
Supplementary Text 
 
Section S1: Comparison of the Li et al model to PSMSR 

We have compared the model by Li et al.1 to the PSMSR by fitting both the 
models to the cell growth data. The mathematical form of Li et al.’s model is as follows: 
 =  𝑟 − 𝑆 −  𝑇 𝑆        (1) 

 =  𝑟 − 𝑇 −  𝑆 𝑇        (2) 

, where S,T are sensitive and tolerant cell populations, rS, rT are sensitive and tolerant 
cell growth rates and KS, KT are the carrying capacities. Both rS and rT are linear 
functions of the sensitive cell frequency: 
 𝑟 (𝑥) =  𝛾 + 𝛾 𝑥         (3) 𝑟 (𝑥) =  𝛿 + 𝛿 𝑥         (4) 
, where 𝑥 = , and 𝐾 , 𝐾 , 𝛾 , 𝛾 , 𝛿 , 𝛿  are constant parameters, to be determined by 
fitting to the experimental data.  

Due to the relatively simplistic form of equations 1-2, nonlinear optimization 
(using the method L-BFGS-B 2) rather than Generic Algorithm was used for the fitting. 
The initial guesses for 𝛾 , 𝛾 , 𝛿 , 𝛿  were obtained as follows. First, the initial growth rates 
were estimated by fitting an exponential model to the initial phase of the growth trends 
(t = 0-2 days). The growth rates obtained from the various S:T ratios were then fitted to a 
linear model to obtain 𝛾 , 𝛾 , 𝛿 , 𝛿 . These values were used as initial guesses in the 
nonlinear optimization. The initial guesses for the carrying capacities were set to the 
maximum values of the sensitive and tolerant cell populations among all the experiments. 
As with every other model in this manuscript, the fitting was performed separately for 
the ‘monitored immediately’ and ‘monitored, three weeks’ experiments. Convergence 
was achieved when the error tolerance became less than 10-8. The fitted parameter values 
are given in Supplementary Table S7. Comparison between the PSMSR and the Li et al.’s 
model suggests that the two models fit the data with similar accuracy only for the 
sensitive cell populations where the cells were monitored immediately after mixing 
(Supplementary Figure S5A & I). For all other cases, the PSMSR gives lower fitting error 
compared to Li et al.’s model. Especially for the sensitive cell data from the ‘monitored, 
three weeks’ experiments, Li et al.’s model shows significant deviation from the observed 
trends (Supplementary Figure S5B), as compared to PSMSR (Supplementary Figure 
S5F).  

 
  



Section S2: Details on PSMSR 
Significance of stress in affecting the cellular growth 

The most striking premise in the PSMSR model is the involvement of stress in 
mediating phenotype switching between the sensitive and the tolerant cells, which is 
supported by our recent work3. We used fluorescence-activated cell sorting (FACS) to 
sort the tolerant cells based on expression of integrin beta 4 (ITGB4), a biomarker of 
cisplatin resistance. After 4 days, low ITGB4-expressing tolerant cells (cisplatin-sensitive 
phenotype) stochastically switched to express higher ITGB4 (cisplatin-tolerant 
phenotype). Further, this switching to the tolerant phenotype was enhanced by the 
administration of cisplatin, thus indicating the relevance of stress-mediated phenotype 
switching. In PSMSR, we assume that at any time, a fraction of one cellular phenotype 
(e.g. sensitive) transforms to another phenotype (e.g. tolerant), and that the equilibrium 
between these two phenotypes shifts with environmental stress. Although in our work, 
we do not directly measure stress level, influence of environmental stress on cellular 
behavior is well documented in the cancer literature.4,5 Briefly, we envision stress as a 
collection of factors in the cellular microenvironment that inhibits growth and increases 
cell death (schematic in Figure 4A). Such factors can include metabolic byproducts, 
growth inhibitory proteins, free radicals, lack of oxygen and nutrients, all of which 
collectively impact cell survival. 

