
biomolecules

Article

Ancient Evolutionary Origin of Intrinsically
Disordered Cancer Risk Regions

Mátyás Pajkos 1, András Zeke 2 and Zsuzsanna Dosztányi 1,*
1 Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter stny 1/c,

H-1117 Budapest, Hungary; matyaspajkos@caesar.elte.hu
2 Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary;

zeke.andras@ttk.mta.hu
* Correspondence: dosztanyi@caesar.elte.hu

Received: 21 June 2020; Accepted: 20 July 2020; Published: 28 July 2020
����������
�������

Abstract: Cancer is a heterogeneous genetic disease that alters the proper functioning of proteins
involved in key regulatory processes such as cell cycle, DNA repair, survival, or apoptosis. Mutations
often accumulate in hot-spots regions, highlighting critical functional modules within these proteins
that need to be altered, amplified, or abolished for tumor formation. Recent evidence suggests that
these mutational hotspots can correspond not only to globular domains, but also to intrinsically
disordered regions (IDRs), which play a significant role in a subset of cancer types. IDRs have distinct
functional properties that originate from their inherent flexibility. Generally, they correspond to more
recent evolutionary inventions and show larger sequence variations across species. In this work,
we analyzed the evolutionary origin of disordered regions that are specifically targeted in cancer.
Surprisingly, the majority of these disordered cancer risk regions showed remarkable conservation
with ancient evolutionary origin, stemming from the earliest multicellular animals or even beyond.
Nevertheless, we encountered several examples where the mutated region emerged at a later stage
compared with the origin of the gene family. We also showed the cancer risk regions become quickly
fixated after their emergence, but evolution continues to tinker with their genes with novel regulatory
elements introduced even at the level of humans. Our concise analysis provides a much clearer
picture of the emergence of key regulatory elements in proteins and highlights the importance of
taking into account the modular organisation of proteins for the analyses of evolutionary origin.

Keywords: intrinsically disordered regions; linear motifs; gene duplications; de novo; evolutionary
origin

1. Introduction

Most human genes are thought to have an extensive and very deep evolutionary history. In line
with the thought “Nature is a tinkerer, not an inventor” [1], major human gene families date back to
the earliest Eukaryotic evolutionary events, or even beyond. The very oldest layers of human genes
encode metabolically, structurally, or otherwise essential proteins that typically go back to unicellular
evolutionary stages. Mutations to this core biochemical apparatus can prove disruptive to all aspects
of cellular life, and indeed, there are known mutational targets associated with genome stability and
cancer. In contrast to these “caretaker” genes, a more novel set of genes have emerged at the transition
to a multicellular stage. These “gatekeeper” proteins are involved in cell-to-cell communication,
especially in early embryonic development and tissue regeneration. Gatekeeper genes that control cell
division are among the best known cancer-associated oncogenes and tumor suppressors [2].

In order to establish the evolutionary origins of cancer genes, Domazet-Loso and Tautz carried
out a systematic analysis based on phylostratigraphic tracking [3]. By correlating the evolutionary
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origin of genes with particular macroevolutionary transitions, they found that a major peak connected
to the emergence of cancer genes corresponds to the level where multicellular animals have emerged.
However, many cancer genes have a more ancient origin and can be traced back to unicellular organisms.
These trends seem to apply to the appearance of disease genes [4] and novel genes in general as
well [5]. These studies were based on the evolutionary history of the founder domains. However,
new genes can also be generated by duplication either in whole or from part of existing genes, when
the duplicate copy of a gene becomes associated with a different phenotype to its paralogous partner.
This mechanism can also influence the emergence of disease genes [5].

By taking advantage of the flux of cancer genome data, several new proteins have been identified
to play a direct role in driving tumorigenesis during recent years [6]. One of the key signatures of
cancer drivers is the presence of mutation hotspot regions, where many different patients might show
a similarly recurrent pattern of mutations [7]. These hotspots are typically located within well-folded,
structured domains. However, many cancer associated proteins have a complex modular architecture,
incorporating not only globular domains, but also intrinsically disordered segments, which can also
be sites of cancer mutations. In our recent work, we systematically collected disordered regions
that are directly targeted by cancer mutations and analyzed their basic functional and system level
properties. [8]. While only a relatively small subset of such disordered cancer drivers was identified,
their mutations can be the main driver event in certain cancer types. These disordered regions can
function in a variety of ways including post-transcriptional modification sites (PTMs), linear motifs,
linkers, and larger sized functional modules typically involved in binding to macromolecular complexes.
These disordered cancer drivers have a characteristic functional repertoire and increased interaction
potential, and their perturbation can give rise to all ten hallmarks of cancer independently of ordered
drivers [8].

