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Abstract: The peptide AVFQHNCQE demonstrated to produce nitric oxide-mediated antihypertensive
effect. This study investigates the bioavailability and the opioid-like activity of this peptide after its
oral administration. For this purpose, in silico and in vitro approaches were used to study the peptide
susceptibility to GI digestion. In addition, AVFQHNCQE absorption was studied both in vitro by
using Caco-2 cell monolayers and in vivo evaluating peptide presence in plasma from Wistar rats by
ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and by
ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS).
Both in vivo and in vitro experiments demonstrated that peptide AVFQHNCQE was not absorbed.
Thus, the potential involvement of opioid receptors in the BP-lowering effect of AVFQHNCQE was
studied in the presence of opioid receptors-antagonist Naloxone. No changes in blood pressure were
recorded in rats administered Naloxone, demonstrating that AVFQHNCQE antihypertensive effect is
mediated through its interaction with opioid receptors. AVFQHNCQE opioid-like activity would
clarify the antihypertensive properties of AVFQHNCQE despite its lack of absorption.

Keywords: bioactive peptides; blood pressure; Caco-2 cells; naloxone; nitric oxide; UHPLC-MS/MS;
UHPLC-HRMS

1. Introduction

Bioactive peptides are specific protein fragments released by limited proteolysis of their specific
precursor proteins, which present additional biological activities over and above their expected
nutritional [1,2]. Different health benefits have been reported for these peptides, including antioxidant,
antithrombotic, antimicrobial, opioid, and anticancer activities [3]. Nevertheless, one of the most
important biological properties attributed to bioactive peptides is their antihypertensive effects [4].
These peptides are usually obtained and selected by their capacity to inhibit angiotensin-converting
enzyme (ACE), key enzyme in blood pressure (BP) regulation [5]. Hypertension (HTN) is a global public
health problem [6] and although its medical treatment is well established, it can present side-effects in
some patients [7]. Thus, the use of antihypertensive peptides as an alternative for HTN prevention
and treatment is receiving interest even though these inhibitory peptides present lower ACE inhibitory
(ACEI) activity than the antihypertensive drugs [4].

Other mechanisms than the inhibition of ACE could be involved in the bioactive peptide
BP-lowering effect, including an improvement in endothelial function by the activation of nitric oxide
(NO) pathway [8]. In this sense, NO has also been reported to mediate the endothelium-dependent
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vasorelaxation effects of different antihypertensive peptides [8]. The antihypertensive peptides that
mediate its effect through NO could enhance NO production by the activation of endothelin NO
synthase by phosphorylation at Ser-1177 residue consistent [9]. Additionally, some bioactive peptides
also present antioxidant effects, which in turn would contribute to enhance NO bioavailability and
to improve endothelium functionality by reducing radical oxygen species, that are known to be NO
scavengers [10].

The peptide in vivo physiological effects depend on their ability to reach the target sites in an
active form [11]. In this context, gastrointestinal (GI) digestion plays a key role in the formation and
degradation of bioactive peptides [12]. Once ingested, peptides might be subjected to hydrolysis
by different GI enzymes such as pepsin, trypsin, chymotrypsin, and peptidases from the surface of
epithelial cells, which could result in the release of different amino acid sequences [13]. In addition
to digestion, absorption may also condition peptide bioactivity. In this sense, peptides are absorbed
depending on their size and structure. Di- and tri-peptides are frequently transported through
PepT1 peptide transporter [14], while larger peptides can be absorbed by passive diffusion [15].
Moreover, water-soluble large peptides can cross via the tight junctions between cells and highly
lipid-soluble peptides appear to be able to diffuse via the transcellular route [14].

However, some bioactive peptides might mediate their physiological effects through its binding to
receptors present in the intestinal wall, implying that their absorption is not required [13]. It has been
demonstrated that some opioid peptides are not absorbed and can produce their biological effects by the
interaction with opioid receptors (µ, δ, and κ), which have been described in several tissues including
in the GI tract [15,16]. These opioid-like peptides are atypical opioid ligands that are released from the
hydrolysis of food and present N-terminal sequences that are different from those of the typical opioid
peptides such as endorphins. Some common structural features of opioid peptides are the presence
of a tyrosine residue at the amino-terminal end, and an aromatic residue, such as phenylalanine or
tyrosine, in the third or fourth position. These structural motives seem to be necessary for binding
to the opioid receptors, however, there is still no consensus about critical opioid-like structures [17].
In this regard, some opioid peptides have demonstrated to regulate BP and produce its BP-lowering
effect by binding to opioid receptors present in the GI tract [18]. Nurminen et al. [19] evidenced the
involvement of opioid receptors in the antihypertensive effect of the peptide α-lactorphin (YGLF)
as its BP-lowering effect was abolished by the administration of the non-selective opioid receptor
antagonist, Naloxone [20]. Furthermore, Sipola et al. [21] demonstrated α-lactorphin produced its
opioid-mediated antihypertensive effect through NO release.

