
Citation: Kalina, R.S.; Gladkikh, I.N.;

Klimovich, A.A.; Kozhevnikova, Y.V.;

Kvetkina, A.N.; Rogozhin, E.A.;

Koshelev, S.G.; Kozlov, S.A.;

Leychenko, E.V. First

Anti-Inflammatory Peptide AnmTX

Sco 9a-1 from the Swimming Sea

Anemone Stomphia coccinea.

Biomolecules 2022, 12, 1705. https://

doi.org/10.3390/biom12111705

Academic Editor: Anna Sparatore

Received: 1 November 2022

Accepted: 15 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Communication

First Anti-Inflammatory Peptide AnmTX Sco 9a-1 from the
Swimming Sea Anemone Stomphia coccinea
Rimma S. Kalina 1, Irina N. Gladkikh 1, Anna A. Klimovich 1, Yulia V. Kozhevnikova 1,
Aleksandra N. Kvetkina 1 , Eugene A. Rogozhin 2 , Sergey G. Koshelev 2, Sergey A. Kozlov 2

and Elena V. Leychenko 1,*

1 G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science,
159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia

2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences,
ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia

* Correspondence: leychenko@gmail.com

Abstract: A novel peptide AnmTX Sco 9a-1 with the β-hairpin fold was isolated from the swimming
sea anemone Stomphia coccinea (Actinostolidae family). The peptide consists of 28 amino acid residues,
including modified hydroxyproline residue, and its measured molecular mass is 2960 Da. The peptide
was not toxic on mice; however, it stimulated their exploratory motivation and active search behavior,
and demonstrated an anti-anxiety effect. AnmTX Sco 9a-1 at doses of 0.1 and 1 mg/kg reduced the
volume of edema during 24 h better than the nonsteroidal anti-inflammatory drug, Diclofenac, at
dose of 1 mg/kg in a model of acute local λ-carrageenan-induced inflammation. ELISA analysis of
the animal’s blood showed that peptide at a dose of 1 mg/kg reduced the content of tumor necrosis
factor-α (TNF-α), a pro-inflammatory mediator responsible in the edema development, up to the
level of TNF-α in the intact group. Besides, AnmTX Sco 9a-1 demonstrated a significant analgesic
effect on acute pain sensitivity in the carrageenan-induced thermal hyperalgesia model at doses of
0.1 and 1 mg/kg. Activity of AnmTX Sco 9a-1 was shown not to be associated with modulation of
nociceptive ASIC channels.

Keywords: sea anemone; beta-hairpin peptides; Edman sequencing; analgesic and anti-inflammatory
activity; TNF-α

1. Introduction

Inflammation is an essential protective response of the organism to a mechanical,
thermal, and chemical stimulus or to pathogenic agents. If the acute phase of inflam-
mation fails to remove the inflammatory stimulus (infectious agent or foreign material)
or injury-damaged cells and initiate healing, the inflammation becomes persistent and
then progresses to the chronic phase [1]. Since chronic inflammation has been reported to
contribute to the onset and development of numerous diseases, including arthritis, asthma,
atherosclerosis, autoimmune diseases, diabetes, cancer, and neurodegenerative diseases [2],
early anti-inflammatory therapy can prevent the development of chronic pain.

Inflammation is a complex reaction accompanied by undesirable manifestations
like redness, heat, edema, and pain. During inflammation, damaged tissues release in-
flammatory mediators such as bradykinin, serotonin, histamine, nerve growth factor,
prostaglandins, neuropeptides, and cytokines, as well as adenosine triphosphate (ATP)
and reactive oxygen species (ROS) to activate both immune and neuronal cells [3]. In
neurons, the inflammatory mediators can affect the expression and function of nociceptive
ion channels, such as sodium, chloride, calcium, potassium, transient receptor potential
and purinergic and acid-sensitive ion channels followed by a complete change in a total
excitability of peripheral nociceptive fibers, which leads to inflammatory pain [4,5]. In this
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regard, the search of new effective ion channels modulators can help in the development of
anti-inflammatory drugs.

One promising source of biologically active compounds is a venom of marine intestinal
animals—sea anemones (Cnidaria, Anthozoa, and Actiniaria), which produce a large
number of active peptides (toxins) affecting different cellular targets and described in the
following reviews [6–11]. The main biological functions of such toxins are defense against
natural predators, species competition, and weapons for hunting [7].