In general, owing to the lack of structural constraints, disordered segments show more evolutionary
variability [9]. In particular, linear motifs can easily emerge to a previously non-functional region of
protein sequence by only a few mutations, or disappear as easily, leaving little trace after millions or
billions of years [10]. However, elements fulfilling a critical regulatory function might linger on for
a longer time. So far, the evolutionary origin of intrinsically disordered regions that have a critical
function proven by a human disease association has not been analyzed.

In the current study, we studied the evolutionary origin of disordered cancer risk regions.
For this, we used a dataset of cancer driving proteins in which cancer mutations specifically targeted
intrinsically disordered regions [8]. We retrieved phylogeny data from the ENSEMBL Compara database.
Using a novel conservation and phylogenetic-based strategy, we determined the evolutionary origin
not only at the gene level, but also at the region level. In addition, we also investigated the emergence
mechanism of disordered cancer risk regions and how evolutionary constraints, selection, and gene
duplications events influenced the fate of these examples. Finally, we presented interesting case studies
that demonstrate the ancient evolutionary origin of these examples and the continuing evolution of
their genes built around the critical conserved functional module.

2. Materials and Methods

2.1. Dataset

We used a subset of the previously identified disordered cancer risk regions [8]. These regions
were identified based on genetic variations collected from the COSMIC database [11] using the method
that located specific regions that are enriched in cancer mutations [7]. Disorder status of these regions
was verified based on experimental data collected from dedicated databases and from the literature
when available, or based on consensus disorder prediction methods [8]. Mapping was not feasible for
CDKN2A isoform (Tumor suppressor ARF), because it was not present in the ENSEMBL database
we used in our study), hence this protein was excluded from the further analyses. Proteins in which
both disordered and ordered cancer regions were identified were filtered out in order to be able to
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focus clearly on the disordered regions. Regions that were primarily mutated by in-frame insertion
and deletion and contained less than 15 missense mutations were also excluded because of our
conservation calculation method (see below). Finally, histone proteins were merged, keeping the single
entry of HIST1H3B. Ultimately, we obtained a list of 36 disordered cancer risk regions of 32 proteins
APC (Adenomatous polyposis coli protein): 1284–1537, ASXL1 (Polycomb group protein ASXL1):
1102–1107, BCL2 (Apoptosis regulator Bcl-2): 2–80, CALR(Calreticulin): 358–384, CARD11 (Caspase
recruitment domain-containing protein 11): 111–134; 207–266; 337–436, CBL (E3 ubiquitin-protein
ligase CBL): 365–374, CCND3 (G1/S-specific cyclin-D3): 278–290, CD79B (B-cell antigen receptor
complex-associated protein beta chain): 191–199, CEBPA (CCAAT/enhancer-binding protein alpha):
293–327, CSF1R (Macrophage colony-stimulating factor 1 receptor): 969–969, CTNNB1 (Catenin
beta-1): 32–45, EIF1AX (Eukaryotic translation initiation factor 1A, X-chromosomal): 4–15, EPAS1
(Endothelial PAS domain-containing protein 1): 529–539, ESR1 (Estrogen receptor): 303–303, FOXA1
(Hepatocyte nuclear factor 3-alpha): 248–268, FOXL2 (Forkhead box protein L2): 134–134, FOXO1
(Forkhead box protein O1): 19–26, HIST1H3B (Histone H3.1): 28–28, ID3 (DNA-binding protein
inhibitor ID-3): 48–70, MED12 (Mediator of RNA polymerase II transcription subunit 12): 44–44,
MLH1 (DNA mismatch repair protein Mlh1): 379–385, MYC (Myc proto-oncogene protein): 57–60,
MYCN(N-myc proto-oncogene protein): 44–44, MYOD1(Myoblast determination protein 1): 122–122,
NFE2L2 (Nuclear factor erythroid 2-related factor 2): 20–38; 75–82, PAX5 (Paired box protein Pax-5):
75–80, RPS15 (40S ribosomal protein S15): 129–145, SETBP 1 (SET-binding protein): 858–880, SMARCB1
(SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1):
368–381, SRSF2 (Serine/arginine-rich splicing factor 2): 95–95, USP8 (Ubiquitin carboxyl-terminal
hydrolase 8): 713–736, VHL (von Hippel-Lindau disease tumor suppressor): 54–136; 144–193.

2.2. Evolutionary Framework

In this work, we calculated the evolutionary origin of cancer risk regions within our dataset of
disordered proteins. Our approach focused on the age of orthologous gene families, instead of focusing
on the evolutionary origin of founder domains. Assignment of age of human gene families (origin)
was carried out using the ENSEMBL genome browser database. To identify the origin of individual
human gene families, we fetched the phylogenies and analysed the evolutionary supertrees built by the
pipeline of the ENSEMBL Compara multi-species comparisons project [12,13]. The used release (99) of
the project contained 282 reference species including 277 vertebrata, 4 eumetazoa, and 1 opisthokonta
(S. cerevisiae) species. Note that, in these phylogenies, the most ancient node can be the ancestor of
yeast. The origin of the gene family was identified by taking the taxonomy level of the most ancient
node of the phylogenetic supertrees. Taxonomy levels were broken into major nested age categories
(mammals, vertebrates, eumetazoa, opisthokonta), similarly to previous studies [14].

