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Abstract: In the last decade, nanotechnological progress has generated new opportunities to improve
the safety and efficacy of conventional anticancer therapies. Compared with other carriers, graphene
nanoplatforms possess numerous tunable functionalities for the loading of multiple bioactive com-
pounds, although their biocompatibility is still a debated concern. Recently, we have investigated
the modulation of genes involved in cancer-associated canonical pathways induced by graphene
engineered with cyclodextrins (GCD). Here, we investigated the GCD impact on cells safety, the
HEp-2 responsiveness to Doxorubicin (DOX) and the cancer-related intracellular signalling pathways
modulated by over time exposure to DOX loaded on GCD (GCD@DOX). Our studies evidenced
that both DOX and GCD@DOX induced p53 and p21 signalling resulting in G0/G1 cell cycle arrest.
A genotoxic behaviour of DOX was reported via detection of CDK (T14/Y15) activation and reduc-
tion of Wee-1 expression. Similarly, we found a cleavage of PARP by DOX within 72 h of exposure.
Conversely, GCD@DOX induced a late cleavage of PARP, which could be indicative of less toxic
effect due to controlled release of the drug from the GCD nanocarrier. Finally, the induction of the
autophagy process supports the potential recycling of DOX with the consequent limitation of its
toxic effects. Together, these findings demonstrate that GCD@DOX is a biocompatible drug delivery
system able to evade chemoresistance and doxorubicin toxicity.

Keywords: graphene-based platform; cancer therapy; intracellular signalling pathway; doxorubicin

1. Introduction

Over the past three decades, the application of nanotechnology in medicine has had a
significant impact on cancer disease treatment. Several nanotherapeutics have been clini-
cally approved to support conventional anticancer therapies, while many others are under
clinical investigation [1–3]. These nanoparticles are characterised by sizes ranging from
a few to a few hundreds of nanometres (1–500 nm) and superior surface properties that
are able to improve the delivery and release of therapeutic agents at the site of action [4].
However, to date, the most important challenge in nanomedicine remains reducing tox-
icity profile and enhancing therapeutic efficacy. Carbon-based nanomaterials, including
nanodiamonds, fullerenes, carbon nanotubes, graphene, and carbon nanofibers, have been
proposed as useful biological platforms due to their versatility, physical properties, and
unique intracellular trafficking properties [5–10]. Surface functionalisation with polymers
such as polyethylenimine (PEI, branched/linear), cationic dendrimers, glycopolymers,
and poly amidoamine increases their solubility and intracellular uptake and stabilises
their half-life in the cellular environment [11–14]. The engineering of graphene surfaces
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with macrocycles such as β-cyclodextrins (CD) allows the formation of stable inclusion
complexes with hydrophobic small molecules by means of host–guest interactions with the
hydrophobic CD cavity [15,16]. Recently, we reported a graphene nanoplatform covalently
modified with functional cationic cyclodextrins (GCD) [17] as a carrier for the purposes
of gene and drug delivery. We analysed its endocytosis internalisation mechanism, its
perinuclear localisation, and its ability to deliver miRNAs. Specifically, we studied the
effects of the GCD/miRNA15a complex on the regulation of the oncogene protein BCL2.
The GCD platform was proved to be a promising therapeutic miRNA delivery system that
was able to overcome the problems typically encountered, such as low stability, nuclease
susceptibility and weak cellular uptake. Next, we investigated the intracellular fate of DOX
loaded on GCD (GCD@DOX), including the nuclear distribution responsible for the gene
expression modulation (Scheme 1) [18]. The GCD nanoplatform contains several molec-
ular recognition sites (i.e., cationic external CD rims to provide electrostatic interactions;
π systems to give π-π interactions and/or hydrophobic effects; CD hydrophobic cavities to
provide host/guest inclusion complexes). According to literature data, DOX can interact
with GCD by: (i) π-π stacking between the G conjugated structure and the quinone portion
of DOX, as well as the hydrophobic effect between them; (ii) inclusion into the CD cavities;
(iii) hydrogen bonding among OH and COOH groups of G and OH and NH2 groups of
DOX [19,20]. Moreover, high formation constants were reported for inclusion complexes
between functionalized βCDs and DOX in mixed water: DMSO solutions (2.3 × 10 4 and
3.2 × 10 5 M−1) [21]. A stronger interaction is expected in GCD with respect to the literature
due to the GCD restored sp2 network and additional cationic sites on external CD rims.
However, in our studies, GCD@DOX was prepared at a low actual loading (2.5%) [18]
to avoid the overloading of DOX on the sp2 network [22], and the aspects related to the
binding constant between DOX and GCD were not investigated. Caveolae-mediated endo-
cytosis was detected as the main pathway of GCD cellular internalisation. FLIM and Raman
mapping analyses indicated the presence of GCD only in the cytoplasm, whereas fluores-
cence microscopy showed the DOX release in the nuclear and perinuclear region. Here,
we expand the knowledge of graphene–cell interaction, focusing on the modulation of
intracellular cell-death pathways. Additionally, we performed an in vitro time-dependent
study to measure the initial responsiveness of tumour cells to chemotherapeutic drugs,
and contextually evaluated the GCD@DOX-mediated changes in p53-related signalling.
Although the extensive bibliography provided important information about the interac-
tions between graphene-related nanomaterials and the induction of programmed cell death,
reporting the impact of graphene on intracellular components, the production and secretion
of proinflammatory cytokines, and the activation of a cascade of events [23–30], it should
be considered inclusive with respect to differently functionalised graphene. In fact, the
nanoplatform GCD, originated by engineering of G with CD, is endowed with unique
properties originating from the synergic actions of single components that are not the result
of the simple combination of the starting properties of native materials.
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Scheme 1. (A) Doxorubicin (DOX); (B) schematic sketch of graphene functionalised with cationic
cyclodextrins (GCD platform); (C) schematic sketch of DOX loaded on GCD (GCD@DOX). (Reprinted
from reference [18]).