Today many molecules without toxicity to mammalians were purified from Actiniaria
that are able to reduce inflammation and hyperalgesia: for example, Kunitz-type peptides
from the sea anemone Heteractis magnifica (=Heteractis crispa), which can decrease histamine-
and carrageenan-induced inflammation in in vivo models [12–14] and reduce the content of
ROS or cytokines in macrophages treated by lipopolysaccharide [15–17] and neuronal cells
treated by neurotoxins [14,18,19]. In addition, Kunitz-type peptides are able to suppress
thermal and mechanical hypersensitivity in the in vivo models of carrageenan-induced
inflammation [14,16], monosodium iodoacetate-induced osteoarthritis and Complete Fre-
und’s Adjuvant (CFA)-induced rheumatoid monoarthritis [20].

Sea anemone Stomphia coccinea, a largely unexplored species without active peptides
isolated is the object of current research. There is only one publication describing identifica-
tion of actinoporin-like genes in five species of sea anemones including S. coccinea using a
combined bioinformatic and phylogenetic approach [21]. Here, we report a novel peptide of
S. coccinea, AnmTX Sco 9a-1, shared a so-called uncommon β-hairpin fold [22], expressing
anti-inflammatory and analgesic effects in a mouse model of carrageenan-induced paw
edema. Additionally, structurally related peptides isolated from sea anemones are known
as analgesic molecules; these are the toxin AnmTX Ms 9a-1 and AnmTX Ugr 9a-1. Ms 9a-1
is a positive modulator of the transient receptor potential ankyrin 1 (TRPA1) channels. It
decreases the nociceptive and inflammatory response to allyl isothiocyanate (the agonist of
TRPA1) and reverses CFA-induced inflammation and thermal hyperalgesia [23]. Ugr 9a-1
is an inhibitor of the acid-sensing ion channels (ASICs), and is known to reverse acid- and
CFA-induced inflammatory pain [22]. A novel peptide AnmTX Sco 9a-1 is set apart from
its known homologs by the following characteristics: more than 50% of sequence differ-
ence, the molecular mechanism of anti-inflammatory and antinociceptive action (different
from those of Ugr 9a-1; the involvement of TRP receptors is currently unknown), and an
anti-anxiety effect, which was a first-time find for the sea anemones’ β-hairpin toxins.

2. Materials and Methods

The sea anemones S. coccinea (Müller, 1776) (order Actiniaria, family Actinostolidae)
were collected in the Sea of Okhotsk on the insular shelf and slope of the Iturup Island
during cruises of the R/V Akademik Oparin no. 47 (2015). The species of sea anemone
was identified morphologically by Dr. E. Kostina (A.V. Zhirmunsky National Scientific
Center of Marine Biology FEB RAS) as well as phylogenetically on the basis of nuclear and
mitochondrial markers [24]. Sea anemones were frozen and kept at −20 ◦C.

2.1. Isolation of the Sea Anemone Peptide

Peptides were extracted from whole bodies of sea anemone S. coccinea with 96%
ethanol for 24 h. The extract was filtered and centrifuged for 15 min at 10,000 rpm (Eppen-
dorf, Hamburg, Germany). After ethanol evaporation, the supernatant was lyophilized
and stored at –20 ◦C. At first, hydrophobic chromatography on a polychrome-1 (pow-
dered Teflon, Biolar, Olaine, Latvia) column (4.5 cm × 7 cm) was performed using elution
with water and 40% aqueous ethanol at 5 mL/min flow rate and 5 mL fractions were
collected at 6 ◦C. The absorbance of eluent was monitored at 280 nm. Further hydropho-
bic peptides eluted by 40% ethanol were separated on reversed-phase Luna C18 column
(10 mm × 250 mm) (Phenomenex, Torrance, CA, USA) equilibrated with 10% acetonitrile
(Cryochrom, St-Petersburg, Russia) solution with 0.1% trifluoroacetic acid (TFA, PanReac
AppliChem, Barcelona, Spain) on an Agilent 1100 chromatograph (Agilent Technologies,
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Santa Clara, CA, USA) at 1.5 mL/min flow rate. Peptides elution was carried out using
combined gradient of acetonitrile concentration from 10 to 40% for 30 min, then 40% of
acetonitrile. The absorbance of eluent was monitored at 214 nm. The final separation of the
peptide was done on the C18-PFP column (4.6 mm × 250 mm) (Advanced Chromatography
Technologies Ltd., Aberdeen, United Kingdom) equilibrated with 10% acetonitrile solution
with 0.1% TFA according to the scheme: from 10 to 25% of acetonitrile for 15 min, then
25% of acetonitrile at 1 mL/min flow rate. The vacuum concentrator 5301 (Eppendorf,
Hamburg, Germany) was used for acetonitrile evaporation.