To define the evolutionary origin of regions, we built a customized pipeline that included collecting
and mapping mutations from COSMIC database to ENSEMBL entries, constructing multiple sequence
alignments of protein families, and mapping the cancer regions among orthologs and paralogs.
According to the ENSEMBL supertrees, protein sequences of human paralogs (including the cancer
gene) and their orthologs were queried from the database using the Rest API function. Then, multiple
sequence alignments of the corresponding sequences were created with MAFFT (default settings) [15].
On the basis of the sequence alignments, cancer regions were mapped onto the sequences. In the
mapping step, cancer regions were considered as functional units (linear motifs, linkers, disordered
domains) and borders of the regions were defined according to this. When the highly mutated regions
covered only a single residue, it was extended to cover the known functional linear motif or using its
sequence neighbourhood. On this basis, the subset of paralogs, in which the mapped cancer region
was found to be conserved, was identified.

Next, the set of sequences containing regions that showed evolutionary similarity to the mutated
regions were identified among the collected orthologs and paralogs. Conservation of the regions among
paralogs was evaluated relying on two strategies, by calculating the similarity of mutated positions in
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the cancer risk regions (see below) and based on HMM profiles. This consideration was taken into
account in order to reduce the chance of false conservation interpretation arising from the difficulty of
aligning disordered proteins. The HMM profiles were built from conserved cancer regions of vertebrate
model organisms using the HMMER (version 3.3) method [16]. The identified region hits were manually
checked to minimize the chance of false positives or negatives. Next, we identified the evolutionarily
most distant relative in which the cancer region was declared to be conserved. As a result, the origin
of the region could differ from the origin of the orthologous gene family, when paralogue sequences
that contained the conserved motif had a more ancient origin. Basically, we treated the cancer risk
regions as the founder of the family. The taxonomy level of this ortholog was defined as the level in
which the cancer region emerged in the common ancestor of this ortholog and H. sapiens.

2.3. Region Conservation

Within the identified cancer risk region, some of the positions could be more heavily mutated
and are likely to be more critical for the function of this region. We took this into account when
calculating the region conservation. Mutations for each position collected from the COSMIC database
were mapped to the corresponding ENSEMBL human entry. On the basis of the sequence alignment
corresponding to the cancer risk regions, we identified the positions that were similar to the reference
sequence. Two positions were considered similar when the substitution score was non-negative
according to the BLOSUM62 substitution matrix. A given cancer region was considered to be conserved
between homologs, when the conserved residues carried more than 50% of missense mutations.

2.4. Positive Selection: Selectome and McDonald and Kreitman (MK) Test Results

For each entry in our dataset, we collected information about positive selection using the Selectome
database (current version 6) [17]. This database contains collected sites of positive selection detected
on a single branch of the phylogeny using the systematic branch-site test of the CODEML algorithm
from the PAML [18] phylogenetic package version 4b. The ratio of non-synonymous and synonymous
substitutions (ω) can be interpreted as a measurement of selective pressure indicating purifying
(ω values < 1), neutral (ω values = 1), or positive (ω values > 1) selection. In our work, positions
under positive selection that have a posterior probability higher than 0.9 were extracted from the
database and mapped onto our gene set.

However, the branch-site model generally cannot detect species-specific positive selection.
Potential cases of human-specific positive selection may be detected effectively by comparing divergence
to polymorphism data, as in the McDonald and Kreitman (MK) test. Human-specific positive selection
detected by MK test previously calculated [19] was mapped onto our dataset of disordered cancer genes.

