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Abstract: Background: Colorectal cancers (CRCs) continue to be the leading cause of cancer-related
deaths worldwide. The exact landscape of the molecular features of TGF-β pathway-inducing CRCs
remains uncharacterized. Methods: Unsupervised hierarchical clustering was performed to stratify
samples into two clusters based on the differences in TGF-β pathways. Weighted gene co-expression
network analysis was applied to identify the key gene modules mediating the different characteristics
between two subtypes. An algorithm integrating the least absolute shrinkage and selection operator
(LASSO), XGBoost, and random forest regression was performed to narrow down the candidate
genes. Further bioinformatic analyses were performed focusing on COMP-related immune infiltration
and functions. Results: The integrated machine learning algorithm identified COMP as the hub
gene, which exhibited a significant predictive value for two subtypes with an area under the curve
(AUC) value equaling 0.91. Further bioinformatic analysis revealed that COMP was significantly
upregulated in various cancers, especially in advanced CRCs, and regulated the immune infiltration,
especially M2 macrophages and cancer-associated fibroblasts in CRCs. Conclusions: Comprehensive
immune analysis and experimental validation demonstrate that COMP is a reliable signature for
subtype prediction. Our results could provide a new point for TGFβ-targeted anticancer drugs and
contribute to guiding clinical decision making for CRC patients.

Keywords: colorectal cancer; COMP; TGF-β

1. Introduction

Colorectal cancer (CRC) is one of the leading causes of newly diagnosed cancer cases
and cancer-related deaths worldwide [1]. Characterized as a highly heterogeneous disease,
CRC is classified into four consensus molecular subtypes (CMS) based on bulk transcrip-
tomics [2,3]. Among these subtypes, prominent activation of transforming growth factor-β
(TGF-β) constitutes one of the most important features of the CMS4 subtype (mesenchymal,
23%), which is accompanied by stromal invasion, epithelial-to-mesenchymal transition
(EMT), and angiogenesis [3,4]. Compared with the other three CMS groups, CMS4 tumors
have a higher tendency of long-term relapse and a low response to chemotherapy, leading
to the poorest prognosis [4]. Thus, a clearer landscape of the molecular features of CMS4
CRCs will provide individualized treatments for patients accurately and show great value
in clinic application.

Alterations of cytokine/chemokine networks (for example, TGF-β) in the tumor
microenvironment (TME) constitute one of the most crucial pathways involved in cancer
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tumorigenesis via regulating signaling pathways in cancerous cells directly and the tumor–
stromal interaction [5,6]. TGF-β regulates cell proliferation, migration, and differentiation,
serving as a tumor suppressor in the early stages of tumorigenesis but as a tumor promotor
at later stages [7]. Another alteration in the TME induced by TGF-β activation is changes
in several stromal cells, including cancer-associated fibroblasts, natural killer cells, tumor-
associated neutrophils, tumor-associated macrophages, naïve CD4+ T cells, type 1 T helper
cells, and regulatory T lymphocytes [6]. Based on the above-mentioned features, TGF-
β-targeting agents have been identified as promising anticancer drugs, but their clinical
translation is limited due to the unduly multifunctional roles of TGF-β in cancerous and
normal cells [8]. Thus, more studies on this topic are needed to obtain a more comprehensive
and accurate understanding of TGF-β for developing precisely targeted anticancer drugs.

Cartilage oligomeric matrix protein (COMP), namely thrombospondin-5 (TSP-5), in-
teracts with type I and type II collagen to regulate the assembly and stabilization of the ex-
tracellular matrix [9,10]. With a pentameric structure composed of five identical monomers,
COMP can simultaneously interact with multiple TGF-β1 molecules, contributing to the
high efficacy in the sustained activation of the TGF-β signaling pathway [11]. Moreover,
COMP is significantly upregulated in CRCs and is co-expressed with key EMT genes and
associated with poor survival [10]. Although the crosstalk of COMP and TGF-β is impli-
cated in various pathophysiological processes, such as collagen secretion and pancreatic
tumor progression [12,13], its specific roles in CRCs remain vague; thus, a general analysis
is indispensable and urgently required.

In this study, we identified two TGF-β pathway subtypes in CRCs. With weighted
correlation network analysis (WGCNA) and machine learning algorithms, we ultimately
identified COMP as the hub gene that mediates the difference between the two subtypes.
Correspondingly, validation tests including the receiver operating characteristic (ROC)
were conducted, which demonstrated an excellent predictive power of COMP for C1
and C2 subtypes. This study provides more realistic information and a more convenient
classification system for clinicopathological features, which can serve as a guide for clinical
decision making. Furthermore, this study aims to broaden our view on the development of
TGF-β-targeting anticancer agents and to improve CRC patients’ survival.