Explanation of PSMSR parameters 

In the PSMSR model equations 1 and 2, Ka and Kb are the rate of switching from 
sensitive to the tolerant phenotype and vice versa.6 We assume Ka to be linearly 
dependent on stress and Kb to be fixed. This assumption is in agreement with the fact that 
the switching from the sensitive to the tolerant phenotype is mediated through 
upregulation of transcription through histone deacetylation and is more amenable to 
modulation via stress or HDAC inhibitors such as suberoylanilide hydroxamic acid 
(SAHA) that interfere with chromatin remodeling.7 However, the reverse switching is not 
known to be affected by such factors.  

The relationships between K, KGS, KGT and stress are modeled as linear functions 
below a threshold stress CtStr, and as piecewise continuous asymptotic functions beyond 
this threshold. 
 

 𝐾(𝐶 ) =  𝐾 (1 + 𝑎𝐶 ),                                                        𝐶 ≤  𝐶𝐾 (1 + 𝑎𝐶 ) + (𝐾 − 𝐾 ) − , 𝐶 >  𝐶                 (5) 

  
Here, 𝐶 =  − 1 , 𝑎 =  𝐶                                                                        (6) 

 



 𝐾 (𝐶 ) = 𝐾 (1 − 𝑏𝐶 ),                      𝐶 ≤  𝐶𝐾 1 − 2𝑏𝐶 + 𝑏 , 𝐶 >  𝐶                                             (7)  

 

 𝐾 (𝐶 ) = 𝐾 (1 − 𝑔𝐶 ),                      𝐶 ≤  𝐶𝐾 1 − 2𝑔𝐶 + 𝑔 , 𝐶 >  𝐶                               (8)  

where 𝐾  and 𝐾  are growth rates in absence of stress and b, g represent the 
sensitivity of the growth rates to stress variation. We assume that the equilibrium 
constant for phenotype switching increases linearly with stress, becoming asymptotic at 
high stress, approaching a plateau at Kmax. To mimic the asymptotic behavior, the trend 
switches from linear to sigmoidal beyond a threshold stress given by 𝐶 . The value of 𝐶  is chosen to ensure continuity in the first derivative of equation 5. The choice of a 
linear function was to establish a monotonic relation between stress and phenotypic 
switching, and is motivated by experimental observations that stress leads to up 
regulation of phenotypic switching in cancer cells 8. However, experimental data to 
identify an exact quantitative relationship between stress and phenotypic switching is 
not yet available. Hence, we assumed a simple linear relation between the two. Notably, 
the cellular growth model can be fitted to the experimental data using a different 
monotonic relation such as a sigmoidal function (Supplementary text, Section S3). 
However, this would increase the number of parameters and make the fitting more 
challenging without providing any additional insights and was therefore not considered.  
Likewise, the cellular growth rates KGS and KGT decrease linearly with stress, before 
becoming asymptotic at high stress, reaching the values 𝐾 (1 − 2𝑏𝐶 ) and 𝐾 (1 −2𝑔𝐶 ) respectively. 

Significance of ‘AUC’ 

In cancer pharmacology, AUC is a widely used metric in many different 
applications, especially in estimating drug toxicity among different doses and regimens. 
However,  AUC-dependent death rate has also been used in kinetic models describing 
cancer cell populations over time 9. It is noteworthy that the current model does not take 
into account some of the kinetic effects associated with AUC-based models, such as 
diffusion of drug in to and out of the cells and decay of drug over time. Moreover, 
cisplatin can produce bystander effect, where the growth of nearby healthy cells can be 
affected by soluble factors released by stressed cells10. We have not incorporated these 
effects in the current model, which focuses on understanding group behavior, rather than 
precise quantitative effect of cisplatin. The simpler AUC based model that we have used 
agreed reasonably well with the experimental trends. 