3. Results

3.1. Evolutionary Origin of Genes and Regions

Altogether, we collected 36 cancer risk regions of 32 disordered proteins and investigated the
evolutionary origin at the level of genes and regions. The age estimation of disordered cancer genes
was obtained using the last common ancestor of descendants using the ENSEMBL supertrees, which
includes phylogeny of gene families returning not only individual gene history, but also relationships of
ancient paralogs and their history (see Material and Methods). Using this strategy instead of analysing
the evolution of individual genes or simply the emergence of the founder domain, we could define the
origin of regions more precisely, even the ancient ones, without introducing any bias of overprediction
of origins. However, some ambiguity still remained and was manually checked (Supplementary
Materials 1). The genes were traced back to opisthokonta (in accordance with the ENSEMBL database)
and divided into four major phylostratigraphic groups, which are associated with the emergence of
unicellular, multicellular organisms, vertebrates, and mammals.
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Previous results identified the level of eumetazoa as the main age for the emergence of cancer
associated proteins [3]. We observed a similar trend in the case of disordered cancer proteins.
Specifically, we found that 21 disordered cancer proteins, the majority of cases, have emerged at the
level of eumetazoa (Figure 1). Fourteen cases were found to be even more ancient and could be traced
back to single cell organisms, at least to opisthokonta. The only protein that emerged more recently,
at the level of vertebrates, was CD79B, the B-cell antigen receptor complex-associated protein β chain.
Its appearance is in agreement with the birth of many immune receptors [20] and is assumed to be
driven by the insertion of transposable elements.Biomolecules 2019, 9, x FOR PEER REVIEW  6 of 18 
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Figure 1. Conservation-based evolutionary origin of disordered cancer regions and genes. (A) The
orange and sky blue squares represent the origin of genes and regions, respectively. Gunmetal squares
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in the three gene-age categories.
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In around half of the cases (21), the emergence of the mutated region was the same as the
emergence of the protein (Figure 1). Strikingly, these included five cases (EIF1AX, HIST1H3B, MLH1,
RPS15, SMARCB1) where not only the gene/protein, but also the region primarily mutated in human
cancers were very ancient and could be traced back to unicellular organisms. Fifteen regions with
Eumetazoa and one with Vertebrata origin could be traced back to the same level as their corresponding
gene. However, in several cases, the emergence of the region was a more recent event compared
with the emergence of the gene. Of these, eight regions emerged at the Eumetazoa and seven at the
Vertebrate level. In general, there was only one level difference between the emergence of the gene and
the region at this resolution. The only exception was SETBP1. In this case, the region itself emerged
at the vertebrate level. However, the gene could be traced back to opisthokonta level, although the
eumetazoa origin cannot be completely ruled out (see Supplementary Materials 1). Overall, many
of the disordered regions were more recent evolutionary inventions compared with the origin of
their genes, and date back to the common ancestors of eumetazoans or vertebrates. Nevertheless,
the ancestors of all of the regions were already present from the vertebrate level.

3.2. Position Conservation

Overall, these results point to the ancient evolutionary origin of disordered regions involved in
cancer, not only at the gene level, but also at the region level. To take a closer look, we also calculated the
conservation of individual positions within the regions based both in terms of homologous substitutions
and identity. The results show that these residues are highly conserved even compared with the
conservation of the whole sequence (Figure 2). Here, 86% of the regions have more than 0.8 average
conservation value even based on identities (Figure 2A). Among the cases with the four lowest values,
the conservation of VHL, CALR, and APC, which all correspond to relatively longer segments, was still
relatively high. The only outlier was BCL2. In this case, the mutations are distributed along the
N-terminal, encompassing the highly conserved BH4 motif, as well as the linker region between the
BH4 and C-terminal part, which is conserved only in mammals (Figure S1).
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Figure 2. Representation of average conservation values. (A) Sorted conservation values for each region
having positions with at least one mutation and for the whole protein. Squares (dark blue—region,
green—whole sequence) and triangles (light blue—regions, green—full sequence) represent BLOSUM62
and identity based conservation values, respectively. The outlier at the very end of the sequence
corresponds to the region of BCL2. (B–D) The number of regions and average conservation value of
regions having positions with at least 1, 15, and 25 mutations, respectively. The conservation values are
based on BLOSUM62 and identity, and the number of regions are colored by dark, medium, and sky
blue, respectively.
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Next, we investigated how this average value is altered when only the highly mutated positions
are considered. We repeated that analysis for positions that had at least 15 and 25 missense mutations,
which slightly decreased the number of regions considered. The remaining 28 and 17 regions with
positions having at least 15 and 25 mutations had 0.93, 0.89, 0.96, and 0.92 average conservation values
based on substitutions and identity, respectively (Figure 2C,D). This reflects a very clear trend with
positions with a higher number of cancer mutations showing higher evolutionary conservation.

We also collected sites of potential positive selection mapped onto our genes based on the
Selectome database [17], which provides information on likely molecular selection both at the level
of the evolutionary branch and the sequence position based on the ratio of non-synonymous and
synonymous substitutions (ω). According to these results, positive selection affected only three genes
on the human lineage in our dataset, CALR, CTNNB1, and VHL. All of these selections could be
mapped onto the vertebrates division with multiple positions (see Material and Methods) (Table 1).

Table 1. Positive selection within disordered cancer genes. Positions within cancer risk regions are
colored blue. The numbers in brackets are the posterior probability of positive selection for each position.

Gene Positions under Positive Selection Referring to the Human Protein Sequence

CALR 83(0.971), 155(0.971), 177(0.990), 267(0.995), 307(0.994), 336(0.991), 360(0.999)

CTNNB1 121(0.999), 206(0.993), 250(0.998), 287(0.991), 411(0.998), 433(0.993), 525(0.997), 552(0.998), 556(0.916)

VHL 127(0.957), 132(0.942), 141(0.923), 171(0.947), 183(0.963), 185(0.920)

However, these positions showed limited overlap with the mutated regions. In the case of
CTNNB1, none of the positions under selection overlapped with the cancer mutated region. In the
case of CALR, there was only a single position under selection within the cancer risk region, but it
was not directly targeted by cancer mutations. In the case of VHL, six positions were detected with
selective pressure and five of them were situated within the significantly mutated region. However,
none of them corresponded to a highly mutated residue.

