone may be enough to drive prostate tumorigenesis [109].
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Similar to the observation in prostate cancer, human breast cancer tissue has a lot more
acetylated polyamines than healthy breast tissue [110]. In breast cancer patients, estrogen
signaling is linked to the creation of polyamines and purines. Estrogen directly contributes
to the progression of breast cancer by activating the estrogen receptor (ERα), which binds
to estradiol (E2) [111]. Through the mitochondrial folate route, this binding activates ERα
and causes the activation of genes that boost polyamine and purine production [111,112].
Additionally, due to their effects on the activity of the insulin receptor, polyamines may
control the mitogenic action of insulin in breast cancer [113]. ODC mRNA and protein
levels are markedly increased in breast cancer patients, and they positively correlate with
the tumor, node, and metastases (TNM) stages of the disease. Increased ODC activity is
linked to higher cancer cell proliferation rates and a worse prognosis for breast cancer
patients [114]. Arginase, which changes arginine into ornithine [115,116], is more prevalent
in breast cancer, making it a potential market for breast cancer in its latter stages [117].
In addition to ODC, breast cancer also exhibits increased levels of ADC and agmatinase,
enzymes involved in the synthesis of putrescine from arginine [118]. Early in metastasis,
arginase and polyamine production are increased [119]. These considerations are relevant
to this review because, in each of these cases in which polyamines are elevated in cancer,
SAM and the one-carbon cycle are required for their synthesis.

Patients with pancreatic cancer have polyamines found in their urine, serum, and
saliva, which makes them potential biomarkers [120–123]. In human pancreatic ductal
adenocarcinoma (PDAC), KRAS mutations are the most prevalent (representing around 95%
of all mutations) [124]. In addition, the copy number of c-MYC has increased in more than
50% of human PDAC cell lines [125]. Similar to other cancers, KRAS and MYC are upstream
activators of polyamine production in PDAC [124,126]. ODC levels rise in pancreatic
cancer and aid in the development and spread of advanced pancreatic cancer [127–129].
Employing an ODC inhibitor (DMFO) and a polyamine transport inhibitor (Trimer44NMe)
together greatly decreased the survival of PDAC cells by inducing apoptosis [126]. Immune
privilege must be established in order for the PDAC tumor to survive, and spermine is
critical for this process [130].

Poor prognosis is linked to the dysregulation of polyamines in neuroblastoma, and various
polyamine homeostasis-related genes are transcriptional targets of cMYC/MYCN [131–133].
The modulation of the SLC3A2 polyamine exporter and other essential elements of the
polyamine pathway in vitro is directly induced by MYCN, leading to increased polyamine
production and accelerated neuroblastoma cell proliferation [134]. ODC has been rec-
ognized as a potent oncogenic transforming factor, and in neuroblastoma, it is the most
well-studied target of the transcription factor c-MYC/MYCN [133,135,136]. In vivo neu-
roblastoma cell proliferation and MYCN-mediated oncogenesis are both reduced in animal
models when ODC is disabled [137]. Along with ODC, SAMDC is a target of MYCN and
plays a significant role in the growth of neuroblastomas [138,139]. In murine neuroblas-
toma, S-adenosylmethionine synthetase overexpression is linked to the development of
treatment resistance [138]. Transgenic mice used in a preclinical study that used polyamine
antagonist regimens targeting ODC1 and SAMDC had their neuroblastoma initiation
reduced [140,141].

Metabolic enzymes and polyamine levels affect both treatment and prognosis in
leukemia [142]. High levels of polyamines are linked to a bad prognosis in leukemia cells.
However, polyamine depletion in healthy cells also results in cell cycle arrest, highlighting
the need to preserve polyamine homeostasis. Patients with acute lymphoblastic leukemia
(ALL) have increased ODC activity and putrescine levels, and their recurrence can be
detected by increased spermine levels in erythrocytes [142].