2.2. Mass Spectrometric Analysis

A mass spectrometric analysis was carried out using an Ultraflex TOF/TOF mass
spectrometer (Bruker Daltonik, Karlsruhe, Germany) and a quadrupole time-of-flight mass
spectrometer MaXis impact (Bruker Daltonik, Karlsruhe, Germany) equipped with MALDI
and ESI ionization sources, respectively. The sample was solved in an acetonitrile/water
solution (1:1, v/v) containing 0.1% TFA. For MALDI analysis, 10 mg/mL of sinapinic acid
as a matrix was used.

2.3. Reduction and Alkylation of Disulfide Bridges

Peptides were reduced and alkylated with 4-vinylpyridine (Sigma Aldrich, St. Louis,
MO, USA) as described in [25]. The reaction mixture was separated on a reversed-phase
Nucleosil C18 column (4.6 mm × 250 mm) (Sigma Aldrich, St. Louis, MO, USA) equilibrated
with 10% acetonitrile with 0.1% TFA. The elution was carried out using a gradient of
acetonitrile concentration (10% of acetonitrile for 30 min; from 10 to 40% for 60 min) at
0.5 mL/min flow rate.

2.4. Sequence Determination and Primary Structure Analysis

The primary structure of the modified peptide (approximately 800 pmoles) was de-
termined using an automated Edman degradation on a PPSQ-33A protein sequencer
(Shimadzu Corp., Kyoto, Japan) according to the manufacturer’s protocol. Amino acid
residues were identified as their phenylthiohydantion (PTH) derivatives by analytical
reversed-phase HPLC compared with retention times of standard PTH-amino acids (Wako
Pure Chemicals GmbH, Neuss, Germany). Three hundred pmoles of L-hydroxyproline
analytical grade (Serva, Heidelberg, Germany) were used as the standard. Data analysis
was carried out using the LabSolutions software version 1.10 (Shimadzu Corp., Kyoto,
Japan). The sequences’ similarity was analyzed using amino acid sequence databases and
the BLAST algorithm [26]. Multiple alignment of amino acid sequences was made using
Vector NTI software (Invitrogen, Eugene, OR, USA).

2.5. Hemolytic Activity Assay

Hemolytic activity was detected in a 0.7% solution of mouse erythrocytes in a medium
containing 0.9% NaCl, 1 mM KCl, and 10 mM glucose. Then, 0.01 mL of targeting fraction
was mixed with 0.09 mL of erythrocyte suspension, and the mixture was incubated for 1 h
at 37 ◦C. Hemoglobin level in the supernatant was spectrophotometrically measured at
λ = 540 nm after the preliminary rapid cooling of the reaction mixture and its centrifugation
to precipitate erythrocytes and their shadows. The optical density of the supernatant (0.8)
of the control specimens, where the lysis of erythrocytes was induced by the addition of
0.01 mL 1% solution of holothurin A1 from sea cucumber Eupentacta fraudatrix [27], was
assumed to be 100% hemolysis.

2.6. Electrophysiology

Rat ASIC1a and ASIC3 channels were expressed in X. laevis oocytes after injection
of 2.5–10 ng of cRNA, as previously described [28]. After injection, oocytes were kept for
2–3 days at 19 ◦C and then up to 5 days at the temperature of 15–16 ◦C in sterile ND96
medium (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2 and 5 mM HEPES, titrated



Biomolecules 2022, 12, 1705 4 of 16

to pH 7.4 with NaOH supplemented with 50 µg/mL of gentamycin). Two-electrode voltage
clamp recordings were performed using a GeneClamp 500 amplifier (Axon Instruments,
Burlingame, CA, USA). The data were filtered at 50 Hz and digitized at 1000 Hz with an
AD converter L780 (LCard, Moscow, Russia) using in-house software. The solutions were
applied to a cell chamber (volume 50 µL). The laminar flow of an external solution of ND96
(pH 7.4) was used at a rate of 1 mL/min. ASIC1a and ASIC3 were activated with a short
(1 s) application of a solution with a pH of 5.5 (10 mM MES) using a fast application system.
Peptides were applied 15 s before the activation pulse in a solution containing 0.1% BSA.

2.7. Animal Studies

The animal studies were performed under the European Commission’s legislation for
the protection of animals used for scientific purposes (Directives 86/609/EEC, 2010/63/EU),
the National Standard of the Russian Federation “Good Laboratory Practice” (GOST P
53434-2009, Moscow, Russia), and was approved by G.B. Elyakov Pacific Institute of Bioor-
ganic Chemistry (Far Eastern Branch, Russian Academy of Sciences) Committee on Ethics
of Laboratory Animal Handling 01/22, 4 August 2022 protocol. Adult female CD-1 line
white mice weighing 25 ± 2 g were kept at room temperature with a 12 h light/dark cycle
and with ad libitum access to food and water. There were seven or eight individuals in
each group. In total, 133 mice were used for the study.