2. Materials and Methods
2.1. Synthesis of Drug-Loaded GCD

GCD@DOX complex was prepared using GCD and Doxorubicin (DOX) according to
procedure previously reported. DOX content in GCD@DOX was 2.5% [18]. Thus, 25 µg/mL
of GCD@DOX contains 0.625 µg/mL of DOX.

2.2. Cell Cultures

Cell lines were originally obtained from the American Type Culture Collection (ATCC).
HEp-2 cells were grown in RPMI 1640 medium (Lonza, Belgium), supplemented with
10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin mixture, and were cultured at
37 ◦C in a 5% CO2 incubator.

2.3. Antibodies

Antibodies to p-Cdk (Thr14/Tyr15)-R (sc-28435-R) and to Wee-1 (B11; sc-5885) were
purchased from Santa Cruz Biotechnology (Dallas, Texas, USA). Antibodies to phospho-p53
(Ser15; #9284), p21 Waf1/Cip1 (12D1; #2947), LC3B (D11; #3868), and SQSTM 1-p62 (D5L7G;
#88588) were provided by Cell Signaling Technology® (Danvers, MA, USA). Polyclonal
antibodies against the housekeeping gene GAPDH and Histone H3 were purchased from
Abcam (Cambridge, UK) and Cell Signaling Technology®, respectively. Secondary anti-
bodies anti-rabbit and anti-mouse IgG conjugated to peroxidase were also from Merck
Millipore (Darmstadt, Germany).
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2.4. Protein Extractions and Immunoblot Analysis

To obtain total protein extraction, cells were lysed in 62.5 mM Tris-HCl pH 6.8; DTT
1 M; 10% glycerol; 2% SDS; 0.01% Bromophenol Blue and held at 100 ◦C for 5 min. Nuclear
and cytoplasmic fractions were isolated as reported elsewhere [31] and analysed for protein
determination using a Qubit™ Protein Assay Kit (Invitrogen™, Waltham, MA, USA). An
equal amount of protein extracts was subjected to Sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes (Bio-Rad Life
Science Research, Hercules, CA, USA). After incubation in blocking buffer, membranes
were probed overnight at 4 ◦C with the specific primary antibody and then probed for
1 h at RT with secondary antibodies, followed by chemiluminescent detection, according
to the manufacturer’s instructions. Protein bands were visualised by using Immobilon
Classico Western HRP substrate (Merk, Millipore, Burlington, MA, USA) and captured
using a ChemiDoc Touch Imaging System (Bio-Rad, Hercules, CA, USA), where indicated.
Quantitative densitometry analysis of immunoblot band intensities was performed using
ImageJ software and graphically represented using GraphPad Prism 6 software (GraphPad
Software, San Diego, CA, USA). Statistical analysis was performed by ANOVA followed by
Bonferroni’s Multiple Comparison Test.