AVFQHNCQE is a nonapeptide initially identify in the chicken foot hydrolysate Hpp11, which
exhibited antihypertensive properties after its oral administration to spontaneously hypertensive
rats (SHR) [22]. In particular, AVFQHNCQE produced a NO-mediated antihypertensive effect
and it was demonstrated that enhanced NO bioavailability through its antioxidant effect and by
improving the endothelium functionality when administered to the hypertensive animals [23].
However, AVFQHNCQE vulnerability to GI enzymes and posterior absorption has not been studied yet.
Thus, this study aimed to investigate the bioavailability of the antihypertensive peptide AVFQHNCQE
after its oral administration. For this purpose, in silico and in vitro approaches were used to study
the peptide susceptibility to GI digestion. In addition, AVFQHNCQE absorption was studied both
in vitro by using Caco-2 cell monolayers and in vivo evaluating peptide presence in plasma from
Wistar rats [14]. Finally, the potential involvement of opioid receptors in the BP-lowering effect of
AVFQHNCQE was studied in the presence of opioid receptors-antagonist Naloxone.

2. Materials and Methods

2.1. Materials

The peptide AVFQHNCQE was synthesized by CASLO Aps. (Kongens Lyngby, Denmark) and
its purity was 98.94%. Captopril was provided by Santa Cruz Biotechnology (Dallas, TX, United
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States). Pepsin, bile salts mixture, trypsin, α-chymotrypsin, porcine pancreatic lipase, colipase,
trifluoroacetic acid (TFA), formic acid (FA) LC-MS grade, and bovine serum albumin (BSA) were
obtained from Sigma-Aldrich (Madrid, Spain). Acetonitrile and methanol LC-MS grade were purchased
from Merck (Darmstadt, Germany). The synthetic isotopically labeled peptide IFV*TGQDYNDK
(V* = Val-13C5,15N) was obtained from Biomatik (Ontario, Canada) and used as internal standard
(IS) for MS experiments. Chicken foot hydrolysate Hpp11 was obtained by our group following the
procedure described by Bravo et al. [22,24]. All other chemical solvents used were of analytical grade.

2.2. In Silico and In Vitro Simulated Digestion

In silico simulated peptide digestion was carried out using the programs ExPASy PeptideCutter,
available at http://web.expasy.org/peptide_cutter. This approach can predict the hydrolysis of a protein
sequence obtained from a protein database using the known enzymatic cleavage sites. The digestive
enzymes pepsin, chymotrypsin, trypsin, lipase, and colipase were used to predict the protein fragments
generated in GI digestion of AVFQHNCQE.

For the in vitro simulated peptide GI digestion, a two-stage hydrolysis process was carried out
according to Martos et al. [25]. AVFQHNCQE was dissolved in simulated gastric fluid (35 mM
NaCl at pH 2 for 15 min) and posteriorly subjected to digestion by porcine pepsin (E.C. 3.4.23.1,
3440 units/mg) at an enzyme/substrate ratio of 1: 20 w/w at 37 ◦C for 60 min. Gastric digestion with
pepsin was stopped by adding 1 M NaHCO3 and pH was adjusted to 7.0 with NaOH 1 M (final
protein concentration of 5 mg/mL). Aliquots of this gastric digest were collected (G60) and stored
at −20 ◦C until analysis. Duodenal digestions were performed by using, as the starting material,
the obtained gastric digests, with the addition of 1 M CaCl2, 0.25 M bis-Tris pH 6.5, 0.25 M bis-Tris
pH 6.5, and a 0.125 M bile salts mixture containing equimolar quantities of sodium taurocholate and
glycodeoxycholic acid. Posteriorly, the duodenal enzymes trypsin (EC 232-650-8, 10100 BAEE units/mg
protein), α-chymotrypsin (EC 232-671-2; 55 units/mg protein), porcine pancreatic lipase (EC 232-619-9)
and colipase (EC 259-490-1), prepared in 35 mM NaCl adjusted to pH 7, were added to the solution.
Duodenal digestion was carried out at pH 7, 37 ◦C during 60 (D60). Then, enzymes were inactivated
by heating at 95 ◦C for 10 min in a water bath, followed by cooling to room temperature. Triplicates of
aliquots at each time point were collected and stored at −20 ◦C until analysis.