Details of intermittent therapy simulations 



The intermittent therapy simulations were performed using the PSMSR model 
(equations 5-6, main text), following the experimental drug regimens as explained in 
Supplementary Figure S4. The parameters which were used correspond to the ones 
obtained by fitting the PSMSR model to the co-culture growth data in presence of 
cisplatin, where the cells were mixed and counted after 12 hours. The cell passage was 
implemented by resetting the stress to zero and reducing the cell population accordingly. 
During the intermittent phase where cisplatin is withdrawn, the AUC-dependent effect 
is still maintained based on the initial exposure of the cells to cisplatin. A more 
sophisticated model would have been one where the AUC effect is slowly decayed over 
time when cisplatin is removed. However, in our case, the memory effect of cisplatin on 
cellular death is maintained unchanged throughout the remainder of the experiment. In 
intermittent therapy, the cisplatin exposure to the cells was for a limited duration (two 
days), hence its effect is not as drastic as in continuous therapy. Nevertheless, this is a 
potential limitation of the model. 

Fitting of the phenotype-switch model to experimental growth data 

According to the original premise of PSMSR, in each co-culture, a fraction of the 
GFP tagged sensitive population will exist as phenotypically tolerant. Likewise, a fraction 
of the RFP tagged tolerant population will be phenotypically sensitive. Our growth 
recording setup cannot distinguish between these subpopulations, which can only 
measure growth based on whether the cells are green or red fluorescent. Therefore, for 
fitting purpose, we model the GFP tagged cell population as PGFP = SGFP + TGFP (where PGFP 
is the total GFP tagged cell population, SGFP represents the GFP tagged phenotypically 
sensitive subpopulation and so on). Likewise, the RFP tagged cell population can be 
expressed as PRFP = SRFP + TRFP. These four subpopulations are modeled using the PSMSR 
equations 1, 2 and 4, leading to five coupled ordinary differential equations (two for the 
sensitive subpopulations, two for tolerant subpopulations and one for stress). These 
ODEs are solved numerically to obtain the cellular subpopulations as function of time. 
For initial conditions, TGFP is set to 10% of PGFP and SRFP is set to 10% of PRFP, based on our 
earlier work 3. The fitting of the equations to the experimental growth data starts with a 
set of initial guesses for the parameters, as discussed in the next paragraph. At each 
iteration of the parameter optimization, the ODEs are solved numerically using the 
current parameter values and the resulting PGFP and PRFP for all time points are compared 
to the corresponding experimental values to calculate the root mean square error (RMSE), 
which is used as the objective function for the optimization. The numerical solution of 
the ODEs was obtained using the LSODA method 11 as implemented in the R package 
deSolve 11,12. 

The fitting was performed using the global optimization method, Genetic 
Algorithm (GA) 13, as implemented in the package GA in R.14 First, a local optimization 



using the Nelder-Mead nonlinear optimization was performed for each growth trend 
individually. The fitted parameters that showed reasonable agreement with experiments 
were used to estimate the range of variation for each parameter and were provided as 
lower and upper bounds to the GA routine. In GA, the population size was set to 50 and 
the maximum number of iterations was 5000. All other settings were kept at their default 
values. The fitting started with an initial guess for each parameter that was obtained by 
averaging the corresponding parameter values obtained from the Nelder-Mead 
optimization. The optimization was considered to have converged once the best solution 
did not change for more than 100 steps. To test the robustness of the GA optimization, 
we performed the optimization 100 times and used the resulting spread in parameter 
values to estimate the error and 95% confidence limits of the derived parameters 
according to the student’s t distribution. All parameter values were associated with 
reasonably low error, as seen from the 95% confidence limits in Table 1, suggesting that 
the optimization was robust. The fitting was performed separately using the growth data 
collected from the sensitive and the tolerant cells cultured as monotypic or heterotypic 
co-cultures, leading to separate parameter sets for each of these experiments. Notably, 
we fitted these experimental data separately because the co-culture of sensitive and 
tolerant cells appeared to alter their phenotypic behavior. Therefore, the monotypic and 
the heterotypic experiments must be treated as separate systems with their own model 
parameters. By comparing the model parameters across the different cultures (e,g, 
monotypic vs. heterotypic or monitored immediately after mixing vs. mixed for three 
weeks), we can understand which cellular parameters were significantly affected due to 
the change of culture conditions. The fitting error was estimated as the mean of the 
absolute deviations between the observed and the fitted trends, normalized by the cell 
population range.  