Polyamine depletion is a plausible approach to decreasing polyamine levels in cancer.
Overexpression of the polyamine acetyltransferase SSAT drives the first step of polyamine
breakdown and can result in diminished cell growth, migration, and invasion by blocking
AKT and GSK3b signaling [143]. These findings were made using a variety of colon
carcinoma cell models and human hepatocellular malignancies.
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It is not new to use polyamines and their metabolites as cancer biomarkers [144]. In
lung and liver malignancies, polyamines and their metabolites in the urine and plasma can
be helpful both for diagnosis and as indicators of tumor development [145,146]. Diacetylsper-
mine has been linked to lung and ovarian cancers as a reliable urine biomarker [147–149].
Right-side colon tumors associated with biofilms have also been shown to contain sig-
nificant quantities of diacetylspermine [150,151]. Urinary or serum measurements of
polyamines and polyamine metabolites have demonstrated potential as biomarkers for
colon, pancreatic, and prostate malignancies [120,152–155]. The development of more
individualized methods for cancer diagnosis and therapy based on the use of polyamines
as biomarkers may be aided by such analyses in conjunction with increasingly accurate
genetic signatures.

4. Mechanisms Relating One-Carbon and Polyamine Metabolism to Cancer
4.1. The Function of One-Carbon Metabolism in Methylation Reactions

SAM is a common methyl donor used in the methylation of RNA, DNA, and hi-
stones [65]. The methyl group typically comes from serine via CH2-THF and is then
transferred to methionine, then SAM before transfer to the final target molecule [156].
DNA methylation primarily takes place at the 5’ carbon of the pyrimidine base cytosine
(5 mC) in CpG islands. DNA methyltransferases (DNMTs) like DNMT3a, DNMT1, and
DNMT3b catalyze DNA methylation using SAM as the methyl donor [157]. Numerous
tumor cells, including colon, cervical, and breast cancer cells, have been found to exhibit
hypermethylation in the DNA [158]. Reduced gene expression of tumor suppressor genes
is caused by the hyper-methylation of their promoters. Additionally, it has been noted that
DNA hypermethylation and chemoresistance are associated [159]. A number of clinical kits
are already being produced for detecting DNA methylation in cancer patients [160–168],
demonstrating how this correlation has been incorporated into clinical practice.

RNA methylation also occurs, primarily taking place at the N6 position of an adenine
base (m6A) near a stop codon [169,170]. RNA methyltransferases like METTL3, METTL14,
and WTAP catalyze the methylation of RNA using a SAM donor [171]. N6-Methyl Adeno-
sine (m6A) in RNA has a variety of roles in the development and spread of cancer. By
encouraging the translation of these mRNAs, METTL3 activity boosts and augments MYC,
BCL2, and PTEN in human acute myeloid leukemia (AML) [172]. Similar findings suggest
that RNA methylation fosters the development of tumors in other cancer types, includ-
ing pancreatic, colorectal, hepatic, and breast cancer [173–176]. In addition, it has been
noted that RNA methylation is a reliable diagnostic indicator for gastrointestinal malig-
nancies [177]. However, RNA methylation can equally serve to increase the translation of
tumor suppressors, and in these cases, overexpression of RNA methylation machinery is
protective [178]. RNA methylation has also been linked to tumor immunity, so clearly, there
is more work to be done to understand the full implications of RNA methylation in cancer.

In cancer cells, histone methylation and demethylation are both crucial processes.
Histone methylation has received a lot of attention as a protein modification, particularly
for its function in regulating gene expression. Increased methylation of H3K4, H3K36, and
H3K79 frequently promotes transcription, while increased methylation of H3K9, H3K20,
and H3K27 typically represses transcription [179]. AKT1, MYC, and MAPK are just a few of
the cancer-related genes that are impacted by H3K4 methylation [5]. Additionally, aberrant
histone methylation and altered gene expression may be caused by mutations in the histone
methyltransferases MLL2, EZH2, and UTX [180,181]. In addition, cancer stem cells (CSCs)
in a variety of cancer types benefit from histone demethylation via the LSD1 or Jumonji C
domain families [182–184]. SAM depletion alters the kinetics and development of histone
methylation in vivo as well as in stem cells and cancer cells [5,46,185–187], but it is not yet
clear whether this represents a viable therapeutic opportunity.
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4.2. Oxidative Stress and One-Carbon Metabolism in Cancer

Reactive oxygen species (ROS) levels affect the development of cancer: initiating or
promoting carcinogenesis at lower levels or at higher levels leading to cell death [188].
Tumor cells typically generate relatively high levels of ROS by their aberrant metabolism
and tolerate oxidative stress through several adaptations, including the generation of
antioxidants such as glutathione. Glutathione can be regenerated following oxidative stress
by glutathione reductase, but it requires NADPH. NADPH is generated in a number of
ways, such as by activating AMPK, the Pentose phosphate pathway from glycolysis, and
reductive glutamine and folate metabolism [188]. Redox-sensitive pathways are maintained
in normal working order in physiological circumstances by a harmony between the creation
and removal of reactive oxygen species (ROS). Oxidative stress can cause abnormal cell
death and/or disease development when redox equilibrium is disrupted [189].