2.3. Peptide Bioavailability Studies

2.3.1. In Vivo Experiment

Male Wistar rats (17–20 weeks-old, weighing between 230 and 250 g) were obtained from Charles
River Laboratories (Barcelona, Spain). Animals were maintained in pairs, at 22 ◦C with light/dark
cycles of 12 h and were fed standard chow diet (AO4, Panlab, Barcelona, Spain) ad libitum during all
the experiment. Animals were randomly divided and administered tap water (control group, n = 6) or
10 mg/kg body weight (bw) peptide (AVFQHNCQE group, n = 6) by gastric intubation after starvation
of 12 h. The total volume of water or AVFQHNCQE orally administered to the rats was 1 mL. Blood
samples were collected via saphenous vein extraction by use of heparin vials (Starsted, Barcelona,
Spain) before the water or peptide administration and 30 min and 60 min post-administration. Plasma
samples were obtained by blood centrifugation (2000× g, 15 min, 4 ◦C) and were pooled (n = 6 per
treatment group) to perform ultra-high performance liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS) analysis. Plasma was stored at −80 ◦C until the analysis.

2.3.2. In Vitro Experiment

Caco-2 cells were obtained from Sigma-Aldrich and were grown Dulbecco’s modified minimum
essential medium (DMEM), supplemented with 20% fetal bovine serum (FBS), 2 mmol/mL L-glutamine,
100 U/mL penicillin and 100 µg/mL streptomycin at 37 ◦C in and 5% CO2. Cells were seeded onto
Transwell inserts permeable membrane support (0.4 µm pore, 24 mm diameter, 4.7 cm2 grown surface
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from Merck Co., Bedford, MA, USA) placed in six-well plates. The seeding density was 12,000 cell/cm2.
The medium was replaced every 2–3 days and cells were growing for 21 days. On the 21st day of the
procedure, the integrity of the Caco-2 monolayer was assessed by the measurement of transepithelial
electrical resistance (TEER) using a Millicell ERS-2 voltammeter (EMD Millipore, Darmstadt, Germany)
selecting the ones with TEER values higher than 200 Ω/cm2.

For the transport study, Caco-2 cells, maintained in DMEM, were gently rinsed with Hank’s
balanced salt solution (HBSS) and equilibrated for 20 min at 37 ◦C prior to the transport study. Then, it
was evaluated the transepithelial transport of the peptide AVFQHNCQE (1 mM) dissolved in HBSS
and the digests obtained in the in vitro simulated digestion (G60 and D60). AVFQHNCQE or the
peptide digests G60 and D60 were added to the apical (AP) chamber and were incubated for 1 h at
37 ◦C. After this time, triplicates of the AP chamber content and the basolateral (BL) chamber content
were taken and stored at −80 ◦C until ultra-high performance liquid chromatography-high resolution
mass spectrometry (UHPLC-HRMS) analyses.

2.4. Peptide Analysis by UHPLC-MS/MS and UHPLC-HRMS

2.4.1. Optimization of Peptide Extraction from Plasma

To efficiently extract the peptide or peptide fragments from plasma after AVFQHNCQE
administration in Wistar rats, three different extraction methods were assayed.

Solid-phase extraction (SPE): Plasma samples (150 µL) were mixed with 25 µL of
IFV*TGQDYNDK (IS) (10 ppm) and 800 µL of H2O (1% TFA). Then, these solutions were heated at
95 ◦C for 2 min to denature plasma proteins. After cooling down, samples were centrifuged (15,000 rpm,
15 min, 4 ◦C) and loaded to Oasis HLB (30 mg, 1 mL) cartridges (Waters, Barcelona, Spain), which
were sequentially pre-conditioned with 1 mL acetonitrile: water 0.1% FA (75:25, v/v) and 1 mL water
0.1% FA. Loaded cartridges were washed with 1 mL water 0.1% FA and dried. Retained peptides were
eluted with 2 sequential additions of 250 µL acetonitrile: water 0.1% FA (75:25, v/v). Eluted samples
were dried in a speed-vac concentrator (Thermo Fisher, Waltham, Massachusetts), USA), reconstituted
in 100 µL of water (0.1 % FA and 0.1 % BSA), and analyzed by UHPLC-MS/MS. The extraction was
performed in triplicate.