Taking advantage of an earlier analysis [19], we also analyzed if there was any human specific
positive selection. As the ω based approach can not be used without uncertainty to identify
human-specific positive selection, this work relied on the McDonald and Kreitman (MK) test,
which compares the divergence to polymorphism data using closely related species, such as human and
chimp. There was only a single entry in our database, ESR1, that showed human specific evolutionary
changes (see case studies).

3.3. Contribution of Duplications to the Emergence of Disease Risk Regions

Gene duplications often drive the appearance of a novel function through the process called
neofunctionalization. In these cases, after a duplication event, one copy may acquire a novel, beneficial
function that becomes preserved by natural selection. Here, we have evaluated whether the emergence
of disordered cancer regions corresponds to such neofunctionalization events. For this analysis,
we collected paralog sequences and evaluated if there were regions present in these sequences that
showed clear evolutionary similarity to the cancer mutated region.

The evolutionary history of many genes is quite complex and can involve multiple duplication
events. We focused on the level where the cancer regions emerged and distinguished the following
scenarios based on the relationship between the duplication and the presence of the region among
the paralogs. The first scenario corresponds to duplication induced neofunctionalization. In this case,
an ancient cancer region emerged directly after a given gene duplication and became preserved in
only one of the branches that appeared after the duplication (Figure 3A). There are two basic scenarios
in which the duplication cannot be directly linked with the emergence of the regions. One possible
scenario is when both branches contain the region, which indicates that the region must have emerged
before the duplication (Figure 3B). The other possible scenario is when the region emerged at a later
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evolutionary stage after a duplication, and duplication cannot be directly linked to neofunctionalization
(Figure 3B).Biomolecules 2019, 9, x FOR PEER REVIEW  9 of 18 

 

Figure 3. The mechanisms of emergence of regions by neofunctionalization and de novo. (A) 
Demonstration of the model of duplication induced (neofunctionalization) cancer region emergence. 
(B) Depiction of the two sub-scenarios of the de novo region emergence. Mallow boxes and arrows 
explain the evolution of the region. Red and green triangles symbolize the further evolution of 
paralogs after gene duplications. 

Surprisingly, the duplication induced neofunctionalization was much less common than we 
expected, with only seven cases showing this behaviour. One example for this scenario is presented 
by the β-catenin family, where the degron motif [21] based cancer risk region that emerged after 
duplication is present only on the branch of β-catenin and junctional plakoglobin (JUP). In contrast, 
we found that 23 regions have evolved by de novo emergence, which seemed to be the dominant 
mechanisms for the emergence of the analyzed cancer mutated disordered regions (Figure 4A). For 
example, ID3 underwent multiple duplications, but all paralogs contain the cancer risk region, 
which indicates that the region emerged prior to the duplication. Another example is ESR1, in which 
case the paralogs were born at the level of eumetazoa; however, this event is not directly linked to 
the emergence of the cancer region, which appeared only at the level of the ancient vertebrates. In 
addition, there were two singletons in our dataset, RPS15 and SMARCB1, which did not have any 
detectable paralogs. In the cases of ASXL1, CCND3, SETBP1, and the first region of CARD11, the 
evolutionary scenarios could not be unambiguously established. These six examples formed the 
“Other” group. 

Figure 3. The mechanisms of emergence of regions by neofunctionalization and de novo.
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Surprisingly, the duplication induced neofunctionalization was much less common than we
expected, with only seven cases showing this behaviour. One example for this scenario is presented by
theβ-catenin family, where the degron motif [21] based cancer risk region that emerged after duplication
is present only on the branch of β-catenin and junctional plakoglobin (JUP). In contrast, we found
that 23 regions have evolved by de novo emergence, which seemed to be the dominant mechanisms
for the emergence of the analyzed cancer mutated disordered regions (Figure 4A). For example, ID3
underwent multiple duplications, but all paralogs contain the cancer risk region, which indicates that
the region emerged prior to the duplication. Another example is ESR1, in which case the paralogs
were born at the level of eumetazoa; however, this event is not directly linked to the emergence of the
cancer region, which appeared only at the level of the ancient vertebrates. In addition, there were two
singletons in our dataset, RPS15 and SMARCB1, which did not have any detectable paralogs. In the
cases of ASXL1, CCND3, SETBP1, and the first region of CARD11, the evolutionary scenarios could
not be unambiguously established. These six examples formed the “Other” group.
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We also analyzed if additional duplication events occurred after the emergence of regions and
whether the novel paralogues retained the regions. There are basically three scenarios that can occur:
(i) the region is preserved without any further duplications; (ii) the region spreads and becomes
preserved in all of the novel duplicates; (iii) partial loss scenario, that is, the region is preserved in some
duplicates, but is lost in others. Our results show that the most common evolutionary fate is the second
one (Figure 4B). In 29 cases, at least one duplication that inherited the region can be observed after
the emergence of the cancer region. In contrast, only five regions were not duplicated. Some ancient
cases, such as MLH1 and USP8, are also included among the non-duplicated ones, which means that
the reason for the lack of duplications is not the short evolutionary time. The partial loss scenario
was observed in only two cases, in the case of VHL and NFE2L2. For instance, in the case of VHL,
there was a relatively recent gene duplication at the level of mammals. While the N-terminal segment
is present on both paralogs (VHL and VHLL), the C-terminal segment is only present in VHL, but was
lost from VHLL. In a similar fashion, NFE2L2 underwent a more recent gene duplication at the level
of vertebrates, but the newly emerged paralog did not retain the two linear motifs that are primarily
targeted by cancer mutations.