2.7.1. Acute Toxicity

Lyophilized peptide fraction was dissolved in 0.9% sterile NaCl solution and admin-
istered once intravenously at doses of 15 mg/kg; the control group received saline (0.9%
NaCl, 10 mL/kg or 0.250 mL/mouse). Then, changes in basic physiological parameters,
such as motility, behavioral responses, and physical activity, were registered in each group
of animals over the course of 24 h.

2.7.2. Tail-Flick Test

The analgesic activity of peptides in the fraction was assessed in a tail-flick test.
Lyophilized peptide fraction was dissolved in 0.9% sterile NaCl solution (1 mg/mL) and
administered intramuscularly into the root of the tail, 100 µL/mouse. Control animals
received 0.9% sterile NaCl solution 100 µL/mouse. For the tail-flick test, one hour after
injection the mouse was restrained in a soft tissue pocket, and the distal half of the tail was
immersed into water heated up to 50 ◦C. The pain threshold was detected as latency time
to the tail withdrawal. Latency for tail-flick was measured with a 10-s cutoff time to avoid
animal injury.

2.7.3. Open Field Test

Neurotropic, irritating or depressive effects of the peptide on the central nervous
system, and effects on the motor and orienting-exploratory activity of animals were assessed
at the Open Field facility (OpenScience, Krasnogorsk, Russia). The installation is a round
gray PVC arena with a diameter of 63 cm, with a wall height of 32 cm. At the bottom of
the arena there are 12 holes with a diameter of 1 cm, allowing researchers to explore the
mink activity of rodents. The peptide was administered to animals intramuscularly (into
the quadriceps muscle of the left thigh) at doses of 0.01, 0.1, and 1 mg/kg 60 min before
testing. The control group was injected with an equivalent volume (0.05 mL) of sterile saline.
60 min after the injection, the animals were placed in the center of the illuminated arena
and the recording of the behavior and movement of the animal on video was immediately
started; the duration of the test was 3 min. Registration and analysis of video files to assess
the behavior, movement and actions of rodents were carried out using a camera with the
software “Minotaur”, (LLC “Neurobiotics”, Zelenograd, Russia). During testing, next
parameters were recorded: T (act)—activity time; T (pass)—passivity time; T (c.z.)—time
spent on the central zone, s; T (b.z.)—stay on the border zone, s; V, m/s—average travel
speed; V(act), m/s—average movement speed during activity; S, m—distance traveled; S
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(act), m—distance traveled during activity; N (c.z.)—number of visits of central zone; N
(s.p.)—number of visits of side platform; N (racks)—vertical activity, the number of racks;
N (peeps)—holes explored, the number of peeps into minks; N (def)—number of bowel
movements; T (e.c.z.)—time of exit from the central zone, s.

2.7.4. Carrageenan-Induced Paw Edema

The anti-inflammatory activity of the peptides was assessed in a model of the
carrageenan-induced paw edema. A peptide sample was dissolved in sterile saline and
administered intramuscularly at doses of 0.01, 0.1, and 1 mg/kg 60 min before induction of
inflammation. Control animals received an equivalent volume of sterile saline. Diclofenac
(Hemofarm A.D., Vršac, Serbia), a commercial drug of the NSAID group, intended for the
treatment of pain of various origins, including those caused by inflammatory processes at
a dose of 1 mg/kg, was used as a positive control. Each mouse received 20 µL of a 1.5%
solution of λ-carrageenan in the hind paw pad after 60 min. Then, the resulting edema was
measured at several time points (1, 2, 4, and 24 h) using a plethysmometer (Ugo Basile,
Gemonio (VA), Italy). The volume of the resulting inflammatory paw edema was calculated
using the following formula:

Volume Growth Index (%) = [(Vc − Vi)/Vi] × 100, (1)

where Vc is the volume of the paw after the introduction of carrageenan, Vi is the volume
of the paw before the introduction of carrageenan. The anti-inflammatory threshold was
detected as a decrease of paw volume and Volume Growth Index (%) throughout the entire
observation period.

2.7.5. Animal Euthanasia Procedure and Blood Sampling

Animals were terminally anaesthetized with sodium pentobarbital (40 mg per mouse
i.p., Euthatal, Merial Animal Health, Essex, UK) 24 h after carrageenan injection. Then, the
thoracic cavity was opened and blood was collected in tubes with the ethylenediaminete-
traacetic acid (EDTA, Sigma Aldrich, St. Louis, MO, USA) directly from the right atrium of
the heart. The whole blood was clotted for two hours at room temperature and then was
centrifuged at 1.0 × 103× g for 20 min to remove cells; the blood serum was then aliquoted
and stored at −20 ◦C.