Protein precipitation by TFA: 150 µL of plasma were mixed with 25 µL of IS (10 ppm) and
40 µL of water (10% TFA) and heated for 2 min at 95 ◦C to precipitate plasma proteins. After cooling
down, samples were centrifuged (15,000 rpm, 15 min, 4 ◦C) and supernatants were analyzed by
UHPLC-MS/MS. The extraction was performed in triplicate.

Protein precipitation by TFA and solid-phase extraction (SPE): Plasma samples (150 µL) were
mixed with 25 µL of IS (10 ppm) and 40 µL of water (10% TFA) and heated at 95 ◦C for 2 min.
After cooling down, samples were centrifuged (15,000 rpm, 15 min, 4 ◦C) and supernatants were
purified using Oasis HLB (30 mg, 1 mL) cartridges (Waters) with the same procedure described before
and analyzed by UHPLC-MS/MS. The extraction was performed in triplicate.

2.4.2. Peptide Extractions from In Vitro Digestions and Caco-2 Monolayers

Samples obtained from in vitro peptide simulated digestion and Caco-2 monolayers were diluted
10 times with water (0.1% FA) and centrifuged (15,000 rpm, 15 min, 4 ◦C). Supernatants were directly
analyzed by UHPLC-HRMS to avoid the loss of polar peptide fragments. Extensive clean-up or
pre-concentration procedures were not necessary due to the high concentration of peptide and low
matrix complexity than plasma samples.

2.4.3. Analysis by UHPLC-MS/MS and UHPLC-HRMS

The obtained purified solutions from plasma and peptide digests G60 and D60 and from AP and
BL chambers in Caco-2 experiment were analyzed using a UHPLC 1290 Infinity II Series coupled
to a QqQ 6490 Series (Agilent Technologies, Santa Clara, CA, USA) for tandem mass experiments
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or a qTOF 6550 Series (Agilent Technologies) for high-resolution mass spectrometry experiments.
Chromatographic separation of peptide or their fragments were performed using a Kinetex 2.6 µm EVO
C18 column (150 × 2.1 mm, 2.7 µm) from (Phenomenex, Torrance, USA) as stationary phase and water
containing 0.1% formic acid (solvent A) and acetonitrile (solvent B) as mobile phase. The separation
was performed in gradient elution as follows: isocratic; 0–0.5 min, 2 % B; 0.5–1 min, 2–6% B; 1–5 min,
6–15% B; 5–6 min, 15–35% B; 6–10 min, 35–98% B; 10–12 min, 98% B isocratic; 12–12.10, 98–2% B. For all
runs, 10 µL of the sample (4 ◦C) was injected, and the flow rate was 0.350 mL/min and the column
temperature was 25 ◦C.

Peptide ionization was performed in positive electrospray ionization (ESI) and source parameters
were as follows and the same for both mass spectrometer instruments: gas temperature 150 ◦C; gas flow
13 L/min, sheath gas temperature 250 ◦C; sheath gas flow 11 L/min; nebulizer pressure 40 psi capillary
voltage 3000 V, and nozzle voltage 500 V. For plasma samples, QqQ instrument was used to quantify the
AVFQHNCQE peptide because a low concentration was expected. The mass spectrometer was operated
in multiple reaction monitoring (MRM) mode and optimized transitions were 538.4 > 928.9 (10 eV) for
quantification and 538.4 > 758.5 (10 eV) and 538.4 > 453.4 (10 eV) for confirmation (RT = 4.25 min) of
AVFQHNCQE and 653.4 > 940.8 (20 eV) for quantification and 653.4 > 1046.0 (20 ev) and 653.4 > 839.7
(25 eV) for confirmation (CE = 20 eV, RT = 6.15 min) of IFV*TGQDYNDK (IS). Peptide quantification
was performed by an internal standard calibration curve using the pure standard of AVFQHNCQE
peptide with a limit of detection of 0.05 ppb and limit of quantification of 0.130 ppb in plasma and a
linear range up to 166 ppb (r2 > 0.9999).