By restoring the activity of antioxidant defense enzymes like superoxide dismutase
(SOD) and catalase and by raising levels of the anti-oxidant glutathione, cofactors of one-
carbon metabolism, in particular folate and B12, have been shown to be useful in lowering
oxidative damage [190]. At least in rats, a long-term reduction in the intake of folate
alters the activity of Mn-SOD, catalase, and glutathione peroxidase, as well as causing
irreversible oxidative DNA damage [191]. Conversely, adding dietary folate may protect
against oxidative stress [192,193]. The mechanisms have not always been identified in
these cases, but SAM is known to boost SOD and glutathione-S-transferase (GST) activity
and replenish glutathione levels [194], so it seems likely that a significant role of folate
is to allow effective regeneration of SAM and hence glutathione when under oxidative
stress. A potent antioxidant molecule, GSH is a tripeptide made of glycine, glutamate, and
cysteine [195]. Cysteine catabolism via the trans-sulphuration pathway raises glutathione
levels and speeds up the process of ROS detoxification [42].

Lack of dietary folate, and hence lack of methylene-THF, leads to hyperhomocysteine-
mia, as there is no methyl donor to use up homocysteine and regenerate methionine and
SAM. Perhaps surprisingly, elevated homocysteine is not associated with elevated glu-
tathione levels but rather with ER stress and DNA damage [196], as well as atherosclerosis
and dementia. Homocysteine has some direct detrimental effects, including upregulating
superoxide production by NADPH oxidase, leading to increased redox stress [197]. These
deleterious outcomes underline the importance of one-carbon homeostasis, as folate is
required to maintain SAM levels as well as to prevent elevated homocysteine [198].

One-carbon metabolism has come to be recognized as a significant cellular regulator
of NADPH levels through the activity of MTHFD, which uses methylene-THF to make
NADPH in the first step toward purine synthesis [28]. Cellular NADPH/NADP+ was
lowered, and oxidative stress sensitivity was raised when either the mitochondrial or
cytosolic MTHFD enzymes were depleted. In response to oxidative stress, Nrf2 activity
promotes serine transit through the folate cycle, so cells produce more NADPH and the
reducing equivalents required to detoxify ROS [42]. Methylene-THF is thus used both to
produce glutathione via the methionine cycle as well as to maintain antioxidants in their
reduced state by generating NADPH [199].

In summary, it is established that there is a strong correlation between antioxidant
defense mechanisms and one-carbon metabolism. It has also been established that one-
carbon metabolism has an impact on cancer progression. Consequently, it seems likely that
at least one of the mechanisms by which one-carbon metabolism affects cancer outcomes
will be its role in maintaining antioxidant defenses. The other principal defense against
oxidative damage is the recycling of damaged molecules by autophagy, and this is also
regulated by one-carbon metabolism.

4.3. The Linkage of Autophagy to the One-Carbon and Polyamine Metabolism in Cancer

Autophagy is induced in response to various stresses to maintain metabolic homeosta-
sis and prevent the build-up of unnecessary or damaged cellular components [200–202].
The aberrant regulation of autophagy is linked to many diseases, especially in neurodegen-
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erative disease and cancer [201,203,204], as well as in cells in which aneuploidy has been
induced [205–208].

Autophagy can function as a pro-survival protective pathway in cancer cells to tolerate
the effects of their increased metabolic demands for rapid cell proliferation and to respond
to cellular stresses that may include genomic instability and metabolic stress [209–212].
Reduced autophagy may promote tumorigenesis by increasing DNA damage rates. Au-
tophagy is thought to be mainly regulated by Target of Rapamycin Complex 1 (TORC1) in
a nutrient-sensitive condition [213]. There are now ongoing clinical trials evaluating the
combination of different modulators of autophagy with other chemotherapeutics [214,215].