2. Materials and Methods
2.1. Data Retrieval and Preprocessing

The molecular data (RNA sequencing, DNA Methylation, somatic mutation, and copy
number alteration) of colorectal cancer and paracancerous tissue were downloaded from
the TCGA database. Duplicate cases and patients treated by chemotherapy or radiation
therapy were regarded as invalid and removed, and 455 samples were then obtained for the
following analyses. In addition, RNA-seq data of normal intestinal tissue were downloaded
from the GTEx database. All sequencing data were converted to TPM format.

2.2. Consensus Clustering and Weighted Gene Co-Expression Network Analysis

To cluster CRC samples based on TGF-β-related pathways, the Molecular Signatures
Database (www.gsea-msigdb.org/gsea/msigdb, accessed on 28 May 2022) was applied to
download 5 gene sets of TGF-β-related pathways (BIOCARTA TGFB PATHWAY, REAC-
TOME SIGNALING BY TGFB FAMILY MEMBERS, HALLMARK TGF BETA SIGNALING,
WP TGFBETA SIGNALING PATHWAY, KEGG TGF BETA SIGNALING PATHWAY) [14].
Differential genes between normal and cancerous tissues were selected by the T-test and
Wilcoxon test, respectively. Further feature selection was performed based on the Cox
regression model. Consensus clustering identified two distinct TGF-β-related patterns via
the method in the “CancerSubtypes” R package.

A network of gene co-expression was constructed to identify the TGF-β cluster-related
module. After filtering out genes with the top 5000 median absolute deviations, we
calculated the connection strength and established a scale-free network. Then, we examined
the scale independence and average connectivity degree of modules using the gradient
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method. Next, the degree of independence was set as 3, the most suitable power value,
and then scale-free gene co-expression networks were generated. Finally, the 3 modules
that had the highest coefficient of correlation with TGF-β clusters were identified as the
key modules.

2.3. Functional and Pathway Enrichment Analysis

Among the “clusterProfiler” R package, Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to further
elucidate the biological functions and signaling pathways of the identified genes in the
key modules.

2.4. Feature Selection with Machine Learning Algorithms

Candidate hub genes were then obtained via dimension reduction approaches, in-
cluding XGBoost, lasso regression, and random forest regression, which were induced to
improve the prognostic signature accessibility of the prognostic genes. After integrating
the multiple algorithms, COMP was eventually identified as the TGF-β-related hub gene.

2.5. Association between COMP and Clinical Features

After downloading the clinical features of CRC from TCGA, we compared the COMP
expression level among patients with different ages, survival events, TNM, and pathologic
stages. In addition, the ROC plotter tool (http://www.rocplot.org/, accessed on 26 August
2022) was utilized to analyze the association between COMP expression level and response
to therapy based on the transcriptome-level data from patients with CRC [15].

2.6. Tumor Immune Estimation Resource

Immunogenomic analysis was performed by our ImmuCellAI algorithm with 24 im-
mune cells to analyze the correlation of immune infiltration with COMP expression and
methylation in pan cancers. For CRCs, the ssGSEA algorithm from the R package “GSVA”
was conducted to demonstrate immune infiltration differences between tumors with low
and high COMP expression levels and the correlation between COMP and the immune
infiltration of 24 immune cells.

2.7. Analysis of COMP Expression Correlation with Immunological Characteristics of TME

Using SangerBox (http://vip.sangerbox.com/home.html, accessed on 28 August
2022), we analyzed the correlation between COMP and immunomodulators, including
chemokines, receptors, MHCs, immunoinbibitors, and immunostimulators [16]. After
identifying the co-expressed genes in CRCs with a Spearman’s correlation coefficient
greater than 0.8 using cBioPortal (https://www.cbioportal.org/, accessed on 27 August
2022), we ranked the gene prioritization of these genes across four immunosuppressive
parameters, including T cell exclusion score, T cell dysfunction score, response to immune
checkpoint blockade (ICB) therapy, and gene knockout phenotype, in CRISPR screens with
the regulator prioritization module of the TIDE algorithm (http://tide.dfci.harvard.edu/,
accessed on 27 August 2022) [17,18]. The T cell dysfunction score hinted at the effects on
cytotoxic T cells, and the z-score in the Cox PH regression represented the role of gene
expression on patient survival in ICB treatment cohorts. The normalized logFC in CRISPR
screens was used for evaluating the effect of gene knockout-mediated and lymphocyte-
induced tumor death in cancer models. The T cell exclusion score reflected the collective
roles of the T cell exclusion of three immunosuppressive cell types, including CAFs, MDSCs,
and M2-TAMs [19].