2.5. Cell Viability Assay

The cell viability of HEp-2 cells treated with DOX, GCD and GCD@DOX was de-
termined on the basis of ATP levels using ViaLightTM plus cell proliferation and cy-
totoxicity bioassay kit according to the manufacturer’s instructions (Lonza Group Ltd.,
Basel, Switzerland). Cells were grown in 96-well plates and treated with different concen-
trations of indicated DOX (1.25 µg/mL), GCD (25 µg/mL) and GCD@DOX (25 µg/mL).
The contents of DOX in 25 µg/mL of GCD@DOX was 0.625 µg/mL. After the indicated
incubation time, the cells were harvested and the emitted light intensity related to ATP
degradation was quantified with the GloMax Multi Microplate Luminometer (Promega
Corporation, 2800 Woods Hollow Road Madison, WI, USA). The luminescence value was
converted to the cell proliferation index and reported as percentage of cell viability (%)
according to the following equation:

Cell viability% = [(A−B)/(C−B)]% (1)

where A denotes the average of treated sample, B represents background luminescence,
and C represents the average of untreated samples.

2.6. Acridine Orange Assay

The morphological analysis of apoptotic cells was performed following staining with
the fluorescent DNA-binding dye acridine orange (AO). Thus, HEp-2 cells were untreated
and treated with 1.25 µg/mL of DOX and 25 µg/mL of GCD@DOX for 24 h, 48 h and 72 h,
collected on poly l-lysine-coated slides and stained with AO to determine the amount of
apoptotic cells through fluorescence microscopy [32].

2.7. Evaluation of Autophagy by Tandem mRFP-GFP-LC3 and by LC3-I, LC3-II/SQSTM-p62
Autophagy-Related Protein Detection

Hep-2 cells were grown in multiwell culture slides and transiently transfected for
48 h with mRFP-GFPLC3 plasmid [33]. Twenty-four hours post-transfection, the cells
were untreated and treated with 1.25 µg/mL and 25 µg/mL of DOX and GCD@DOX,
respectively. Then, the samples were collected and washed twice with warm PBS, fixed
with paraformaldehyde (PFA) 4% for 30 min at room temperature, and permeabilised with
Triton 0.1% for 1 h, covered with a drop of mounting solution (ProLong Diamond Antifade
Mountant with DAPI-Invitrogen p36971) for 30 min in a dark room. The images were
captured and processed using confocal laser scanning microscopy TCS SP8, Leica, (TCS
SP8, Leica Microsystems Srl, Milan, Italy) (magnification, 63×). For the expression analysis
of LC3-I, LC3-II and SQSTM-p62 proteins, HEp-2 cells were untreated or treated with GCD
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(25 µg/mL), GCD@DOX (25 µg/mL) and DOX (1.25 µg/mL) for 24 h, 48 h and 72 h. The
cells were then collected and processed for protein extraction and immunoblot analysis.

3. Results
3.1. In Vitro Evaluation of DOX, GCD and GCD@DOX Biocompatibility

Our recent findings regarding GCD indicated its ability to deliver DNA plasmid and
miRNAs [17]. Moreover, we established that the fluorescence-labelled platform (GCD@Ada-
Rhod) at a concentration of 25 µg/mL does not induce a cytotoxic effect and efficiently
crosses cell membranes delivering genetic material. Herein, GCD was loaded with DOX to
verify the drug-release efficiency by analysing specific intracellular signals. The sensibility
and degree of resistance to DOX on HEp-2 cells was tested by monitoring the cytotoxicity
at different treatment times (Figure 1). HEp-2 cells were pre-incubated overnight in 96-well
plates with a final volume of 100 µL/well at 37 ◦C and 5% CO2 and treated for 24 h, 48 h
and 72 h with 1.25 µg/mL of DOX and 25 µg/mL of GCD@DOX and GCD. The results
showed a low degree of toxicity after GCD and GCD@DOX treatment at 24 h (24% and
26%, respectively) (p < 0.001), with a late recovery of vitality at 48 h and 72 h. Conversely,
DOX treatment was moderately toxic (29%) at 48 h after exposure (p < 0.001).
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Figure 1. Time course study of biocompatibility of DOX (1.25 µg/mL), GCD (25 µg/mL) and
GCD@DOX (25 µg/mL) in HEp-2 cells. The cells were untreated or treated with DOX, GCD or
GCD@DOX for 24 h, 48 h and 72 h. The data show the % of live cells compared to the untreated
ones. The cellular proliferation index (%) was determined on the basis of ATP level as described
in Materials and Methods. GraphPad Prism 6 software was used for data analysis and graphical
representation. The assay was performed as means of triplicates ±SD. Statistical significance was
tested by one-way ANOVA analysis assay in triplicate. (*** p < 0.001).