Given the complexity of the PSMSR model and the relatively large number of 
model parameters, we wanted to assess whether the functional form of the model is 
uniquely identifiable from our experimental data. This question was addressed by 
calculating the log-likelihood profiles for the PSMSR parameters near their optimal 
values, the details of which can be found in the Supplementary text, Section S4 and 
Supplementary Figures 8 and 9). From this analysis, we found that the majority of the 
parameters showed narrow ranges of significant values around the optima indicating 
that the dynamic growth trends can be uniquely captured by PSMSR with reasonable 
confidence. 

Figure 4B and 4C and Supplementary Figure S10 show the agreement between 
the fitted and observed growth trends for different types of systems (monotypic sensitive 
or tolerant cell cultures, heterotypic cultures where counting begun immediately or after 
three weeks of co-culture). For each system, a single set of parameters fitted the different 
growth curves (various seeding populations or mixing proportions) with reasonable 



agreement (please see the fitting errors in Supplementary Figure S10C, 10F and 10I and 
parameter values in Table 1). Among the sensitive or tolerant only systems, the worst 
error was observed for the lowest seeding population (Supplementary Figure S10C, 1250 
cells/well). It is possible that at low seeding populations, stochastic effects would 
dominate, and the systems may be best modeled using stochastic differential equations 
instead of deterministic ones. In the mixed system where cell counting was performed 
immediately, the error increased proportionally with the number of tolerant cells in the 
system, indicating that the tolerant cell behavior may be more complex than what the 
model describes. The errors were relatively low for the systems after three weeks of co-
culture, since the majority of the tolerant cells were predicted to have switched their 
phenotypes to be sensitive after three weeks, as will be discussed later. Hence, the growth 
dynamics after three weeks was dominated by the sensitive phenotype, even when 
seeded with high population of green fluorescent cells that were descended from tolerant 
ancestors. 

 
 
Section S3: PSMSR using sigmoidal stress relationship 

In this section, we address the question whether the agreement of the PSMSR 
model with experiments is sensitive to the choice of the stress-growth rate (or Ka) 
relationship. In the model presented in this manuscript, we have used linear functions 
with asymptotic behavior at high stress. We also fit the PSMSR model to the 
experimental data using sigmoidal functions of the following form: 
 𝐾(𝐶 ) =  𝐾 + (𝐾 − 𝐾 )1 + 𝑒𝑥𝑝 𝑙𝑛19 1 − 2 𝐶 − 𝐶 ,𝐶 , − 𝐶 ,                                                              (9) 

 𝐾 (𝐶 ) =  𝐾 − 𝐾 − 𝐾1 + 𝑒𝑥𝑝 𝑙𝑛19 1 − 2 𝐶 − 𝐶 ,𝐶 , − 𝐶 ,                                                 (10) 
 𝐾 (𝐶 ) =  𝐾 − 𝐾 − 𝐾1 + 𝑒𝑥𝑝 𝑙𝑛19 1 − 2 𝐶 − 𝐶 ,𝐶 , − 𝐶 ,                                                (11) 

 
, where K0, Kmax, CStr,K5, CStr,K95, 𝐾 , 𝐾 , CStr,GS5, CStr,GS95, 𝐾 , 𝐾 , CStr,GT5, CStr,GT95 are 
constant parameters to be determined from fitting to the experimental growth trends. The 
physical meaning of these parameters are as follows; Kmax is the maximum achievable 
phenotype switching equilibrium constant and K0 is the lowest equilibrium constant at 
zero stress. CStr,K5 and CStr,K95 are the stress levels at which the equilibrium constant values 