2.8. Interaction Network and Enrichment Analysis

The STRING website (https://cn.string-db.org/, accessed on 28 August 2022) was
employed to identify the network interactions of the top 50 related genes of COMP in
CRCs from cBioPortal, which was then visualized with Cytoscape software (version 3.7.2).

http://www.rocplot.org/
http://vip.sangerbox.com/home.html
https://www.cbioportal.org/
http://tide.dfci.harvard.edu/
https://cn.string-db.org/
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GO and KEGG pathway analysis was performed to explore the biological functions and
signaling pathways of the co-expressed genes with a Spearman’s correlation coefficient
greater than 0.6. With Gene Set Enrichment Analysis (GSEA), gene expression profile data
of READ (rectum adenocarcinoma) and COAD (colon adenocarcinoma) were obtained
from TCGA and then divided into a high expression group (≥50%) and a low expression
group (<50%) according to the expression level of COMP. A p-value < 0.05 (as needed) and
an FDR <0.25 (as needed) were considered statistically significant [20].

2.9. Statistical Analysis

Correlation coefficients between variables were computed using Pearson and Spear-
man correlation analyses. The T-test and Mann–Whitney U test were applied to calculate
the differences in continuous variables. The risk score toward the prognostic significance
was compared using the log-rank test. A validation test for the prediction of TGF-β sub-
types with COMP was performed via the receiver operating characteristic (ROC) curves. All
statistical tests which utilized R software (version 4.2.0) followed the two-sided principle,
and statistical significance was determined as p < 0.05.

3. Results
3.1. TGF-β Pathways Stratify CRC into Two Subtypes

In this study, 258 genes were systematically identified from five gene sets of TGF-β-
related pathways; then, only 34 overlapping genes passed the feature selection based on
the Cox regression model. After clustering CRC patients into C1 and C2 subtypes, we
comprehensively analyzed the difference of immune checkpoint-related genes in mRNA
expression, DNA methylation, gene amplification frequency, and gene deletion frequency
between the two subtypes. The results indicate that gene amplification and deletion
frequency were positively correlated with C1 but negatively correlated with C2 in almost
all experimental types (Figure 1A). Moreover, to further validate the clinical relevance of the
different subtypes, we analyzed the cumulative survival curve and found that the C2 group
was linked to the favorable survival of the patients (p < 0.001) (Figure 1B). Considering the
differences in several aspects mentioned above, WGCNA was performed to explore the
key gene modules. With the soft domain value set to 3, R2 was greater than 0.8, suggesting
that the data conformed to a power law distribution and were suitable for subsequent
analysis. Moreover, the mean connectivity tended to be stable, suggesting that, when
the soft domain value was further increased, the effect on the results was not significant
(Figure 1C). Furthermore, with WGCNA, we obtained 12 non-gray gene modules, among
which the blue, magenta, and turquoise modules had the strongest positive correlation
with the C1 subtype and strongest negative correlation with the C2 subtype (Cor = 0.5
and p < 0.001), suggesting that these three module genes were most closely related to the
differences between the two subtypes. Multivariate regression analysis was performed to
identify the C1 and C2 subtypes as independent risk factors (Table 1).

Table 1. Univariable and multivariate analysis of risk factors for CRC.

Univariate Analysis Multivariate Analysis

Features Number HR 1 95% CI 1 p-Value q-Value 2 HR 1 95% CI 1 p-Value q-Value 2

Gender 455 0.64 0.84
Female - -
Male 1.10 0.74, 1.64
Age 454 0.013 0.029
<40 - - - -
>40 0.54 0.12, 2.37 0.39 0.09, 1.75 0.2 0.3
>60 1.13 0.28, 4.64 1.32 0.32, 5.42 0.7 0.7

Molecular subtype 455 0.84 0.84
Unstable chromatin type - -

Stable genome type 1.02 0.58, 1.80
Super mutated

single-nucleotide type 0.46 0.06, 3.29

Unstable microsatellite type 1.03 0.59, 1.81
geographic area 360 0.79 0.84
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Table 1. Cont.

Univariate Analysis Multivariate Analysis

Features Number HR 1 95% CI 1 p-Value q-Value 2 HR 1 95% CI 1 p-Value q-Value 2

East Asia - -
Eastern Europe 0.52 0.07, 4.05

America 0.54 0.07, 4.00
Western Europe 0.67 0.09, 5.05

Organ 455 0.028 0.050
colon - - - -

rectum 0.55 0.31, 0.97 0.49 0.27, 0.89 0.019 0.043
Stage 443 <0.001 <0.001

I - - - -
II 1.62 0.67, 3.92 1.44 0.59, 3.50 0.4 0.5
III 2.75 1.16, 6.57 2.71 1.13, 6.48 0.026 0.045
IV 6.10 2.50, 14.9 7.20 2.93, 17.7 <0.001 <0.001

TGF-β subtype 455 0.004 0.013
C1 - - - -
C2 0.54 0.36, 0.83 0.56 0.36, 0.88 0.011 0.038

1 HR: hazard ratio, CI: confidence interval, 2 Benjamini–Hochberg-adjusted p-value. The p-value ≤ 0.05 and
q-value ≤ 0.05 were considered as statistically significant, which was emphasized with the bold.
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Figure 1. The differences between two subtypes of CRC. (A) The comparison of the immune
checkpoint-related gene expression, methylation, and mutation correlation between C1 and C2
subtypes. (B) Survival outcome differences between two subtypes. (C) The soft domain value and
mean connectivity setting for WGCNA. (D) Cluster dendrogram of WGCNA. (E) The correlation
between gene modules and subtypes.