Studies have shown that one-carbon metabolism is involved in the regulation of au-
tophagy and antioxidant levels. S-adenosylmethionine (SAM) functions as a conserved
metabolic switch that regulates autophagy by controlling methylation [187,216,217], sulphu-
ration [218–220], and synthesis of polyamines [221,222]. Furthermore, SAM also controls
the availability of natural antioxidant GSH and other sulfur-containing metabolites like
cysteine [223]. GSH and cysteine are essential to reduce cancer-related oxidative dam-
age [224]. GSH depletion and increased cellular oxidative stress can trigger the autophagic
response [219,225,226].

Increased methionine levels in yeast result in the inhibition of starvation-induced
autophagy through increased SAM levels and methylation of PP2A. Methylated PP2A
dephosphorylates the negative regulators (Npr2, Npr3, and Iml1) of TORC1 [227]. In mam-
mals, increased SAM levels enhanced its binding to SAMTOR, which disrupts the inhibitory
complex (SAMTOR-GATOR1) of mTORC1 [227,228]. SAMTOR acts as a nutrient sensor
via SAM; it links one-carbon metabolism to cellular growth and autophagy via mTORC1.

Spermidine has also been demonstrated to trigger autophagy in flies, yeast, worms,
and mammalian cells [221,229]. Spermidine controls autophagy by altering the expression
of the autophagy-related gene (Atg) via controlling the expression of the transcription
factor elF5A and TFEB [230,231]. Spermidine also suppresses acetylation by regulating the
expression of acetyltransferase E1A-associated protein p300 (EP300), which promotes the
deacetylation of autophagy-related proteins [232]. In addition, spermidine also reduces the
availability of acetyl-CoA, which decreases acetylation and promotes autophagy [229].

Cancer cells have altered metabolism to meet the high demands for energy which
results in increased cellular stress and damage. Therefore, cancer cells have a higher
dependency on autophagy and other repair mechanisms compared with normal cells.
Maintaining cellular levels of autophagy prevents healthy cells from tumorigenesis by
limiting tissue damage, inflammation, and genome instability, but cancer cells also utilize
autophagy for tumor progression and drug resistance [233–236]. Therefore, inhibiting
autophagy in cancer cells is a potential target, and clinical trials are ongoing on autophagy
modulators to treat cancer, though clearly, more work needs to be done in this area.

5. Metabolic Cancer Therapy
5.1. Metabolic Therapy Targeting One-Carbon and Folate Metabolism

The relevance of FOCM has been unequivocally established, and clinics have been
using related medications for many years. Numerous cancers have been treated with
dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS) inhibitors [22,237,238],
such as methotrexate and pemetrexed. Similar to other chemotherapeutic treatments,
these drugs are not ideal because cells develop resistance by, for instance, impairing drug
absorption, decreasing the drug’s retention inside the cell, and decreasing drug affinity.
There is a need to develop further therapies that specifically target FOCM.

Since many cancer cells appear to be somewhat dependent on the presence of exoge-
nous serine, limiting the supply of serine may have medicinal advantages. Depletion of
exogenous serine will obviously have less of an impact on tumors with increased serine
synthesis enzymes, but p53 loss may increase their dependency. More than half of all
malignancies have p53 mutations [239], which could lead to a tumor-specific dependency
on serine availability. It is a well-known therapeutic technique to reduce phenylalanine
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intake in individuals with phenylketonuria [240], and it would appear that a similar strat-
egy could be used to eliminate serine from a cancer patient’s diet. Serum levels of serine
and glycine can be selectively reduced by 50% in animals fed a diet missing serine and
glycine [41], in mouse studies, despite the fact that serine synthesis by organs such as the
liver and kidneys [241] might have been expected to maintain circulating serine levels.
Mice fed on this diet showed delayed tumor formation in xenograft experiments [41]. Com-
bining a serine-free diet with oxidative phosphorylation inhibitors, such as the biguanides
metformin and phenformin, which are used to treat type 2 diabetes, enhanced the thera-
peutic effectiveness of this method for treating cancer in an allograft mouse model [242].
According to experimental findings, the switch to de novo serine synthesis is followed by
an increase in ROS levels. This raises the prospect that suppressing antioxidant defenses or
encouraging the production of more ROS could work in conjunction with serine restriction
to kill tumor cells.