2.7.6. ELISA

The blood serum samples were analyzed for TNF-α in the enzyme-linked immunosor-
bent assay (ELISA) using a diagnostic kit according to the manufacturer’s protocol (Cloud-
Clone Corp., CCC, Wuhan, China).

Blood serum samples and standard solution (100 µL) were added to the 96-well mi-
croplate pre-coated with anti-mouse TNF-α antibody and incubated for 1 h at 37 ◦C. After
incubation the liquid was removed, 100 µL of a biotin-conjugated anti-TNF-α antibodies
were added and incubated for 1 h at 37 ◦C. After incubation wells were washed for 3 times
with 300 µL 1% wash buffer and all liquid was removed. Then, 100 µL of streptavidin-HRP
solution was added and incubated for 30 min at 37 ◦C. After incubation the wash was re-
peated 5 times as previously described, and 100 µL of TMB substrate (tetramethylbenzidine
with H2O2) was added and incubated for 10 min in the dark at room temperature until the
emergence of blue color. Then, the 50 µL of stop solution (0.5 M H2SO4) was added and the
absorbance at 450 nm was measured with the microplate reader BioMark xMark (Bio-Rad
Laboratories, Inc., Hercules, CA, USA). Calculation of the TNF-α level was carried out
using the calibration curve that was plotted as the absorbance of each standard solution (Y)
vs. the respective concentration of the standard solution (X).
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2.7.7. Thermal Hyperalgesia

Thermal hyperalgesia was tested with a Hot-Plate Analgesia Meter (IITC Life Science
Inc., Woodland Hills, CA, USA) set at 52 ◦C. The animals were placed individually on the
preheated hot-plate surface and exposed to heat until nociceptive reaction was registered.
The pain threshold was detected as latency to hind paw withdrawal or licking. The maxi-
mum residence time of the animal on the plate did not exceed 30 s. Measurements were
carried out 1 h after the injection of λ-carrageenan.

2.7.8. Statistic Calculation

All data are expressed as mean ± S.D. Student’s t-test was performed to determine
statistical significance.

3. Results and Discussion
3.1. Peptides Isolation

The chromatographic separation of molecules from the ethanol extract of S. coccinea
was carried out in three stages. Supernatant after extraction (see material and methods
for details) was separated at more hydrophilic compounds eluted from polychrome-1
column by water (Figure 1a, fraction 1) and hydrophobic ones eluted by 40% aqueous
ethanol (Figure 1a, fraction 2). After the intramuscular injection of hydrophobic fraction
2 (4 mg/kg) in the root of mice tail we detected a considerably increase of the tail-flick
latency when compared with the saline-treated control (data not shown). The basal reaction
time of animals was in 2–4-s range. The stable analgesic effect developed within 1 h after
administration. No toxicity to animals was indicated when the fraction 2 was injected
intravenously at a dose of 15 mg/kg. So at least one active peptide non-toxic to mammalians
should be presented in the extract obtained at first chromatographic stage.

The hydrophilic fraction 1 contained compounds with a hemolytic activity and was
rejected for subsequent experiments.

To isolate compounds with the analgesic activity second stage on RP-HPLC was used
and the main four fractions were obtained (Figure 1b). According to MALDI-MS analysis
fractions 1, 2, and 4 were mixtures of peptides with a molecular weight in 1.3–11.5 kDa
range. On the contrary, fraction 3 (Figure 1b) contained mainly peptides with a molecular
weight of about 2930–3010 Da. The major compound was finally purified from fraction
3 (Figure 2a) on the C18-PFP column and its average molecular weight, 2960.20 Da, was
measured by ESI MS (Figure 2b). The 350 µg of peptide was obtained as the result of
separation of 4.5 g of lyophilized ethanol extract.

Figure 1. Cont.
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Figure 1. Isolation of S. coccinea bioactive compounds. (a) Hydrophobic chromatography of ethanol
extract on polychrome-1 column (4.5 cm × 7 cm). 1—Hydrophilic fraction eluted with water;
2—hydrophobic fraction eluted with 40% aqueous ethanol. (b) RP-HPLC of fraction 2, obtained
after the hydrophobic chromatography, on a Luna C18 (10 mm × 250 mm) column in a gradient of
acetonitrile with 0.1% TFA. The numbers and solid lines under the peaks indicate collected fractions.
Fractions from which the peptide was isolated are gray colored.

Figure 2. (a) RP-HPLC of fraction 3, obtained after the first step RP-HPLC, on a C18-PFP (10 mm ×
250 mm) column in a gradient of acetonitrile with 0.1% TFA. (b) Purity check on RP-HPLC C18-PFP
(10 mm × 250 mm) column. ESI MS measure of average molecular weight of peptide is shown in
insert. Fractions from which the peptide was isolated are gray colored.