3.2. GO and KEGG Enrichment Analysis for Related Gene Modules

Due to the strongest correlation between blue, magenta, and turquoise modules and
the two subtypes, GO and KEGG enrichment analysis was used to explore the function
of the significantly altered genes. The magenta module was mainly enriched in muscle
contraction, the muscle system process, and myofibril assembly. The turquoise module
was mainly enriched in cell–substrate adhesion, epithelial cell proliferation, and ameboidal-
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type cell migration. The blue module was mainly enriched in the extracellular matrix
organization, extracellular structure organization, and external encapsulating structure
organization (Figure 2A). As for KEGG analysis, the magenta module was significantly
enriched in vascular smooth muscle contraction, hypertrophic cardiomyopathy, and dilated
cardiomyopathy; the turquoise module was significantly enriched in the PI3K/Akt sig-
naling pathway, focal adhesion, and ECM–receptor interaction; and the blue module was
significantly enriched in human papillomavirus infection, PI3K/Akt signaling pathway,
and protein digestion and absorption (Figure 2B). Intriguingly, the blue module and the
turquoise module both upregulated in the PI3K/Akt signaling pathway.
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Figure 2. Enrichment analysis of related gene modules. (A) GOBP analysis for magenta, turquoise,
and blue modules. (B) KEGG analysis for magenta, turquoise, and blue modules.

3.3. Machine Learning Methods Identified COMP as the Hub Gene

LASSO, XGBoost, and random forest regression (RFR) were selected to explore the key
genes mediating the differences between the two subtypes. After normalizing and integrat-
ing the output, COMP was identified as the hub gene (Figure 3A). Further bioinformatic
analysis found that the expression of COMP was higher in the C1 group than in the C2
group (p < 0.05) (Figure 3B). Receiver operating characteristic (ROC) curve analysis indi-
cated the excellent performance of COMP in predicting the subtype of TGF-β (AUC = 0.91)
(Figure 3C). The Sankey diagram demonstrates the CMS tumor type composition and
COMP expression level in C1 and C2 clusters, with all CMS4 subtypes being clustered as
C1 (Figure 3D).

3.4. Association between COMP and CRC Clinical Features

CRC cases with complete observation data from TCGA were divided into low and
high expression groups according to the median COMP expression level. Statistical analysis
exhibited a significant association between high COMP expression and advanced T, N,
and pathologic stages (Figure 4A,C,H), worse OS (overall survival), PFI (progression-free
interval), and DSS (disease-free survival) events (Figure 4D–F), and patients under the age
of 65 (Figure 4G), but there existed no significant correlation between COMP expression
and different M stages (Figure 4B). Moreover, the low mRNA expression level of COMP
was significantly associated with resistance to chemotherapy in the CRC cohorts (Figure 4I).
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Similarly, a low COMP expression level may represent resistance to immune checkpoint
inhibitor therapy (Figure 4J).
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(A) LASSO, XGBoost, random forest, and an integrated algorithm were performed to explore the
most important hub gene. (B) The expression level of COMP, the hub gene, between two groups.
**** p < 0.0001. (C) ROC exhibited an excellent classification role of COMP for C1 and C2, with AUC
equaling 0.91. (D) The Sankey diagram shows the relationship between CMS, TGF-β subtype, and
COMP expression level.

3.5. COMP Expression Level and Immune Infiltration Analysis in Pan Cancers

Pan-cancer analysis revealed that COMP was highly expressed in various cancers,
such as BLCA, BRCA, CESC, CHOL, COAD, ECSC, HNSC, LIHC, LUAD, LUSC, PAAD,
READ, SKCM, STAD, THCA, and UCEC (Figure 5A). More importantly, COMP exhibited
excellent diagnostic values for CRCs with an AUC equaling 0.932 and a 95% confidence
interval equaling 0.908–0.955 (Figure 5B). In COAD and READ, the expression of COMP
steadily increased as the tumor progressed (Figure 5C, D). Western blot analysis of COMP
and TGF-β1 protein expression levels suggested that TGF-β1, as well as COMP, were
upregulated in colorectal cancer cell lines compared with the normal colonic cell line
(NCM-460) (Figure S1). Immune infiltration analysis exhibited a significantly positive
correlation between COMP expression and the infiltration score in most cancers, with
COMP positively correlating with CD4+ T cells, naïve CD8 cells, iTreg, macrophages, Tfh,
Th2, and Tr1, but negatively correlating with neutrophils in most cancers (Figure 5E). The
further analysis between the DNA methylation levels of COMP and tumor-infiltrating
immune cells indicated positive correlations with CD4+ T cells, naïve CD8 cells, effector
memory, monocytes, and nTreg, Th1, and Tr1 in COAD, but no significant correlations
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in READ. The pan-cancer analysis also revealed a positive correlation between the DNA
methylation level of COMP and the neutrophils that existed in most cancers (Figure 5F).
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Figure 4. The correlation between COMP and clinical features of CRC patients. The correlation be-
tween COMP and (A) T stage, (B) M stage, (C) N stage, (D) overall survival (OS) event, (E) progression-
free interval (PFI) event, (F) disease-specific survival (DSS) event, (G) patient age, (H) pathologic
stage, (I) response to chemotherapy, and (J) response to immunotherapy. * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.6. Correlation between COMP and Immune Infiltration in CRC