3.2. Investigation of p53 and Wee-1 Signalling Mediated by DOX, GCD and GCD@DOX Treatment

The signal transduction pathways in response to damaged DNA lead to programmed
cell death, repair mechanisms, or cell cycle arrest [34–36]. Ordinarily, checkpoint signalling
ensures that DNA replication is arrested in damaged cells through proteins stalling the
cell cycle or activating apoptotic mechanisms. The tumour-suppressor protein p53 is
induced by DNA damage signals and counteracts the genomic instability of cancer cells
through a wide range of biological processes [37,38]. Thus, the increased p53 expression
promotes the accumulation of p21 (also known as p21 WAF1/Cip1), which is responsible
for growth arrest through inhibition of the cyclin/cyclin-dependent kinase (CDK) complex,
required for G1/S transition [39,40]. Therefore, HEp-2 cells were untreated and treated
with 1.25 µg/mL of DOX and 25 µg/mL of GCD@DOX and GCD and collected after 24 h,
48 h, and 72 h of treatment. The accumulation of phospho-p53 and p21 was detected by
Western blot analysis. As shown in Figure 2A and graphically reported in Figure 2B, an
accumulation of phospho-p53 was detected in free DOX- and GCD@DOX-treated cells
at 48 h and 72 h (Figure 2A, lanes 6, 7, 10 and 11). The expression of p21 peaked at 24 h
and 48 h following free DOX treatment (Figure 2A lanes 2 and 6) and decreased over time.
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Conversely, p21 levels slowly increased at 72 h following GCD@DOX treatment (Figure 2A
lanes 11 and Figure 2B). No significant changes in phospho-p53 or p21 expression levels
were detected following treatment with GCD compared to untreated cells. Thus, the GCD
alone did not impact the p53/p21 signalling.
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Figure 2. Phospho-p53 and p21 protein expression in GCD@DOX-, GCD- and DOX-treated cells.
HEp-2 cells were treated or untreated with 25 µg/mL of GCD@DOX for the indicated time (24 h, 48 h
and 72 h). DOX and GCD were used as controls. (A) An equal amount of proteins was separated
by polyacrylamide gel electrophoresis and probed with a specific antibody to phospho-p53 and p21.
GAPDH was used as housekeeping gene. (B) The quantitative densitometric analysis for phospho-
p53 and p21 band intensities was determined using ImageJ software and expressed as fold change
over the appropriate housekeeping gene.

While p53 and p21 are considered mediators of G0/G1 cell cycle arrest, Wee-1 blocks
G2/M transition [41]. Wee-1 is an inhibitory kinase that catalyses the phosphorylation of
tyrosine 15 (Y15) on CDK, rendering it inactive and blocking CDK-cyclin interaction and
cell cycle progression [41,42]. Then, the spatio-temporal regulation of Wee-1 was detected
on HEp-2 cell lines, untreated and treated with DOX (1.25 µg/mL), GCD@DOX 25 µg/mL
and GCD (25 µg/mL), and collected at 24 h, 48 h, and 72 h of treatment. The results are
shown in Figure 3A and graphically reported in Figure 3B. We found that in both the
untreated cells and cells treated with GCD and GCD@DOX, Wee-1 expression grew over
time in the cytoplasm and maintained unchanged levels in the nucleus. Conversely, Wee-1
accumulation was significantly inhibited by DOX treatment in both cellular compartments
(* p < 0.1; *** p < 0.001) compared with the untreated cells. At the same time, DOX influences
pCDK2 T14/Y15; indeed, increased levels were detected in the cytoplasm and nucleus
compared to untreated cells (*** p < 0.001).
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Figure 3. Wee-1 and phospho-CDK2 (pCDK2 T14/Y15) protein expression in GCD@DOX-, GCD-
and DOX-treated cells. HEp-2 cells were untreated or untreated with 25 µg/mL of GCD@DOX for
24 h, 48 h and 72 h. DOX (1.25 µg/mL) and GCD (25 µg/mL) were used as controls. (A) An equal
amount of cytoplasmic and nuclear proteins was separated by polyacrylamide gel electrophoresis
and probed with Wee-1 and phospho-CDK2 (pCDK2 T14/Y15) antibodies. GAPDH and Histone
H3 were used as a loading control for the cytoplasmic and nuclear fractions, respectively. (B) The
quantitative densitometric analysis of Wee-1 and pCDK2 T14/Y15 band intensities was determined in
the cytoplasmatic and nuclear fractions for both with ImageJ software and expressed as fold change
over the appropriate housekeeping gene. (* p < 0.1; *** p < 0.001).