3.2. Peptide Sequence Determination

It is common for sea anemone toxins to have a structure stabilized by disulfide bonds.
So a reduction of S-S bonds by dithiothreitol following alkylation with 4-vinylpyridine was
performed. The modified peptide had molecular weight growth on 424 Da; it confirmed
that there are two disulfide bonds in the native molecule. Complete amino acid sequence
of the peptide was determined by an automatic Edman degradation. The peptide consists
of 28 amino acid residues, and has modified residue – hydroxyproline (O) in position 6
(Figure 3 and Figure S1). This approach to determine hydroxyproline residue by Edman
sequencing was previously applied to plant antimicrobial peptides [29]. The measured
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molecular weight of the peptide accurately correlated with theoretical one calculated from
the sequence.

The swimming sea anemone S. coccinea is a largely unexplored species; there are
several sequences similar to its toxins in the databases, but they all belong to the group
of actinoporins [21]. According to the hemolytic activity of fraction 1 from polychrome-1
(Figure 1a), actinoporins were contained in this fraction. The highest homology of the
peptide was observed with peptides from other structural group sharing a spatial fold
stabilized by two disulphide bridges, with three classical beta turns and twisted β-hairpin
unconnected by disulfide bridges, and called β-hairpin [22]. Therefore, the new peptide was
named AnmTX Sco 9a-1 according the convenient nomenclature [30]. Such peptides in the
sea anemone genome have been established to be encoded by a precursor protein containing
several homologous peptides [23,30]. According to MS data, fraction 3 (Figure 2a) may
contain such homologous peptides. However, apart from the major peptide AnmTX Sco
9a-1, it has not yet been possible to isolate any other individual peptide, but we believe to
find them during further genomic/transcriptomic studies of this species.

Figure 3. Multiple sequence alignment of the structural group 9a toxins: AnmTX Sco 9a-1
(C0HM64) S. coccinea; Am-1 (P69929) from Antheopsis maculata [31]; hautx2 (A0A0P0UTI6) and hautx3
(A0A0P0UTQ7) from Heteractis aurora [32]; Pi-actitoxin-Ugr1a, U-actitoxin-Ugr1b, and U-actitoxin-
Ugr1c (R4ZCU1) from Urticina grebelnyi [22]; U-actitoxin-Avd13a and U-actitoxin-Avd13b (P0DMZ8)
from Anemonia viridis [33]; Bcg-III-23.41 (P86467) from Bunodosoma cangicum [34]; AnmTx-Ms-9a-1,
AnmTx-Ms-9a-2 (A0A1R3S3A8), and AnmTx-Ms-9a-3 from Metridium senile [23]; SHTX-1/SHTX-2
(P0C7W7) from Stichodactyla haddoni [35]; and U-homostoxin-Hdu1a (C0HJB4) from Stichodactyla
duerdeni [36]. Modified residue–hydroxyproline shown as O in sequences. Identical and conserved
amino acid residues are shown on a dark and light gray background, respectively. Vector NTI
Advance v. 11.0 (Invitrogen, Carlsbad, CA, USA) [37] was used for multiple sequence alignment.

According to the BLAST result, AnmTX Sco 9a-1 was similar by sequence to 14 peptides
from eight sea anemone species of three families: Urticina grebelnyi, Antheopsis maculata,
Anemonia viridis, and Bunodosoma cangicum (Actiniidae); Heteractis aurora, Stichodactyla
haddoni, and Stichodactyla duerdeni (Stichodactylidae); and Metridium senile (Metridiidae)
(Figure 3), while S. coccinea itself belongs to the Actinostolidae family.

The sequence identity varied from 19% to U-homostoxin-Hdu1a from S. duerdeni up to
59% to Am-1 toxin from A. maculata. As well, post-translational modification in position 6
for AnmTX Sco 9a-1 was not exclusive and hydroxyproline residue was found in a similar
position for peptides Am-1 and SHTX-1/SHTX-2 (Figure 3).

Cellular targets have been identified only for several homologous peptides of AnmTX
Sco 9a-1. The NaV channels are possible cellular targets of Am-1, since it was weakly lethal
to crabs with LD50 values 830 mg/kg [31]. KV channels were proposed to be affected by
Bcg-III-23.41, which increases amplitude and duration of crab leg nerve compound action
potential [34] and by SHTX-1/SHTX-2, which inhibits the binding of 125I-alpha-dendrotoxin
to synaptosomal membranes (IC50 = 270 nM) [35]. Two other homologous peptides, AnmTX
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Ms 9a-1 and AnmTX Ugr 9a-1, producing analgesic and anti-inflammatory effects in in vivo
models, are a positive modulator of the TRPA1 and an inhibitor of the ASIC3 channels,
respectively [23,38].