Limiting de novo serine synthesis is an alternative strategy for therapeutically ad-
dressing serine metabolism, particularly in tumors that exhibit serine synthesis enzyme
amplification. For instance, the availability of PHGDH inhibitors [243,244] that block serine
synthesis allows for preclinical and clinical examinations in patients chosen for having
tumors with amplified PHGDH. However, a study employing xenograft mice models
demonstrated that PHGDH depletion alone could not suppress tumor growth, casting
doubt on the efficacy of this method for treating existing tumors [245]. Another problem
with this strategy will be any negative consequences that may result from preventing de
novo serine production. Exploiting serine metabolism clinically for the treatment of cancer
is still in its infancy. A more specific method, or combination of approaches, is expected
to emerge as we gain a deeper comprehension of the regulation and activity of these
pathways. However, several approaches are currently in the initial phases of preclinical
examination. Therefore, we are hopeful that this area of metabolism may lead to novel
therapeutic possibilities.

Dietary methionine restriction considerably slows down the growth of tumors in a
number of preclinical models, including both solid tumors and blood malignancies [246–250].
Overall, Yoshida sarcoma survival improved as a result of their reaction to a methionine-
restricted diet. Regular diet mice all died by day 12, whereas Yoshida tumor-bearing mice
all lived for 30 days, with the last one passing away on day 38. These tumor-bearing mice’s
body weights were unaffected by the methionine-off diet [251]. Although the results of clin-
ical investigations utilizing diets low in methionine have been inconsistent, the endpoint
data were primarily concerned with the effectiveness of plasma methionine reduction [252].
The amount of plasma methionine decreased by about 50%, and patients shed an average of
0.5 kg per week. When tumors were studied after surgery, the combination of 5-fluorouracil
and methionine limitation in preoperative high-stage stomach cancer patients had a re-
markable impact on tumor pathology [253]. A recombinant enzyme that breaks down
methionine has been created [254,255]. The gene, methioninase (METase), was obtained
from Pseudomonas putida and encoded an L-methionine-deamino-mercaptomethane-
lyase. Both patient-derived xenograft (PDX) and cell-based models of several malignancies
demonstrated the efficacy of METase injection [250,256–260]. The most promising route to
practical use involves methionine restriction along with chemotherapy or radiation.

5.2. Therapy Targeting Polyamine Metabolism

Targeting polyamine metabolism, which is dysregulated in several types of malignan-
cies, has been the focus of therapeutic treatments for some time. In the 1960s, methylglyoxal
bis(guanylhydrazone) (MGBG) was utilized as an anticancer medication, for example,
against leukemia [261,262], but its effectiveness was severely hindered by its toxicities.
Later research revealed MGBG to be a SAMDC inhibitor [263], suggesting SAMDC as a pos-
sible therapy target. This effort resulted in the creation of many SAMDC inhibitors, such as
4-amidinoindan-1-one 2′-amidinohydrazone (SAM486A). As an analog of spermidine and
a competitive SAMDC inhibitor, MGBG lowers spermidine and spermine levels and raises
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putrescine levels [262]. MGBG inhibits the development of cancer cells by triggering the
mitochondrial apoptosis cascade [264]. Even though these substances exhibited antitumor
activity, they were nonetheless extremely hazardous. These analogs’ antitumor activity
and/or toxicity were caused by off-target effects such as antimitochondrial activities in addi-
tion to interference with polyamine metabolism. SAMDC can be rendered inactive by more
potent inhibitors, such as 5′-(((Z)-4-amino-2-butenyl)methylamino)-5′-deoxyadenosine
(AbeAdo) and its 8-methyl derivative (Genz-644131) [263,265]. These inhibitors have not
yet been proven to be effective antitumor medicines though they are promising for treating
trypanosomiasis. Similarly, inhibitors of the next step (aminopropyl transferases) have
been demonstrated to lower polyamine content [266], but effective inhibitors have not yet
been identified for clinical applications.