show 5% and 95% increase relative to K0. Likewise, 𝐾 represents the growth rate of 
sensitive cells at zero stress and 𝐾 represents the lowest growth rate at infinite stress. 
CStr,GS5 and CStr,GS95 are the stress levels at which the growth rates show 5% and 95% 
decrease relative to 𝐾 . Similar interpretation applies to the tolerant cell growth 
function. The functional forms of these variables are shown in Supplementary Figure S6. 
The fitting was performed using Genetic Algorithm following the same protocol as 
described in the main manuscript. Supplementary Figure S7 shows the comparison of 
the fitted trends to the experimental observations for cases where the cells were 
monitored immediately, as well as after three weeks of co-culture (optimal parameter 
values can be found in supplementary Table S8). Compared to the PSMSR model using 
linear growth functions (Supplementary  Figure S5E–H), using sigmoidal growth 
functions gives similar levels of agreement with the experimental trends (although 
sensitive cells at S:T seeding ratio of 1:8 and tolerant cells at seeding ratio of 1:1 show 
somewhat higher fitting error while using the sigmoidal functions), as shown by the 
fitting errors (Supplementary Figure S7E,F). This suggests that the choice of the stress 
functional form is less important to the model, as long as a monotonic relation is 
maintained. However, to come to a definitive conclusion, one has to test several different 
monotonic functions, which is beyond the scope of the current work. 
 
 
Section S4: Profile likelihood of PSMSR parameters 

In this section, we address the issue, whether the functional form of the PSMSR is 
uniquely identifiable from the experimental data. To this end, we calculate the profile 
log-likelihood function lnL for each PSMSR parameter over a limited range near its 
optimal value. To calculate lnL for a given parameter θ, we hold θ fixed at different 
values and at each step, optimize the rest of the parameters using GA. Assuming a 
gaussian error model, the profile log-likelihood is then given by the following 
equation15,16: 

 ln 𝐿(𝜃|𝑌) =  − 𝑛2 ln(2𝜋𝜎 ) −  𝑆𝑆𝑄(𝜃; 𝑌)2𝜎                                                                                              12 

 
where, Y is the experimental dataset, n is the number of datapoints (240 in our case), σ 
is the measurement error and SSQ (sum of squares) = ∑ (𝑌 − 𝑌 ) . By substituting 
the maximum likelihood estimate (MLE) estimate of 𝜎 =  ( ; ) in equation 12, we 
obtain, 
 ln 𝐿(𝜃|𝑌) =  − 𝑛2 ln 𝑆𝑆𝑄(𝜃; 𝑌) + 𝐶                                                                                                         13 

 



where C is a constant. Calculating lnL thus requires optimizing the rest of the 
parameters for every value of θ. This is challenging with GA, since running the 
optimization each time can give a slightly different answer. We therefore performed the 
optimization 50 times for each θ (400-500 GA optimizations per parameter), and 
calculated the mean lnL, as shown in Supplementary Figure S9. For sufficiently large 
number of datapoints, the significance threshold corresponding to 95% confidence is 
given by15,16: 
 2(𝑙𝑛𝐿 − 𝑙𝑛𝐿) ≤ 𝑖𝑐𝑑𝑓(𝜒 , 0.95)                                                                                                               14 
 
, where L0 is the likelihood when all parameters are set to their optimal values, and icdf 
is the inverse cumulative density function of the χ2 distribution with one degree of 
freedom.  

Supplementary Figure S8 shows the zoomed in views of the profile plots to 
better highlight the significant ranges of each parameter (the original plots are given in 
the supplementary material). According to the PSMSR model equations, the scaling of 
the parameters Ks, KStr,d, a, b and g will change according to the scale of the stress 
variable CStr. Since CStr is a hidden variable in the model, its scale is arbitrary and may 
vary among the individual optimizations. To address this, we calculated the likelihoods 
for the ratios of KStr,d, a, b and g to Ks, which are unaffected by the scaling of CStr.  