3.4. Case Studies

3.4.1. MLH1

One of the most ancient examples in our dataset corresponds to MLH1 (MutL Homolog 1),
an essential protein in DNA mismatch repair (MMR). As one of the classic examples of a caretaker
function, mutations of MLH1 can lead to cancer by increasing the rate of single-base substitutions and
frameshift mutations [22]. Several positions of MLH1 are mutated in people with Lynch syndrome, also
known as hereditary nonpolyposis colorectal cancer (HNPCC). However, according to the COSMIC
database of somatic cancer mutations, the most common mutation of MLH1 is V384D. Mutational
studies of V384D using yeast assays and in vitro MMR assay did not indicate a strong phenotype,
but still showed a limited decrease of MMR activity [23]. However, it was shown that the (mostly
germline) V384D variant is clearly associated with increased colorectal cancer susceptibility [24], and it
is highly prevalent in HER2-positive luminal B breast cancer [25].

MLH1 is an ancient protein that is present from bacteria to humans. It has a highly conserved
domain organization that involves ordered N- and C-terminal domains connected by a disordered
linker [26] (Figure 5). This underlines the functional importance not only of the structured domains,
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but also of the connecting disordered region. In our previous work, we identified the region from 379
to 385 to be significantly mutated [7], which is located within the disordered segment. Recently, it was
shown that the linker can regulate both DNA interactions and enzymatic activities of neighboring
structured domains [27]. In agreement with the linker function, both the composition and length of this
intrinsically disordered region (IDR) are critical for efficient MMR. Overall, most of the linker shows
relatively low sequence conservation, however, the identified cancer risk region is highly conserved
from across all eukaryotic sequences (Figure 5), in an island-like manner. Although the exact function
of this region is not known, the strong evolutionary conservation indicates a highly important function,
not yet explored in detail.
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MLH1. The segment of the alignment represents the cancer region (highlighted by a rectangle) with the
missense mutation distribution depicted by gray bars. Domains are depicted by yellow, disordered
regions by red boxes, while the green box indicates the cancer risk region.

3.4.2. VHL

VHL, the Von Hippel-Lindau disease tumor suppressor protein possesses an E3 ligase activity.
It plays a key role in cellular oxygen sensing by targeting hypoxia-inducible factors for ubiquitylation
and proteasomal degradation. To carry out its function, VHL forms a complex with elongin B, elongin
C, and cullin-2 and the RING finger protein RBX1 [28,29]. VHL has an α-domain (also known as the
VHL-box, residues 155 to 192) that forms the principal contacts with elongin C, and a larger β-domain
(residues 63 to 154) that directly binds the proline hydroxylated substrate, HIF1α. The positions
mutated across various types of cancers cover a large part of the protein, including both the α and β
domains. While these regions form a well-defined structure in complex with elongin B, elongin C,
and cullin-2, they are disordered in isolation and rapidly degraded [30].

The VHL gene emerged de novo at the level of Eumetazoa together with HIFα and PHD,
the other key components of the hypoxia regulatory pathway. However, more recently, the gene
underwent various evolutionary events. The VHL gene showed slightly higher evolutionary variations
compared with other cancer risk regions (Figure 2). Some positions, including K171, showed signs of
positive selection at the level of Sarcopterygii, which might implicate the occurrence of an important
evolutionary event. It was shown that the SUMO E3 ligase PIASy interacts with VHL and induces
VHL SUMOylation on lysine residue 171 [31]. VHL also undergoes ubiquitination on K171 (and K196),
which is blocked by PIASy. In the proposed model of the dynamic regulation of VHL, the interaction
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of VHL with PIASy results in VHL nuclear localization, SUMOylation, and stability for blocking
ubiquitylation of VHL. Meanwhile, PIASy dissociation with VHL or attenuation of VHL SUMOylation
facilitates VHL nuclear export, ubiquitylation, and instability. This dynamic process of VHL with
reversible modification acts in concert to inhibit HIF1α [32].