For in vitro simulated digestion experiments and Caco-2 monolayer samples, qTOF instrument
was used to investigate the presence of unknown peptide fragments and previously in silico predicted
peptide fragments by means of its accurate mass. Peptide and its fragments were semi-quantified
using the chromatographic peak area observed in the extracted ion chromatograms using a 20 ppm
mass window.

2.5. Evaluation of the Opioid-Like Activity of AVFQHNCQE in SHR

Male, 17–20-week-old, SHR, weighing 286 ± 4 g were used in this study. All these animals were
obtained from Charles River Laboratories Spain. The SHR were housed at a temperature of 23 ◦C with
12 h light/dark cycles and had free access to tap water and a standard diet (A04 Panlab). Before the
experiments, rats were submitted to a training period of 10 days to guarantee the reliability of the
measurements. To evaluate if AVFQHNCQE presented an opioid-mediated effect, SHR received
via subcutaneous 100 µL of Naloxone (3 mg/kg bw), and afterward a single oral dose (1 mL) of
AVFQHNCQE (10 mg/kg bw). Additionally, water, Captopril (50 mg/kg bw), known antihypertensive
drug, and chicken foot hydrolysate Hpp11 (55 mg/kg bw), were administered as controls. Captopril
and Hpp11 can inhibit ACE in vivo. All treatments were administered by oral gavage between
8:00 and 9:00 h a.m. The total volume orally administered to the rats for all treatments was 1 mL.
Systolic blood pressure (SBP) was recorded in the rats by the tail-cuff method [26] before and 2,
4, and 6 h post-administration. All measurements were taken by the same person in the same
peaceful environment.

The Animal Ethics Committee of University Rovira i Virgili approved all procedures (reference
number 8868 by Generalitat de Catalunya). All the above-mentioned experiments were performed
as authorized (European Directive 86/609/CEE and Royal Decree 223/1988 of the Spanish Ministry of
Agriculture, Fisheries and Food, Madrid, Spain).

2.6. Statistical Analysis

Results from transepithelial transport studies are presented as means ± standard error means
(SEM). Means were compared using Student’s t-test. The results for the experiments investigating the
participation of opioid receptors in the AVFQHNCQE, Captopril and Hpp11 antihypertensive effect
were expressed as the mean ± SEM of six animals per group (heterogeneity was tested by Levene’s
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test) and were analyzed by one-way ANOVA (Tukey’s test) using IBM SPSS Statistics 20.0 software.
Outliers were identified and eliminated by using Grubbs’ test. Differences between groups were
considered significant when p < 0.05.

3. Results and Discussion

Food proteins contain specific peptide sequences that are inactive as long as they remain bonded
to other amino acids within the primary protein structure, which might be released by protein
hydrolysis [27]. These peptides can present a wide range of bioactivities including ACEI and
antihypertensive activity [27]. In this sense, it has been demonstrated that the hydrolysis of chicken
foot proteins is a good strategy for the obtaining of bioactive peptides able to reduce BP [22,24].
The NO-mediated antihypertensive effect of the peptide AVFQHNCQE (10 mg/kg bw), identified
initially in the chicken foot hydrolysate Hpp11, has been previously demonstrated in SHR [22,23].
Nevertheless, it is unknown if this peptide sequence is susceptible to GI digestion, resulting in new
peptide fragments which might be the responsibility of AVFQHNCQE bioactivity. Therefore, the
peptide fragmentation under GI digestion of the antihypertensive peptide was investigated using in
silico and in vitro approaches. Simulated in silico digestion considers the primary structure of peptides
and the known cleavage specificity of the GI tract enzymes, predicting the peptide potential to release
other shorter peptides sequences during digestion. Table 1 shows the amino acid sequences of peptides
predicted to be released after AVFQHNCQE gastric and duodenal digestion based on the in silico
digestion approach. This model predicted a peptide hydrolyzed only by pepsin and chymotrypsin.
Trypsin was also evaluated showing no effects on peptide hydrolysis. Although the in silico approach
is important for the identification of the potential bioactive amino acid sequences, the results of these
studies have to be interpreted with caution, as this approach does not consider the tertiary structure of
the proteins. However, based on the in silico prediction, it would appear that AVFQHNCQE could
release different amino acid sequences, which could be involved in its antihypertensive effect.

Table 1. In silico simulated digestion of the peptide AVFQHNCQE.