3.3. Programmed Cell Death in HEp-2 Cells following DOX, GCD and GCD@DOX Treatment

The apoptotic process represents a programmed cell death (PCD) mechanism that nor-
mally provides homeostatic maintenance and cell survival [43]. An unbalanced apoptotic
activity is associated with the onset of injuries and several pathologies. In cancer disease,
low levels of apoptosis provoke an accumulation of malignant cells and also depend on
faulty cellular pathways [44–46]. The activation of apoptosis is characterised by specific
biochemical and morphological changes such as apoptotic body formation, chromatin
condensation and nuclear fragmentation. First of all, we studied the apoptotic process by
analysing the cleavage of poly(ADP-ribose) polymerase-1 (PARP), following antitumour
drug intracellular delivery [47]. HEp-2 cells were untreated or treated with 25 µg/mL of
GCD@DOX for 24 h, 48 h and 72 h. Free DOX (1.25 µg/mL) and GCD (25 µg/mL) were
used as controls. The cleaved PARP-1 expression is shown in Figure 4A and graphically
reported in Figure 4B. The Western blot analysis reported the cleavage of PARP following
treatment with free DOX starting from 24 h post-exposure (Figure 4A lanes 3, 7, 11). Con-
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versely, GCD@DOX treatment led to an accumulation of cleaved PARP at 72 h (p < 0.05)
(Figure 4A lane 12) indicating a slow release of the drug by the carrier. No significant
differences were observed between the GCD-treated and untreated cells, suggesting that
the graphene carrier does not affect the cleavage of PARP. In addition, we observed the
morphological changes related to apoptotic activation. The cells were first stained with
acridine orange (AO), which permeates all cells and makes the nuclei appear green, and
then observed on a fluorescence microscope detecting the green emission [48]. The acridine
orange-negative cells with a normal green nucleus and homogeneous chromatin distri-
bution were detected in untreated samples (Figure 4C(I)). A limited number of cells with
condensed or fragmented chromatin in the green nucleus, debris particles and formation
of apoptotic bodies were observed only after GCD@DOX exposure (Figure 4C(III)). DOX
treatment led to rounded cellular phenotype 72 h post-exposure not strictly related to
typical morphological features of apoptosis (Figure 4C(II)).
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Figure 4. Monitoring of apoptosis in HEp-2 cells following DOX, GCD and GCD@DOX treatment.
HEp-2 cells were untreated and treated with 1.25 µg/mL of DOX and 25 µg/mL of GCD@DOX
and GCD and collected at 24 h, 48 h and 72 h post-treatment. (A,B) The Western blot analysis
was performed to detect PARP protein expression. The protein bands were visualised by using
Immobilon Classico Western HRP substrate (Merk, Millipore) and captured using a ChemiDoc Touch
Imaging System (Bio-Rad). The quantitative densitometry analysis of cleaved PARP/full length
band intensity was performed by using ImageJ software and is graphically represented in (B) using
GraphPad Prism 6 software (GraphPad Software, San Diego, CA, USA). * p < 0.05, compared with
the GCD treated cells. (C) The morphological analysis of apoptotic cells was performed following
staining with the fluorescent DNA-binding dyes acridine orange, at 24 h, 48 h and 72 h post-treatment
(I: untreated; II: DOX; III: GCD@DOX) and visualised by fluorescence microscope (Leitz, Wetzlar,
Germany) (magnification, 63×).
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3.4. Monitoring of Autophagy following GCD@DOX and DOX Treatment