A novel acidic repeat region appeared at the N-terminal region of the protein at the level of
Sarcopterygii, and this region underwent further repeat expansion in the lineage leading up to humans
(Figure 6). These GxEEx repeats are generally thought to confer additional regulation to the long isoform
of VHL (translated from the first methionine), with a number of putative (USP7) or experimentally
detected (p14ARF) interactors [33]. Although poorly studied, this repetitive region also seems to
harbour casein kinase 2 (CK2) phosphorylation as well as proteolytic cleavage sites, regulating VHL
half-life (consistent with a deubiquitinase, such as USP7 binding role) [34]. As a result of a recent
gene duplication, the human genome even encodes a VHL-like protein (VHLL), which has lost the
C-terminal segment including the α domain. Consequently, VHLL cannot nucleate the multiprotein
E3 ubiquitin ligase complex. Instead, it was suggested that VHLL functions as a dominant-negative
VHL to serve as a protector of HIF1α [35]. This example demonstrates that, while the basic cancer risk
region remains largely unchanged during evolution, additional regulatory mechanisms can emerge to
further fine-tune the function of the protein.
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Figure 6. Schematic representation of the evolutionary scenario of the VHL family and the functional
units of the members. Repeat units in varying numbers and the α and β core domains are depicted
by green and yellow boxes, respectively. Red stripe in the α domain of human VHL indicates
K171 identified to emerge by positive selection on the Sarcopterygii branch (mapped K171 to other
Sarcopterygii are also indicated by red stripes).

3.4.3. ESR1

Estrogen receptor 1 (ESR1) is a member of the nuclear hormone receptor family with eumetazoan
origin. The most common mutation in both primary and tamoxifen therapy associated samples
corresponds to a single mutation (K303R). This single site emerged more recently (Figure 7) and is
located in a rather complex switch region adjacent to the ligand-binding domain (Figure S2). The highly
mutated K303 of ESR1 (more than 200 K303R missense mutations are seen in COSMIC) is a part of a
motif-based molecular switch region involving several mutually exclusive PTMs. At positions 302,
303, and 305, methylation by SET7/9, acetylation by p300, and phosphorylation by PKA or PAK1 were
observed in previous studies, respectively [36–40]. Our results show that this region is conserved only
in Sarcopterygii, which indicates a relatively young evolutionary origin of the switching mechanism.
However, while the methylation and acetylation sites are well conserved, the phosphorylation motif
appears to be specific only to H. sapiens. We came to this conclusion because R300 and K302 as well
as L306 are required for the protein kinase A (PKA) phosphorylation consensus and the oncogenic
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mutation K303R is expected to turn this region into an even better PKA substrate [41,42]. Curiously,
these residues are not found in any other mammal, supposing species specific adaptive changes.

Comparison of substitutions and polymorphic sites is a powerful approach to identify specific
changes in a pair of closely related species, like H. sapiens and chimpanzee. Relying on this approach,
198 of 9785 analyzed genes were identified to show human-specific changes including ESR1 [19].
In ESR1, there are three more changes besides R300 and K306 (L44, Q502, S559) between H. sapiens and
chimp that are also thought to be adaptive substitutions according to the MK test. Phosphorylation of
S559 was experimentally identified, suggesting this residue is also a H. sapiens specific PTM [43,44],
but there is no specific data in the literature about the biological function of L44 and Q502. Yet, we know
that phosphorylation of S305 allows the increase of estrogen sensitivity by external stimuli other than
steroids, and permits ESR1 activity even when the canonical estrogen effect is completely blocked
by tamoxifen [40,42]. In mice, ESR1 activity is essential for the estrogen effect and normal estrous
episodes [45,46]. Although we lack information, we theorize that this human-specific signaling
crosstalk might somehow be connected to the continuous menstrual cycle of H. sapiens (quite unusual
among mammals), or some other human-specific reproductive adaptation.
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structure of human ESR1. The alignment generated with MAFFT [15] represents the cancer region with
sites of post-translational modifications. Borders of non-depicted insertion of zebrafish are indicated by
lower case letters. The highly mutated position (K303R) is highlighted by a rectangle. PTM sites are
indicated by circles above the alignment. H. sapiens specific changes are colored in red. Domains are
depicted in yellow, disordered regions are depicted by red boxes, while the green boxes indicate the
cancer risk regions.

4. Discussion

In our study, we aimed to estimate the evolutionary origin of disordered regions that are specifically
targeted in cancer. Intrinsically disordered protein regions play essential roles in a wide-range of
biological processes and can function as linear motifs, linkers, or other intrinsically disordered
domain-sized segments [47]. They are integral parts of many cancer associated proteins and, in a
smaller number of cases, they can also be the direct targets of cancer driving mutations. In general,
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IDRs are believed to be of more recent evolutionary origin, and exhibit higher rates of evolutionary
variations compared with that of folded globular domains [9]. However, this is not what we see in
the case of disordered cancer genes. Instead, we observed that cancer-targeted disordered regions are
extremely conserved with deep evolutionary origins, which underlines their critical function. The two
main ages for emergence of disordered cancer genes can be linked to unicellular organisms and the
emergence of multicellularity, in agreement with the result of phylostratigraphic tracking of cancer
genes in general [3].