Detailed immune infiltration analysis of CRCs revealed that a high COMP expression
level was related to the higher enrichment score of 19 immune cells, but the lower enrich-
ment scores of Th17 and Th2 cells. However, NK CD56 bright cells, T helper cells, and
Tcm exhibit no significant difference between the two groups with low and high COMP
expression divided by the median (Figure 6A). Correspondingly, the correlation analysis
indicated that COMP negatively associated with Th17 and Th2 cells, but positively with
most infiltrating immune cells, especially NK cells, macrophages, iDC, and mast cells, with
a Spearman’s correlation coefficient greater than 0.4 (Figure 6B,C and Table S1). Consid-
ering the two subtypes of macrophages in the TME [21], we also analyzed the correlation
between COMP and the biomarkers of M1 and M2 macrophages. The results indicate a
stronger association between COMP and M2 than M1 macrophages, with a significantly
positive correlation between COMP and the biomarkers of M2 macrophages, including
CD163 (r = 0.477, p < 0.001), MS4A4A (r = 0.440, p < 0.001), and VSIG4 (r = 0.503, p < 0.001)
(Figure 6D), but a poorer correlation with the biomarkers of M1 macrophages, including
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IRF5 (r = 0.338, p < 0.001), NOS2 (r = −0.284, p < 0.001), and TGS2 (r = 0.007, p > 0.05)
(Figure 6E).
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Figure 6. The correlation between COMP and immune infiltration in CRCs. (A) The immune infil-
tration difference between patients with low and high COMP expression levels. (B) The correlation
between COMP and immune infiltration of 24 immune cells. (C) The correlation between COMP and
immune infiltration of iDC, NK, mast cells, and macrophages. (D) The correlation between COMP
and biomarkers of M1 macrophages. (E) The correlation between COMP and biomarkers of M2
macrophages. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.7. Immunomodulatory Relevance of COMP

The immunomodulatory role of COMP was depicted via the associations between
the COMP expression level and immunomodulators. The findings reveal that COMP
was positively correlated with a majority of immune inhibitors and stimulators in sev-
eral cancers, with TNFSF4, an immune stimulator, and HAVCR2, an immune inhibitor,
exhibiting the strongest correlation with COMP (Figure 7A). Moreover, significant correla-
tions were found between COMP expression and the expression of immune checkpoint
genes in most cancers. In CRCs, COMP showed a highly significant positive correlation
with most immune checkpoint genes, while exhibiting negative correlations with several
chemokines, including CCL20, CXCL2, CXCL1, CXCL3, and CXCL17 (Figure 7B). Consid-
ering the synergy between related genes, we identified the co-expressed genes of COMP
in CRCs and exhibited the most related genes with a Spearman’s correlation coefficient
greater than 0.8 (Figure 7C and Table S2). Then, the association between each gene and
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four immunosuppressive indices was summarized in a range of cohorts. Among the three
cell types promoting T cell exclusion, only cancer-associated fibroblasts were positively
associated with the expression levels of both COMP and its co-expressed genes (Figure 7D).
The significantly positive correlation between COMP and cancer-associated fibroblasts
(CAFs) was validated in pan cancers (Figure 7E) and CRCs (Figure 7F) with TIMER2.0
(http://timer.comp-genomics.org/, accessed on 31 August 2022) [22]. Above all, these re-
sults suggest that COMP may provide some theoretical support for tumor immunotherapy.
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3.8. Enrichment Analysis of COMP-Related Genes

The top 50 COMP-related genes were selected, and their interactive relationship was
analyzed and visualized with STRING and Cytoscape, respectively (Figure 8A). Then,
GO and KEGG enrichment analysis was performed for the COMP-related genes with a
Spearman’s correlation coefficient greater than 0.6. As expected, the results suggest that
COMP-related genes participated in the TGF-β signaling pathway and ECM–receptor
interaction (Figure 8B and Table S3). Further GSEA analysis indicated that the TGF-β

http://timer.comp-genomics.org/
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signaling pathway and cancer-related pathway were significantly activated in CRC tissues
with high COMP expression levels compared with the low COMP expression group.
Interestingly, the high COMP expression level was related to the regulation of endothelial
migration in COAD but mitochondrial electron transport in READ (Figure 8C).
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4. Discussion