In general, anti-cancer therapy promotes the simultaneous activation of different
death signals in order to beat heterogeneous tumour cell populations. In particular, the au-
tophagic mechanism degrades damaged cellular components, recycles cellular organelles,
and protects cells from several types of stress, maintaining genomic integrity [49]. How-
ever, it is well known that autophagy plays a dual role in cancer development, as either a
tumour suppressor for inhibiting tumour progression, or as a cell survival mechanism for
promoting tumour growth. For example, increased autophagy and diminished apoptosis
were found in DOX-resistant multiple myeloma RPMI8226/DOX cells. Indeed, Pan and
collaborators demonstrated that autophagy has a protective role in cancer cells, which
results in decreased sensitivity to DOX [50]. To investigate the autophagy process following
GCD@DOX exposure, we monitored autophagosomes formation using a genetic approach
and quantified the expression of key regulators of autophagy. Autophagy is a dynamic
multistep process, regulated by more than 30 autophagy proteins (ATGs), which consists of
the formation of autophagosomes, the fusion of the autophagosome with the lysosome to
form the autolysosome, and the degradation of the contents in the autolysosome [51–53].
During this process, microtubule-associated protein 1A/1B light chain 3 (LC3-I) is gener-
ated by proteolytic cleavage of pro-LC3 and conjugated to phosphatidylethanolamine (PE)
to form LC3-II. LC3-II is recruited and incorporated onto the autophagosomal membrane
and interacts with the Sequestosome1/p62 (SQSTM1) protein. The accumulation of LC3-II
is correlated with autophagosome synthesis and, together with the monitoring of p62
degradation, describes the ongoing autophagosome maturation process [33,54,55]. The
analysis of the expression levels of LC3-II detected through immunoblot (Figure 5) showed
distinct bands for pro-LC3, LC3-I and LC3-II at 24 h, 48 h and 72 h in untreated cells
(Figure 5 lanes 1,5,8). The LC3-II/LC3-I ratio was calculated on the basis of a densitometric
analysis of both bands and is presented in a simplified form in Figure 5B. The results show
an accumulation of LC3-II/LC3-I after 24 h and 48 h of DOX exposure (Figure 5A,B) and
low p62 levels at all considered times (Figure 5C). Conversely, high levels of LC3-II/LC3-I
and p62 were detected after GCD@DOX treatment at 72 h and 48 h, respectively. Any
significant effect on the LC3-II accumulation occurred as a result of GCD exposure over
time, or was otherwise due to increased p62 levels. The results showed an increase in the
LC3-II pool in comparison to LC3-I by DOX exposure as a sign of autophagy induction
and a reduction of p62 levels. A high level of LC3-II was belatedly (72 h) detected after
GCD@DOX treatment in a GCD-independent manner and without tending to p62 degrada-
tion. This indicated that GCD@DOX exposure was correlated with an increased number of
autophagosomes, indicating the activation of autophagy. In order to track different stages
of autophagy and verify whether the autophagosome maturation process evolved into
endosome or lysosome fusion, the mRFP-GFP tandem fluorescent-tagged LC3 assay was
employed. The double-tagged LC3B was used to differentially label the autophagosomes
and autolysosomes due to the different pH stability of both probes. In fact, differential
quenching of the fluorescence was emitted by the red (mRFP) and green (GFP) proteins in
the lysosomal acidic compartment [56]. The graphical representation of mRFP-GFP tandem
fluorescent-tagged LC3 is shown in Figure 6A. Briefly, autophagosomes appear as yellow
dots (GFP+/RFP+), because both tags emit overlapping fluorescent light. Conversely, the
autolysosomes are red dots (GFP−/RFP+), because the GFP fluorescence, unstable in the
acidic lysosome environment, is lost. Therefore, HEp-2 cells were transiently transfected for
48 h with mRFP-GFPLC3 plasmid and 24 h after transfection were untreated and treated
with 1.25 µg/mL of DOX and 25 µg/mL of GCD@DOX, collected, and analysed with
confocal microscopy. DOX has an intrinsic bright fluorescence that diffuses into the cells
and an emission signal at 595nm. The results in Figure 6B,C show that: (i) in untreated
cells, the number of green and red dots overlaps and represents the basal autophagy level.
(ii) In DOX-treated cells, about 30% of red dots were detected. (iii) In GCD@DOX-treated
cells, about 50% of the red dots were detected. These findings suggest that the exposure
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to DOX and GCD@DOX significantly triggers the clear accumulation of autolysosomes,
GFP-RFP + LC3, and indicates the activation of the autophagy process.
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Figure 5. Parallel monitoring of LC3-I, LC3-II and SQSTM-p62 autophagy-related protein expression
in HEp-2 cells treated with GCD@DOX and DOX. (A) Immunoblot and quantification of LC3-I, LC3-II
and SQSTM-p62 in HEp-2 cells untreated or treated with GCD@DOX, DOX and GCD for the indicated
times. (B,C) The graphs show (mean ± SD) LC3-II/LC3-I ratios of each treatment normalised to
the LC3-II/LC3-I ratio of control-untreated cells for each experiment. Statistical significance was
tested by one-way ANOVA analysis assay in triplicate. *** p < 0.001 and * p < 0.05 indicate significant
changes vs. control.
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Figure 6. Monitoring of the double-tagged LC3 by mRFP-GFP-LC3 tandem fluorescent protein.
(A) Graphical representation of mRFP-GFP-LC3 tandem. (B) Representative confocal images of HEp-2
cells untransfected and transiently transfected with mRFP-GFP tandem fluorescent-tagged LC3 and
untreated or treated with DOX (1.25 µg/mL) and GCD@DOX (25 µg/mL) for 48 h (magnification,
63X). (C) Quantification of GFP−/RFP+/LC3 dots represented as percentage (%) in HEp-2 untreated
and treated with DOX and GCD@DOX. Statistical significance was tested by one-way ANOVA
analysis assay in triplicate (*** p < 0.001).
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4. Discussion