The most well-known polyamine inhibitor, difluoromethylornithine (DFMO), was
found in the 1970s and inhibited ODC irreversibly [267–269]. ODC is permanently rendered
inactive once DFMO attaches to it, creating an extremely reactive intermediate that is then
decarboxylated and covalently bound to ODC [269]. DFMO reactions result in polyamine
depletion and are typically cytostatic in mammalian cells [270]. Its rapid clinical trial
evaluation as a separate treatment agent was prompted by early observations of the impacts
of DFMO in colon cancer, melanoma, small-cell lung cancer, and neuroblastoma [271–275].
Despite the fact that DFMO was well tolerated, the outcomes did not include notable clinical
responses, which may have been the result of its ineffective distribution to cells [128,271].
Therefore, research centered on DFMO in combination with other medicinal drugs. In
prostate, melanoma, breast, and neuroblastoma cell lines, the effective transport inhibitor
AMXT 1501 synergizes with DFMO [276,277]. Patients with glioma have received DFMO
in combination with the cytotoxic drugs procarbazine, nitrosourea, and vincristine, while
those with neuroblastoma have received DFMO in combination with either bortezomib
or etoposide, a proteasome inhibitor [278–280]. In vitro and in vivo, gemcitabine-resistant
pancreatic cancer is efficiently inhibited by DFMO in conjunction with the polyamine
transport inhibitor Trimer44NMe [126]. A promising method to treat colorectal cancer in
an in vivo model has been demonstrated to be preventing ODC expression by DMFO as a
separate agent or together with other medications, which is yet to be evaluated in clinical
trials [281–283].

Additionally, the discovery of inhibitors has focused on the spermine and spermidine
synthases S-adenosyl-1,12-diamino-3-thio-9-azadodecane (AdoDATAD) and S-adenosyl-
3-thio-1,8-diamino-3-octane (AdoDATO) [284,285]. However, although these substances
effectively and selectively block aminopropyl transferase, they both have primary amines
in their structures that act as SSAT and amine oxidase substrates. Their clinical usage is
therefore constrained because cellular metabolism breaks them down. These inhibitors
only marginally reduce the growth of cancer cell lines [284,285]. An alternative spermine
homolog, None-carbonyclopropyl-methyl-N11-ethylnorspermine (CPENSpm) [286], is
significantly cytotoxic to breast cancer and human lung carcinoma cells [287–289]. It
results in the induction of elevated SSAT levels and the activation of apoptosis [289,290].
However, no clinical trials have yet been completed, largely due to the drug’s poor cell
type-specific cytotoxicity.

In experimental animal models, drugs, or polyamine analogs that target polyamines
and important enzymes connected to polyamine metabolism have been found to be ben-
eficial against cancer. Some of these drugs have also been tested in human clinical trials.
However, as far as we can tell, these inhibitors’ adverse effects and toxicity have prevented
them from producing adequate clinical results to date. Despite significant advancements
in creative polyamine analogs and other polyamine-targeting drugs, the production of
effective and secure therapeutic agents still needs further investigation.

6. Conclusions

Researchers’ interest in cancer metabolism has increased over the past decade, which
has resulted in a greater understanding of the metabolic pathways involved in cancer biol-
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ogy. Numerous pathways that are known to or are anticipated to increase the survival of
cancer cells rely on one-carbon and polyamine metabolism. A more thorough comprehen-
sion of these could enable more focused targeting of the particular pathways that are most
crucial for cancer cell survival. There are already several therapies that target one-carbon
and polyamine metabolism. However, due to the significance of one-carbon and polyamine
metabolites in healthily proliferating cells, it has been challenging to avoid harmful side
effects. Nonetheless, there are encouraging prospects for therapies that deplete serine and
methionine, particularly in combination with redox or autophagy intervention. Altering
methionine or SAM levels has significant effects on cancers, but currently, the mechanisms
responsible are unclear, so further work is needed to develop specific and effective inter-
ventions. Polyamine-targeting drugs have been in clinical use for decades, and there are
ongoing trials to optimize their use in combinations such as with NSAIDs in colorectal
cancer. By more specifically blocking individual one-carbon and polyamines pathway
enzymes, future treatments may be able to target one-carbon and polyamine metabolism
more effectively in cancer cells. Therefore, this review strongly suggests the need for further
investigations to explore a better understanding of one-carbon and polyamine metabolic
pathways, particularly methionine and polyamine metabolism in cancer growth, and to
discover novel inhibitors in these pathways.
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