One of the most unexpected findings of our study is the examples of disordered cancer genes that
can be traced back to unicellular organisms. Mechanistically, the group of cancer genes that emerged
in unicellular organisms were suggested to play a caretaker role and contribute to tumorigenesis
by increasing mutation rates and genome instability. In contrast, cancer genes that emerged at the
level of multicellularity were suggested to typically have a gatekeeper function and promote tumour
progression directly by changing cell differentiation, growth, and death rates [48]. MLH1 is one of
the best characterized examples of a gene with a caretaker function [49]. It is involved in mismatch
repair (MMR) of DNA bases that have been misincorporated during DNA replication. Thus, disruptive
mutations of MLH1 greatly increase the rate of point mutations in genes and underline various
inherited forms of cancer. However, the most commonly seen alterations in patients are located in the
flexible internal linker. Mutational studies indicate that this highly conserved segment might not be
directly involved in MMR, but likely has an important, currently uncharacterized function. The other
ancient examples are also involved in basic cellular processes, however, they are associated with a
broader set of functions. HIST1H3B, SMARCB1, and SETBP1 are involved in epigenetic regulation and
their mutations can alter gene expression patterns [50,51]. Mutations of EIF1AX and RPS15 are likely
to perturb translation events [52,53]. However, SRSF2, which is responsible for orchestrating splicing
events, can also have a global influence on cellular states [54]. Therefore, the caretaker function is also a
subject of evolution and some of its components emerged as a result of more recent evolutionary events.

A clear novelty of our approach is to focus at the origin of sub-gene elements; that is, regulatory
regions, modules, and domains, instead of full genes. The genes can be built around founder genes that
have an extremely ancient origin, but their biological function and regulation can change fundamentally
during subsequent evolution. In several cases, the origin of the cancer mutated region was substantially
more recent than the origin of the gene. Nevertheless, after their emergence, disordered cancer regions
were fixated rapidly and showed little variations afterwards. However, their evolution at the gene
level was not set in stone and there are several indications that this process continues indefinitely.
In several cases, the cancer genes underwent gene duplications, further regulatory regions were added,
or fine-tuned by changing some of the less critical positions. We highlighted a fascinating case when
such an event occurred when our species, H. sapiens, separated from its primate relatives.

In general, the rate of gene duplications is very high (0.01 per gene per million years) over
evolution, which provides the source of emergence of evolutionary novelties [55]. According to the
general view, paralogs go through a brief period of relaxed selection directly after duplications—this
time ensures the acquisition of novelties—and subsequently experience strong purifying selection,
preserving the newly developed function. However, our results showed that only a few disordered
cancer regions have emerged in a duplication induced manner and the vast majority of disordered
cancer regions emerged de novo, independent of duplications. The evolution of disordered regions
is better described by the ex-nihilo motif theory, which is based on the rapid disappearance and
emergence of linear motifs by the change of only a few residues within a given disordered protein
segment [10]. This evolutionary phenomenon is commonly observed in the case of linear motifs,
for example, in the case of NFE2L2. This protein carries a pair of crucial linear motifs that have emerged
in the ancient eumetazoa, but are not preserved in the most recent duplicates. In an evolutionary
biology aspect, our results suggest that the evolution of functional novelties in the case of disordered
region mediated functions requires a more complex model.
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Exploring the evolutionary origin of cancer genes is an important step to understand how this
disease can emerge. This knowledge can also have important implications of how their regulatory
networks are disrupted during tumorigenesis and can be incorporated into developing improved
treatment options [56]. In this work, we focused on a subset of cancer genes that belong to the class
of intrinsic disordered proteins, which rely on their inherent flexibility to carry out their important
functions. While the selected examples represent only a small subset of cancer genes, they are
highly relevant for several specific cancer types [8]. In general, disordered proteins are evolutionarily
more variable compared with globular proteins, however, the disordered cancer risk regions showed
remarkable conservation with ancient evolutionary origin, highlighting their importance in core
biological processes. Nevertheless, we found several examples where the region specifically targeted
by cancer mutations emerged at a later stage compared with the origin of the gene family. Our results
highlight the importance of taking into account the complex modular architecture of cancer genes in
order to get a more complete understanding of their evolutionary origin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/8/1115/s1,
Figure S1: Sequence alignment of BCL2 cancer region. Figure S2: Schematic representation of the evolutionary
scenario and functional units of the ESR1 and ESR2 proteins. Supplementary Materials 1: Evolutionary origins of
selected cases.
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