3.3. Animal Expepriments
3.3.1. Anti-Inflammatory Activity of AnmTX Sco 9a-1

The anti-inflammatory activity of the peptide was studied using a model of acute local
inflammation induced by carrageenan which causes extravasation of neutrophils, synthesis
of pro-inflammatory cytokines, oxidative stress, and activation of apoptosis of various
epithelial cells, and leads to the formation of edema [39]. This method is widely used to
evaluate the anti-inflammatory effect of potential immunomodulatory and analgesic drugs.

The peptide demonstrated a stable anti-inflammatory effect at doses of 1 and 0.1 mg/kg
manifested in the paw volume decrease throughout the entire observation period (Figure 4a).
At the same time, at a dose of 1 mg/kg, the peptide was superior by efficiency to the
commercial drug Diclofenac at the same dose at longer measure points. As shown on
Figure 4b the growth rate of inflamed paw volume at 1 h was decreased by Diclofenac more
effectively, but the peptide at the dose of 1 mg/kg caught up to Diclofenac’s efficacy by 2 h
and then was more effective at 4 and 24 h, demonstrating the volume growth reduction
in two times. In animals treated with the peptide at dose of 0.01 mg/kg, a significant
decrease in the paw volume and growth index was registered only 24 h after the induction
of inflammation. Therefore, optimal dose of the peptides as anti-inflammatory agent was
determined as 0.1 mg/kg for mice.

In order to assess the effect of the peptide on the level of inflammatory cytokines, in
particular TNF-α, blood was taken from the mice of the groups treated with AnmTX Sco
9a-1 at doses of 0.1 and 1 mg/kg after 24 h. In response to the carrageenan administration,
the TNF-α production in control group animals increased dramatically to more than three
times the level in the intact group of animals. At the same time, animals treated by 1 mg/kg
dose of Diclofenac or AnmTX Sco 9a-1 retained TNF-α level in blood same to intact animals
(Figure 5).

Figure 4. Cont.
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Figure 4. Time dependent effect of AnmTX Sco 9a-1 on (a) paw volume and (b) Volume Growth
Index (%) in the carrageenan-induced inflammation model. A saline buffer as a negative control
and Diclofenac at a dose of 1 mg/kg administered intramuscularly as a positive control were used.
Results are presented as mean ± SD (n = 7–8). The significance was calculated by the Student’s
t-criterion to the saline group and was marked as * p < 0.05, ** p < 0.01, and *** p < 0.001.

Figure 5. The level of TNF-α in the blood serum of experimental animals. Blood samples were
obtained 24 h after induction of inflammation by carrageenan. Results are presented as mean ± SD
(n = 7–8). The significance of differences was estimated by the Student’s t-criterion to the saline group
(*) and to the intact serum (#). Significant differences are presented as * p < 0.05, *** p < 0.001, and
### p ≤ 0.001.

3.3.2. Effect of Peptide on Thermal Hyperalgesia

The effect of the peptide on acute pain sensitivity in the carrageenan-induced thermal
hyperalgesia model was assessed using a hot-plate test after one hour of carrageenan
administration. AnmTX Sco 9a-1 demonstrated a significant analgesic effect at doses of
0.1 and 1 mg/kg by reducing the latent time of inflamed paw licking vs. control group
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(Figure 6). In this model the peptide was more effective than Diclofenac. Summarizing the
results above, we concluded that the peptide has both anti-inflammatory and analgesic
activities, is not inferior to the currently used NSAIDs like Diclofenac and has prospects for
development as drug seeds.

Figure 6. Analgesic effect of AnmTX Sco 9a-1 in the carrageenan-induced thermal hyperalgesia model.
Saline buffer as a negative control and Diclofenac at a dose of 1 mg/kg administered intramuscularly
as a positive control were used. Results are presented as mean ± SD (n = 7–8). The significance of
differences was estimated by the Student’s t-criterion to the saline group. The significance marked as
* p < 0.05 and ** p < 0.01.

3.3.3. Effect of the AnmTX Sco 9a-1 on Mice Central Nervous System

To exclude the possible neurotropic impact to registered anti-inflammatory activity
of the peptide, its effect on the motor and orienting-exploratory activity was evaluated in
the Open Field test on mice. Three doses identical to those used above were investigated
and no depressant effect on CNS was detected (Table S1). Locomotion activity has been
slightly lowered for 1 mg/kg dose-treated mice (Figure 7a). Additionally, mice treated with
AnmTX Sco 9a-1 at all doses applied spent a longer time in the central zone (about 2 times
increase (Figure 7b)), and the time of exit from the central zone increased at 2–3 times as
well (Table S1). Two higher doses of the peptide increased the number of vertical stances
and peeps into the holes over the control animals significantly (Figure 7c,d). Therefore,
the open field test indicated a decrease in the level of anxiety of animals and promotion of
animal research behavioral indicators without neurotropic symptoms.