Original Sequence Enzyme Digestion Stage Final Sequence

AVFQHNCQE Pepsin Gastric VFQHNCQE
AVFQHNCQE Pepsin Gastric AV
AVFQHNCQE Pepsin Gastric FQHNCQE
VFQHNCQE Chymotrypsin Duodenal VF
VFQHNCQE Chymotrypsin Duodenal QHNCQE

QHNCQE Chymotrypsin Duodenal VFQH
QHNCQE Chymotrypsin Duodenal NCQE

VFQHNCQE Chymotrypsin Duodenal QHNCQE
VFQHNCQE Chymotrypsin Duodenal FQHNCQE
FQHNCQE Chymotrypsin Duodenal QHNCQE
FQHNCQE Chymotrypsin Duodenal FQH
FQHNCQE Chymotrypsin Duodenal NCQE
FQHNCQE Chymotrypsin Duodenal QH
FQHNCQE Chymotrypsin Duodenal NCQE

Simulated in vitro gastrointestinal digestion model was used to investigate the releasing of the
amino acid sequences previously predicted in the in silico approach. The peptide was sequentially
digested under physiological conditions and the identification of amino acid sequences in samples
obtained from both gastric and intestinal digestion were performed by UHPLC-HRMS (Table 2).
When the results obtained by the in silico approach and in vitro approach were compared, it was
observed that only two of the fourteen predicted peptide fragments from the in silico approach were
identified in the in vitro digested peptide samples. These findings could be explained by the limitations
presented by the in silico approach that does not take into consideration the tertiary structure of
proteins and the physiological conditions during the gastrointestinal (temperature, pH). From the
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in vitro approach, it was observed in sample G60 the presence of the native peptide and also the
presence of different peptide fragments. However, the most intense signal corresponded to the native
peptide, AVFQHNCQE, indicating that this peptide could be resistant to gastric digestion. In this sense,
Ruiz et al. reported for the peptides VRYL and KKYNVPQL, derived from Manchego cheese, their
resistance to GI digestion, and their ability to reach their target organs as an intact form. Interestingly,
KKYNVPQL, such as AVFQHNCQE, contains glutamine residue (Q) in the C-terminal, which is
commonly presented in peptides resisting GI digestion hydrolysis [28]. Regarding the duodenal
digests, the most intense signal after 60 min under simulated intestinal digestion (D60) corresponded
to free amino acids. Taking into account that most antihypertensive peptides require to be absorbed in
the intestine to produce their BP-lowering effect [11], absorption of the AVFQHNCQE or their potential
derived fragments should produce before 60 min of intestinal digestion.

Table 2. Identified sequences from the in vitro digestion of the peptide AVFQHNCQE.

Peptide Sequence a m/z b Mass Monoisotopic (Da) RT c Charge Area G60 d Area D60 e

AVFQHNCQE 538.233 1074.451 4.86 2 5,236,186 13,652
AVFQHNCQE(S-S)AVFQHNCQE 537.729 2146.887 5.24 4 605,812 -

AVF 336.191 335.183 5.83 1 200,712 -
AVFQHNC 409.682 817.350 4.72 2 220,051 -
AVFQHN 358.179 714.343 4.24 2 685,482 -

AVFQHNCQE(S-S)QHNCQE 458.436 1829.715 4.11 4 136,056 -
AVFQH 301.157 600.300 4.34 2 155,533 -

AVFQHNCQE(S-S)CQE 484.526 1450.554 4.25 3 93,694 -
QHNCQE 379.647 757.278 1.23 2 288,536 335,871

NCQE 493.169 492.161 1.27 1 - 57,009
a Amino acid residues are designated using their one letter codes; b m/z = mass-to-charge; c RT = retention time;
d G60 = samples from 60 min of gastric digestion; e D60 = samples from 60 min of duodenal digestion.