Many studies have recently pointed out the efficiency of DOX loaded into nanopar-
ticles, which is able to overcome the limitations of conventional treatments in cancer
therapy [57,58]. DOX exerts an anti-cancer effect through intercalation into the DNA,
inducing single- and double-strand breaks in the DNA [59]. Additionally, it interacts
specifically with the inner mitochondrial membrane, leading to the production of reactive
oxygen species (ROS) [60]. To date, chemotherapeutic treatment with DOX is associated
with undesirable multi-organ toxicities, including liver, cardiac, neuronal, and muscle
toxicity, hepatorenal profile alterations, and systemic inflammation [61,62]. Thus, its clinical
uses have been restricted to low dosages. Therefore, DOX-based nanoformulations have
been studied for their anticancer effect and for their ability to evade chemoresistance and
DOX toxicity. Indeed, Andreopoulou and collaborators found lower values of cardiac
toxicity in therapy with liposomal DOX plus Trastuzumab for metastatic breast cancer [63].
Modification of DOX with ligands, lipid–polymer hybrid nanoparticles, and liposomes
is anticipated to improve the transport of DOX into tumour cells, as well as limiting its
toxicity and activating anti-cancer intracellular signalling [64–66]. Recently, our group
examined the stability and biological behaviour of an in vitro system of GCD@DOX on the
murine C26 cell line and on the human HEp-2 cell line [18]. Changes in the expression of
some genes associated with angiogenesis, such as extracellular matrix modification (ECM)
and tumour metastasis, were found. In particular, GCD@DOX induced a strong down-
regulation of genes that can be involved in tumorigenesis, including ST14, PLAUR, SP1,
SF3A3, ITGB2, GSN, BMP5, TNFSF12, and AKT1. Otherwise, GCD alone affects four genes
with an opposite trend compared to DOX loaded on GCD (VIM, TNFSF12, BICC1, SRPK2).
Graphene affects cell biology in a variety of modes, and some effects can be beneficial;
for example, increased VIM expression is correlated with resistance and poor outcome
treatment in patients with different tumours. The detrimental increase in VIM expression
induced by DOX could be softened by GCD-induced VIM down-regulation. This study
provides further insights into the intracellular targets of DOX, which are involved in the
clearance of tumour cells. In particular, we characterised graphene-mediated signalling
and its role in DOX release, analysing the expression of p53 protein and the p53-related
pathways. p53 plays a crucial role in supporting DNA repair by arresting the cell cycle,
regulating apoptosis, and controlling autophagy [67]. Therefore, we reported that DOX
and GCD@DOX induce p53 accumulation (Figure 2). The p53-dependent upregulation of
the cell cycle inhibitor p21 occurs belatedly following GCD@DOX compared to the free
DOX treatment, suggesting that GCD controls DOX release over time. While p53 and p21
are considered mediators of G0/G1 cell cycle arrest, Wee-1 blocks G2/M transition. Wee-1
is an inhibitory kinase that catalyses the phosphorylation of tyrosine 15 (Y15) on CDK,
rendering it inactive and blocking CDK–cyclin interaction and cell cycle progression [41,42].
We found that DOX treatment triggers the reduction of Wee-1 protein expression, unlike
GCD and GCD@DOX, whose levels are comparable over time to endogenous expression
(Figure 3). The combined decrease of Wee-1 and accumulation of pCDK (T14/Y15) by
DOX is consistent with the inhibition of Wee-1 in cancer treatment reported in previous
studies [41]. Elbæk and collaborators reported that CDK drives the proteasomal degra-
dation of Wee-1, leading to its decrease. Additionally, the inhibition of Wee-1 overrides
the cell cycle arrest and results in mitotic entry [42]. This fact could explain the genotoxic
behaviour induced by chemotherapeutic drugs, and emphasises the importance of nan-
otechnology in drug delivery. Additionally, p53 can promote non-apoptotic cell death via
p53-PARP crosstalk [68]. The PARP activation can be attributed to ROS generation induced
by cytotoxic drugs [69]. Our findings report a cleavage of PARP by DOX within 72 h of
treatment. Unlike, GCD@DOX induces a late cleavage of PARP, which can be indicative of
a less toxic effect as a result of controlled drug release (Figure 4). Additionally, the existence
of the p21/PARP-1 axis has been reported to be involved in DNA damage and repair [70].
In particular, p21 is sequestered by PARP-1, facilitating DNA repair mechanisms [71]. For
this reason, the PARP-1 cleavage after DOX exposure, as shown in Figure 4A, does not