CRC is a highly heterogeneous malignant tumor containing at least four consen-
sus molecular subtypes [3]. Featuring the prominent activation of TGF-β signaling, the
CMS4 subtype has the lowest survival rate and most aggressive invasiveness, suggesting
the potential role of TGF-β pathways in CRC progression [23–25]. Our previous study
indicated that accurate classification helps conduct reliable subtype-specific prognostic
signatures, contributing to more precise clinical decision making and immunotherapeutic
strategies [26]. Continuing this line of thinking, the present study stratified CRC into two
subtypes, focusing on the associations between TGF-β pathways and CRC clinicopathologic
features. With WGCNA and machine learning analysis, we identified COMP as the most
critical gene mediating the differences between the two CRC subtypes. Further bioinfor-
matics analysis revealed the influence of COMP on immune cell infiltration. These findings
fill in gaps in the field regarding the specific crosstalk of COMP and TGF-β pathways and
offer a new approach for clinical decision making and immunotherapeutic strategies to
improve CRC patient prognosis and risk stratification.

As a cytokine with dichotomous roles, TGF-β inhibits proliferation and promotes
cell cycle arrest and apoptosis in normal and premalignant cancer cells but promotes
tumorigenesis and metastasis in late-stage cancerous cells [27]. Increased TGF-β in the
tumor microenvironment predicts adverse outcomes in CRC patients, partly due to the
TGF-β-induced immune evasion mechanism that promotes T cell exclusion and blocks
the acquisition of the Th1 effector phenotype [28]. Consistently, obtained with unsuper-
vised hierarchical clustering based on the TGF-β signaling pathway, the two subtypes of
CRC in the present study exhibited significant differences in survival outcomes and the
expression, methylation modification, amplification, and deletion frequency of immune
checkpoint-related genes. Extracellular matrix (ECM) organization and ECM–receptor
interaction are considered the main indicators of the differences. ECM, more often named
TME, serves as a key determinant in tumor progression, metastasis, and prognosis [29].
After normal cells suffer damage, the development, invasion, and metastasis of cancerous
cells fail to occur without support from the ECM [30]. With the tumor progressing, the
normally organized and strictly controlled ECM is reorganized and becomes irregular in
density, composition, and structure, leading to dysregulated cellular functions and tumor
progression in CRC [31,32]. The interactions of cellular receptors and the ECM promote the
development of EMT in cancerous cells and play an important role in CRC progression and
metastasis [33,34]. In the process of ECM transformation, the activation of TGF-β signaling
is associated with upregulated ECM-related genes in cancer and promotes a transition
from fibroblasts to myofibroblasts or cancer-associated fibroblasts, leading to enhanced
ECM component accumulation and physical forces to stiffen the ECM [35,36]. Moreover,
TGF-β mediates tumor angiogenesis directly or indirectly and induces the formation of an
immunosuppressive tumor microenvironment [37]. Hence, through adequately exploring
the association of TGF-β signaling-related TME alterations and CRC progression, it is not
surprising that C1 and C2 subtypes exhibited significant differences in survival outcomes
and the status of immune checkpoint genes.

COMP was identified as the most crucial hub gene that represented the differences
between C1 and C2 subtypes with machine learning analysis. Moreover, COMP exhibited
a significant expression difference between the two subtypes and a relative classification
performance with AUC equaling 0.91, suggesting a significant correlation between the
levels of expression of COMP and TGF-β, which is consistent with previous studies [38,39].
Moreover, Zhong et al. reported that COMP promoted EMT and malignant progression
and was highly upregulated in tumors, especially in highly malignant CRCs [40]. Fur-
ther bioinformatic analysis revealed that the COMP expression level was significantly
positively correlated with NK cells, iDC, mast cells, CAFs, and macrophages, especially
M2 macrophages, in CRC. Macrophages are one of the most common non-cancerous
cells in the colorectal cancer microenvironment [41]. A high COMP level was related to
a high risk for prostate cancer patients with a higher fraction of regulatory T cells and
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M2 macrophages [42]. The polarization state of macrophages, rather than their overall
density, was associated with cancer-specific survival, with M1-like macrophages having
anti-tumor effects but M2-like macrophages performing pro-tumorigenic roles [43,44]. Liu
et al. reported that CAF-derived COMP contributed to EMT and cancer stemness in hep-
atocellular carcinoma [45]. Regulated by the TGF-β signaling pathway, CAFs promote
the exclusion of CD8+ T cells from the tumor mass, which leads to the failure of most
anti-cancer immunotherapy [46–48]. Based on the above statements and comprehensive
validations, we suggest that the novel TGF-β pathway clusters which were closed in
conjunction with COMP in our study are reliable and have potential for leading novel
immunological therapies and improving CRC patient prognosis.