From Supplementary Figure S8 , many of the parameters show narrow ranges of 
significant values indicating, that these parameters are strongly sensitive to the 
experimental data. The parameter K0 (Supplementary Figure S8A) shows a relatively 
wide range of significant values (0.045 – 0.085), whereas the parameter g 
(Supplementary Figure S9H) is mostly insensitive to the accuracy of the model fitting 
(significant range < 35 g:Ks). The parameter g relates the tolerant cell growth rate to 
stress. Interestingly, based on our knowledge of cellular behavior, the tolerant cell 
growth is expected to be less affected by stress compared to the sensitive cells. This 
insensitivity to stress could be reflected in the behavior of the parameter g. Considering 
the narrow significant ranges observed in the profile likelihoods of majority of the 
parameters, we can conclude that the functional form of the PSMSR can be uniquely 
identified from the cellular growth data. 
 
Section S5: Epigenetic modulation can distinguish drug sensitivity, tolerance and 
resistance in lung cancer 

To test the possibility that drug sensitivity can be regulated at the epigenetic level 
in a reversible way, as opposed to genetic mutations alone, we used two different 
epigenetic modulators namely, 5-azacytidine (5-AZA), a DNA methyltransferase 



inhibitor, and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, 
and determined their effects on cisplatin resistance.  

While SAHA treatment did not enhance the effect of cisplatin on sensitive H23 
cells (Figure 3H) or H1993 cells that are resistant to cisplatin (IC50>300µM) (Figure 3J), it 
had a significant additive effect on the H2009 cells, suggesting that these cells can become 
sensitive through epigenetic intervention (Figure 3I). However, 5-AZA had no 
discernable effect (not shown), suggesting that epigenetic regulation of chromatin rather 
than specific cytosine residues in the DNA modulates cisplatin tolerance in the H2009 
cells. Based on these criteria, H2009 qualify as cisplatin-tolerant (reversible) rather than 
resistant (irreversible) while H1993 may represent a truly resistant phenotype. Taken 
together, these observations suggest that tolerance to cisplatin can be reversed unless the 
tolerant cells acquire mutations making them irreversibly resistant. 
 
 

Section S6: Experimental Materials and Methods 
 

Cell lines and reagents. Cell lines (H23, H2009, H1993) were obtained from 
American Type Culture Collection (ATCC) (Manassas, VA, USA) and cultured in RPMI 
1640 medium (Corning) supplemented with 10% fetal bovine serum (FBS), L-glutamine 
(2 mM), penicillin/streptomycin (50 U/ml), sodium pyruvate (1 mM), and sodium 
bicarbonate (0.075%) at 37°C, 5% CO2. Cisplatin was provided by City of Hope National 
Medical Center clinics (Duarte, CA, USA). Puromycin was purchased from Thermo 
Fisher Scientific (Waltham, MA, USA). Suberoylanilide hydroxamic acid (SAHA) was 
purchased from Selleck Chemicals (Houston, TX, USA). 
 

Live cell imaging and analysis. Cell lines H23 and H1993 were stably transfected 
with NucLight Red Lentivirus (Essen Bioscience, Ann Arbor, MI, USA) to express nuclear 
mKate2, a red fluorescent protein (RFP), and H2009 was stably transfected with NucLight 
Green Lentivirus to express nuclear green fluorescent protein (GFP). Stable clones were 
selected with puromycin (1 µg/ml). Live cell images were acquired in real time using the 
IncuCyte Live Cell Imaging System (Essen Bioscience). Cell counting masks were 
generated using the IncuCyte software to perform data analysis.3 
 

Monotypic/heterotypic culture cell proliferation and drug sensitivity assay. For 1:1 
heterotypic cultures 2.5×105 H23 (cisplatin-sensitive) cells and 2.5×105 H2009 (cisplatin-
tolerant) cells (5×105 total cells) were plated on a 10 cm dish. For heterotypic cultures with 
different sensitive: tolerant seeding ratios (1:2, 1:4, 1:8, 2:1, 4:1, 8:1), numbers of each cell 
type were adjusted accordingly and plated with 5×105 total cells per plate. Cultures were 



maintained in 37°C, 5% CO2 for 3 weeks and passaged 1:5 when confluent (every 4-5 
days). After 3 weeks, 5×103 cells from each culture were seeded on a 96-well plate and 
allowed to adhere overnight. Cisplatin was added at the indicated concentration. Cell 
proliferation was monitored in real time using the IncuCyte Live Cell Imaging System 
(Essen Bioscience), and data was collected every 2 hours. Data analysis was performed 
using the IncuCyte software using a red and green fluorescence mask to accurately count 
each cell type. Statistical significance was measured using ANOVA test (two or one-way) 
and t-test. The media was not refreshed for the duration of the observations. 
 