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match perfectly with the apoptosis induction reported through acridine orange staining
(Figure 4C). Chromatin condensation, debris particles, and formation of apoptotic bodies,
hallmarks of apoptosis, were poorly detected after GCD and GCD@DOX treatment and
were potentially related to mechanical stress induced by graphene uptake, as indicated
by the low toxicity levels detected at 24 h (Figure 1). In agreement with the literature, our
data showed a cytotoxic effect of DOX after 48 h of exposure and a late recovery at 72 h,
which was potentially linked to drug metabolism [72]. Conversely, GCD and GCD@DOX
induced early weak toxicity at 24 h, but no considerable effect was detected over time. This
phenomenon underlines the temporal biocompatibility of the nano-platform. Additionally,
these differences in cytotoxicity could be related to the accumulation and efflux of the
drug or its metabolites following free or graphene-mediated delivery. Together with the
role of p53 in inducing apoptosis and growth arrest, a non-canonical p53 function has
been reported [73,74]. Duan and collaborators reported that p53 activates the autophagy
process through the inhibition of mTOR [73]. Autophagy is a catabolic process needed to
maintain homeostasis and survival through the removal and recycling of unwanted cellular
materials. Although autophagy, unlike apoptosis, which is a clear mechanism of cell death,
represents a cellular pro-survival pathway [74], different studies have identified them as in-
dependent processes with interconnected cell death mechanisms [24,75–77]. Autophagy is
characterised by the formation of double membrane-bound structures wrapping organelles,
known as autophagosomes, which fuse with lysosomes to form autolysosomes and degrade
the absorbed materials [52]. A set of established criteria is necessary to observe and validate
autophagy induction. The localisation of LC3-II on the cytosolic surface of autophagosomes
is widely used as a marker of autophagy [53–55]. Here, the clear accumulation of autolyso-
somes, GFP-RFP + LC3, was reported after exposure to DOX and GCD@DOX. This increase,
observed through tandem fluorescent-tagged LC3 (mRFP-EGFP-LC3) assay, was statisti-
cally significant (Figure 6). In parallel with monitoring LC3-II, tracking the conversion
of LC3-I to LC3-II and the degradation of p62, which are factors indicative of autophagic
activity, are necessary for monitoring autophagic flux [55,78]. We showed an increase in
the LC3-II pool in comparison to LC3-I with DOX exposure, along with a reduction in p62
levels (Figure 5). Conversely, GCD@DOX treatment accumulates LC3-II belatedly, without
degrading p62, and in a graphene-independent manner. Recent studies have demonstrated
that autophagy induced by chemotherapeutic drugs may promote the resistance of cancer
cells to drugs, together with decreased apoptosis [50,79]. Our results indicate that DOX
treatment activates the autophagy flux and maintains it over time. This finding, combined
with the cell cycle regulation reported previously, may support the hypothesis that a com-
bined effect of both processes could be useful for limiting the existence and persistence of
heterogeneous tumour cell populations. Otherwise, GCD@DOX activates autophagy, but
rather than promoting the immediate degradation of cellular substrates useful for tumour
growth, it supports the recycling of DOX, limiting its toxicity. Indeed, because the drugs
used in chemotherapy result in highly deleterious and often life-threatening side effects,
a controlled drug delivery system, mediated by a graphene-based platform, could target
sub-cellular sites, reducing cytotoxicity.

5. Conclusions

Overall, the present investigation allowed us to characterise some of the cellular
pathways commonly recruited in nanomaterial treatments such as autophagy. Our results
showed that the intracellular delivery of DOX mediated by the graphene platform GCD
activates the p53 pathway, induces apoptosis signalling, and sustains the removal and
recycling of DOX by activation of autophagy. The developed graphene-based drug delivery
tool could offer an approach to the intracellular delivery of DOX, maximising its therapeutic
effect and limiting its toxicity. Nevertheless, a deeper understanding of GCD-autophagy
interaction at the mechanistic and functional level is needed before these findings can be
exploited to increase the effectiveness of GCD in cancer therapeutics and drug delivery.
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