Both anti-inflammation and anti-hyperalgesic effects may be a result of direct action of
AnmTX Sco 9a-1 on some nociceptive ion channels. ASICs have been known to participate
in inflammation and pain sensation [5], as well as being involved in the formation of a
sense of fear and learning [40]. Moreover, ASIC3 channels are one of the molecular targets
of Diclofenac [41] that have a similar effect to the peptide, and peptide Pi-actitoxin-Ugr1a
shared 41% homology by structure (Figure 3) and also is the inhibitor of ASIC3 [22]. There-
fore, the effect of AnmTX Sco 9a-1 was tested on oocytes with a heterologous expression of
two main types ASIC1a and ASIC3 channels.
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Figure 7. Effect of AnmTX Sco 9a-1 at the doses of 0.01–1 mg/kg on normal mouse behavior in the
open field test: time of mouse activity or passivity (a), time spent in the central or border zone (b),
the number of vertical stances (c) and peeps into the holes (d). Control animals received a similar
volume of sterile saline. Results are presented as mean ± SD (n = 7–8). The significance of differences
was estimated by the Student’s t-criterion to the saline group. Significant differences are presented as
* p < 0.05, ** p < 0.01, and *** p < 0.001.

3.4. Electrophysiological Effect of AnmTX Sco 9a-1 on ASICs

The ability of AnmTX Sco 9a-1 to modulate ASICs was assessed on homomeric rat
(r) ASIC1a and ASIC3 channels expressed in X. laevis oocytes. An inward current was
induced by a rapid pH drop from 7.4 to 5.5, and the peptide was applied 15 s before the
acidic pulse. Unfortunately, the peptide demonstrated no effect on rASIC1a or rASIC3
currents (Figure 8). Therefore, its biological activity is probably associated with modulating
of another ion channel or receptors of nociception. Considering the limitation of the native
peptide amount, the searching for the AnmTX Sco 9a-1 target will be continued after the
development of its synthesis or recombinant peptide production technique.
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Figure 8. Acid-induced currents through rASIC1a (a) and rASIC3 (b) expressed in X. laevis oocytes
were evoked by pH drop from 7.4 to 5.5.

4. Conclusions

For the first time, from the swimming sea anemone S. coccinea (Actinostolidae family),
a biologically active peptide named AnmTX Sco 9a-1 has been isolated and characterized.
It is not toxic. It stimulates exploratory motivation and active search behavior, and has an
anti-anxiety effect on experimental animals. AnmTX Sco 9a-1 is able to reduce carrageenan-
induced inflammation and hyperalgesia in vivo similar to the currently used NSAIDs
like Diclofenac. We believe this is not the only anti-inflammatory peptide with β-hairpin
fold in this sea anemone. The presence of similar molecular masses in the MS spectra
testifies in favor of the existence of a combinatorial library encoding such peptides. Further
experiments will be aimed at proving this assumption and search for an AnmTX Sco 9a-1
cellular target.

Supplementary Materials: https://www.mdpi.com/article/10.3390/biom12111705/s1, Figure S1:
Identification of the hydroxyproline residue by Edman automated degradation: (a) chromatographic
separation of a PTH-amino acid derivatives (standard mixture, Wako Pure Chemicals) with overlap-
ping PTH-L-hydroxyproline analytical standard; (b) chromatographic separation of the PTH-amino
acid derivatives generated on the 6th cycle of the AnmTX Sco 9a-1 analysis. A peak corresponding
to the PTH-hydroxyproline is marked by lilac vertical stripe; Table S1: Parameters of motor and
orienting–exploratory activity of mice treated by AnmTX Sco 9a-1 in Open Field test. Where T
(act)—activity time; T (pass)—passivity time; T (c.z.)—time spent on the central zone, s; T (b.z.)—stay
on the border zone, s; V, m/s—average travel speed; V(act), m/s—average movement speed during
activity; S, m—distance traveled; S (act), m—distance traveled during activity; N (c.z.)—number of
visits of central zone; N (s.p.)—number of visits of side platform; N (racks)—vertical activity, the

https://www.mdpi.com/article/10.3390/biom12111705/s1
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number of racks; N (peeps)—holes explored, the number of peeps into minks; N (def)—number
of bowel movements; T (e.c.z.)—time of exit from the central zone, s. Results are presented as
mean ± SD (n = 7–8). The significance of differences was estimated by the Student’s t-criterion to the
saline group. Significant differences are presented as * p < 0.05, ** p < 0.01, and *** p < 0.001.
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