In our study, GSEA suggested the functions of COMP differed in COAD and READ,
which may be related to the different pathological characteristics of the two tumors. A
high COMP expression level was related to endothelial migration in COAD, but in READ,
the high COMP expression level was correlated with mitochondrial electron transport,
including “MITOCHONDRIAL ELECTRON TRANSPORT NADH TO UBIQUINONE”,
“RESPIRATORY ELECTRON TRANSPORT CHAIN”, and “ATP SYNTHESIS COUPLED
ELECTRON TRANSPORT”. Due to the multifaceted functions involved in cell cycle pro-
gression and survival, mitochondria have received increasing attention during tumorigene-
sis, including in CRC [49]. Genes related to mitochondrial function have been associated
with tumorigenesis and tumor localization [50]. For example, ubiquinol-cytochrome c
reductase binding protein (UQCRB), the crucial regulator for mitochondrial complex III
stability and electron transport, was upregulated in CRC tissues, and high UQCRB expres-
sion exhibited in most READ samples (5/5 patients, 100%) [51]. During TGF-β-induced
EMT, ROS production was stimulated from mitochondria and NADPH oxidase 4 (NOX4),
leading to a more oxidative intracellular environment and, subsequently, a more permissive
state for EMT [52]. Thus, the COMP-related mitochondrial electron transport process might
participate in TGF-β-induced redox imbalance, which may partly explain the higher rates of
pulmonary metastasis in rectal cancer patients than colon cancer patients [53]. Our findings
could provide essential mechanism complements for the emerging precise treatment toward
COMP. Above all, COMP was a candidate molecule for distinguishing rectal cancer from
colon cancer, and regulating COMP expression may serve as a cancer-targeting strategy.

Several limitations in this research should be addressed. First, more databases of
patients from different regions should be included for more independent external valida-
tions. Second, the study only included the samples from the tumor core; however, there
are potential differences in the microenvironment features of distinct tumor spatial regions.
Therefore, more multicenter, prospective, and well-designed studies are needed.
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39. Janša, V.; Klančič, T.; Pušić, M.; Klein, M.; Vrtačnik Bokal, E.; Ban Frangež, H.; Rižner, T.L. Proteomic analysis of peritoneal fluid
identified COMP and TGFBI as new candidate biomarkers for endometriosis. Sci. Rep. 2021, 11, 20870. [CrossRef]

40. Zhong, W.; Hou, H.; Liu, T.; Su, S.; Xi, X.; Liao, Y.; Xie, R.; Jin, G.; Liu, X.; Zhu, L.; et al. Cartilage Oligomeric Matrix Protein
promotes epithelial-mesenchymal transition by interacting with Transgelin in Colorectal Cancer. Theranostics 2020, 10, 8790–8806.
[CrossRef]

41. Kather, J.N.; Halama, N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal
cancer. Br. J. Cancer 2019, 120, 871–882. [CrossRef]

42. Lv, D.; Wu, X.; Chen, X.; Yang, S.; Chen, W.; Wang, M.; Liu, Y.; Gu, D.; Zeng, G. A novel immune-related gene-based prognostic
signature to predict biochemical recurrence in patients with prostate cancer after radical prostatectomy. Cancer Immunol.
Immunother. 2021, 70, 3587–3602. [CrossRef]

43. Väyrynen, J.P.; Haruki, K.; Lau, M.C.; Väyrynen, S.A.; Zhong, R.; Dias Costa, A.; Borowsky, J.; Zhao, M.; Fujiyoshi, K.;
Arima, K.; et al. The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol.
Res. 2021, 9, 8–19. [CrossRef]

44. Guerriero, J.L. Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends. Mol. Med. 2018, 24, 472–489.
[CrossRef]

45. Sun, L.; Wang, Y.; Wang, L.; Yao, B.; Chen, T.; Li, Q.; Liu, Z.; Liu, R.; Niu, Y.; Song, T.; et al. Resolvin D1 prevents epithelial-
mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated
fibroblast-derived COMP. J. Exp. Clin. Cancer Res. 2019, 38, 170. [CrossRef]

46. Ford, K.; Hanley, C.J.; Mellone, M.; Szyndralewiez, C.; Heitz, F.; Wiesel, P.; Wood, O.; Machado, M.; Lopez, M.A.;
Ganesan, A.P.; et al. NOX4 Inhibition Potentiates Immunotherapy by Overcoming Cancer-Associated Fibroblast-Mediated CD8
T-cell Exclusion from Tumors. Cancer Res. 2020, 80, 1846–1860. [CrossRef]

47. Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.;
Cubas, R.; et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554,
544–548. [CrossRef]

http://doi.org/10.3389/fonc.2022.902974
http://doi.org/10.1186/s13046-020-01690-z
http://doi.org/10.1186/s12943-020-01235-0
http://doi.org/10.3389/fimmu.2022.860041
http://doi.org/10.1158/0008-5472.CAN-18-2019
http://doi.org/10.1038/nature25492
http://doi.org/10.1016/j.devcel.2019.03.026
http://doi.org/10.3390/ijms22179185
http://doi.org/10.1016/j.critrevonc.2022.103712
http://www.ncbi.nlm.nih.gov/pubmed/35588938
http://doi.org/10.1002/jcb.27681
http://www.ncbi.nlm.nih.gov/pubmed/30321449
http://doi.org/10.3389/fgene.2021.782699
http://www.ncbi.nlm.nih.gov/pubmed/34938324
http://doi.org/10.1126/scitranslmed.aaf5219
http://www.ncbi.nlm.nih.gov/pubmed/27733559
http://doi.org/10.1038/s41467-018-06654-8
http://doi.org/10.3390/biom10121666
http://doi.org/10.7150/thno.51383
http://doi.org/10.1016/j.jid.2016.02.802
http://doi.org/10.1038/s41598-021-00299-2
http://doi.org/10.7150/thno.44456
http://doi.org/10.1038/s41416-019-0441-6
http://doi.org/10.1007/s00262-021-02923-6
http://doi.org/10.1158/2326-6066.CIR-20-0527
http://doi.org/10.1016/j.molmed.2018.03.006
http://doi.org/10.1186/s13046-019-1163-6
http://doi.org/10.1158/0008-5472.CAN-19-3158
http://doi.org/10.1038/nature25501


Biomolecules 2022, 12, 1877 17 of 17

48. Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.;
Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571.
[CrossRef]

49. Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and Cancer. Cell 2016, 166, 555–566. [CrossRef]
50. Tan, J.L.; Li, F.; Yeo, J.Z.; Yong, K.J.; Bassal, M.A.; Ng, G.H.; Lee, M.Y.; Leong, C.Y.; Tan, H.K.; Wu, C.S.; et al. New High-

Throughput Screening Identifies Compounds That Reduce Viability Specifically in Liver Cancer Cells That Express High Levels
of SALL4 by Inhibiting Oxidative Phosphorylation. Gastroenterology 2019, 157, 1615–1629.e17. [CrossRef]

51. Kim, H.C.; Chang, J.; Lee, H.S.; Kwon, H.J. Mitochondrial UQCRB as a new molecular prognostic biomarker of human colorectal
cancer. Exp. Mol. Med. 2017, 49, e391. [CrossRef] [PubMed]

52. Hua, W.; Ten Dijke, P.; Kostidis, S.; Giera, M.; Hornsveld, M. TGFbeta-induced metabolic reprogramming during epithelial-to-
mesenchymal transition in cancer. Cell Mol. Life Sci. 2020, 77, 2103–2123. [CrossRef] [PubMed]

53. Pihl, E.; Hughes, E.S.; McDermott, F.T.; Johnson, W.R.; Katrivessis, H. Lung recurrence after curative surgery for colorectal cancer.
Dis. Colon. Rectum. 1987, 30, 417–419. [CrossRef] [PubMed]

http://doi.org/10.1038/nature13954
http://doi.org/10.1016/j.cell.2016.07.002
http://doi.org/10.1053/j.gastro.2019.08.022
http://doi.org/10.1038/emm.2017.152
http://www.ncbi.nlm.nih.gov/pubmed/29147009
http://doi.org/10.1007/s00018-019-03398-6
http://www.ncbi.nlm.nih.gov/pubmed/31822964
http://doi.org/10.1007/BF02556487
http://www.ncbi.nlm.nih.gov/pubmed/3595358

	Introduction 
	Materials and Methods 
	Data Retrieval and Preprocessing 
	Consensus Clustering and Weighted Gene Co-Expression Network Analysis 
	Functional and Pathway Enrichment Analysis 
	Feature Selection with Machine Learning Algorithms 
	Association between COMP and Clinical Features 
	Tumor Immune Estimation Resource 
	Analysis of COMP Expression Correlation with Immunological Characteristics of TME 
	Interaction Network and Enrichment Analysis 
	Statistical Analysis 

	Results 
	TGF- Pathways Stratify CRC into Two Subtypes 
	GO and KEGG Enrichment Analysis for Related Gene Modules 
	Machine Learning Methods Identified COMP as the Hub Gene 
	Association between COMP and CRC Clinical Features 
	COMP Expression Level and Immune Infiltration Analysis in Pan Cancers 
	Correlation between COMP and Immune Infiltration in CRC 
	Immunomodulatory Relevance of COMP 
	Enrichment Analysis of COMP-Related Genes 

	Discussion 
	References