Conditioned medium assay. Complete growth medium was added to 4×106 cells 
on a 10 cm dish to condition medium. After 24 hours, conditioned medium was collected 
in a centrifuge tube and spun down at 2500 RPM for 10 mins. Afterwards, conditioned 
medium was added to 5×103 cells seeded on a 96-well plate. Cell proliferation was 
monitored in real time using the IncuCyte Live Cell Imaging System (Essen Bioscience), 
and data was collected every 2 hours. Data analysis was performed using the IncuCyte 
software using a red and green fluorescence mask to accurately count each cell type. 
   

SAHA treatment and drug sensitivity assay. Cells were (3×105) plated on a 6 cm 
dish and allowed to adhere overnight. Fresh medium containing SAHA (0.25 µM/0.5 µM) 
was added every 24 hours for 3 days. After 3 days, 5×103 cells were seeded on a 96-well 
plate and allowed to adhere overnight. Cisplatin (5 µM) was added, and cell proliferation 
was monitored in real time using the IncuCyte Live Cell Imaging System (Essen 
Bioscience). Data was collected every 2 hours, and analysis was performed using the 
IncuCyte software using a red and green fluorescence mask to accurately count each cell 
type. 
 

In vivo therapy. NSCLC cell lines H2009 (cisplatin-resistant) and H23 (cisplatin-
sensitive) were seeded in a 6-well plate until 60-70% confluency. One day prior to 
microinjection H2009 and H23 cells were stained with DiI (fluorescent lipophilic cationic 
indocarbocyanine) green and DiI red dye, respectively. On the day of microinjection, the 
48-hpf (hours post fertilization) zebrafish larvae were dechorionated to release the larvae. 
The larvae were anesthetized using tricaine (MS-222) at a final concentration of 200 µg/ml 
(stock 5 mg/ml). The larvae were left in anesthetic for 1-2 h until they were motionless for 
efficient microinjection. The two cell lines were trypsinized and cell number counted 
using a cell counter (Nexcelom Bioscience Cellometer Auto T4). The two cells were made 
into a homogenous suspension with 10 cells per nanoliter (nl). Next, the two cell lines 
were mixed in a 4:1 ratio (H23:H2009). The mix of cells were injected in the perivitelline 
space (PVS) of anesthetized 48-hpf (hours post fertilization) larvae (184 nl= approx. 184 
cells). The 24-hpi (hours post injection) zebrafish xenografts were screened for formation 
of an obvious bolus of cancer cells (tumor) using a fluorescence microscope. The larvae 



were distributed in a 96-well plate with different treatment sets (untreated and drug 
treated). Drug toxicity effects on growth and development were also assessed by 
examining the length and shape of the zebrafish body. For the untreated sample set, the 
larvae were left in embryo media throughout the experiment. For intermittent and 
continuous samples, 20 µM cisplatin was added at Day 1. For intermittent samples, the 
drug was removed after three days and then these larvae were continued in only embryo 
media, while for continuous sample set at three days we replenished them with second 
dose of 20 µM cisplatin. The larvae were imaged using Zeiss Observer 7 microscope for 
Day 1, Day 3 and Day 5 of microinjection. The images were processed using FIJI imaging 
software. Each image was split into different color channels (gray, red and green). 
Threshold of fluorescent images were determined with Otsu method. The images were 
converted to binary images. The mean gray value and area were calculated. These values 
were used to calculate green intensity versus red intensity. The data points were plotted 
with Prism software. The biological replicates used were 10 samples for intermittent, 8 
continuous and 4 untreated samples. The p-values were calculated using one-way 
ANOVA. 
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