Once peptide fragmentation pattern during gastrointestinal digestion was predicted by using in
silico and in vitro approaches it was aimed to explore the bioavailability of the entire peptide sequence
or predicted peptide fragments in the circulation blood after its oral administration. Thus, an additional
in vivo study was carried out in which the presence of the AVFQHNCQE or their fragments were
evaluated by chromatographic analysis in Wistar rats plasma collected before and 30 and 60 min
post-administration of AVFQHNCQE (10 mg/kg bw) or water. However, as no specific and optimized
peptide extraction methodology exist for AVFQHNCQE using plasma samples, this procedure was
optimized and validated to obtain the maximum recovery and reproducibility. Three different
extraction methodologies (SPE, TFA, and SPE + TFA) were evaluated using samples spiked with 1 ppb
of AVFQHNCQE peptide to determine recovery (%), repeatability (% RSD) and matrix effect (%).
SPE method was demonstrated to be the most efficient method for the peptide extraction in plasma
obtaining a recovery of 92.4% with good reproducibility (Supplementary Table S1) and a negligent
matrix effect (less than 20%). Once the peptide extraction method was optimized, rat plasma at 0, 30,
and 60 min after peptide (10 mg/kg bw) or water oral administration were subjected to SPE extraction
and analyzed by UHPLC-MS/MS for AVFQHNCQE peptide quantification or, by UHPLC-HRMS
for peptide fragment analysis. Interestingly, neither the peptide nor their potential fragments were
identified in the plasma samples studied, indicating that none of them is absorbed.

To verify the lack of absorption of the peptide or their resultant fragments in the GI tract an
additional study using Caco-2 cells was carried out. The native peptide AVFQHNCQE and the
samples collected after the simulated gastric and duodenal digestions (G60 and D60, respectively)
were incubated in Caco-2 monolayer for 1 h. The peptide and its resultant fragments were identified in
the AP chamber from G60 samples, however, only 0.10–0.25% were transported to the BL chamber
(Table 3). Therefore, the presence of native AVFQHNCQE in the AP chamber after 1 h of incubation
and the absence of the peptide or their fragments in the BL chamber demonstrated that it was not
absorbed through the intestinal monolayer. Similarly, Miguel et al. reported for the antihypertensive
peptide RADHP the lack of transported through Caco-2 monolayer [12].
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Table 3. Transport of peptide and fragments from G60 through Caco-2 monolayer.

Peptide Sequences a m/z b Mass Monoisotopic (Da) RT c Charge G60 % Transport d

AVFQHNCQE 538.233 1074.451 4.86 2 0.25
AVFQHNCQE(S-S)AVFQHNCQE 537.729 2146.887 5.24 4 0.11

AVF 336.191 335.183 5.83 1 0.15
AVFQHNC 409.682 817.350 4.72 2 0.60
AVFQHN 358.179 714.343 4.24 2 0.10

AVFQHNCQE(S-S)QHNCQE 458.436 1829.715 4.11 4 0.15
AVFQH 301.157 600.300 4.34 2 0.17

AVFQHNCQE(S-S)CQE 484.526 1450.554 4.25 3 0.15
QHNCQE 379.647 757.278 1.23 2 N.D

NCQE 493.169 492.161 1.27 1 N.D
a Amino acid residues are designated using their one-letter codes; b m/z = mass-to-charge; c RT = retention time;
d % transport: percentage of the peptide or peptide fragments content found in the basolateral chamber in comparison
to the apical chamber content. D60 = samples from 60 min of duodenal digestion.

The absence of the peptide AVFQHNCQE or their potential derived fragments in the mass
spectrometry data from the plasma or BL chamber samples suggest that AVFQHNCQE can exert
its antihypertensive effect without requiring to be absorbed, by interacting with receptors present
in the intestinal tract, as has been previously reported for other large peptides [15]. In this sense,
it has been demonstrated that some antihypertensive peptides that also present opioid activity do
not require to be absorbed to induce BP reduction. These opioid peptides induce antihypertensive
effect by their interaction with the opioid receptors present in the GI tract [29]. The mechanism of
action proposed driven by the stimulation of these opioid receptors is the subsequent NO release
causing vasodilation [30–33]. Therefore, considering that AVFQHNCQE was not absorbed and its
antihypertensive effect was mediated by NO [23], it was investigated the participation of opioid
receptors in its effect on blood pressure. Thus, the antihypertensive properties of AVFQHNCQE
were studied in presence of Naloxone, which is an opioid receptor antagonist [34]. Figures 1–3 show
the changes in SBP 6 h after oral administration of the peptide, the chicken foot hydrolysate Hpp11
and Captopril in rats previously administered via subcutaneous Naloxone or saline. The results of
this study showed that the antihypertensive effect of AVFQHNCQE was completely abolished in
naloxone-treated rats while in the control rats, administered saline, it was observed −31 ± 2 mmHg
of SBP decrease when compared to water group (Figure 1). Similarly to our results, Nurminen et al.
reported for the milk-derived peptide α-lactorphin opioid-mediated antihypertensive effect [19]. It was
also demonstrated that the interaction of the milk-derived peptide α-lactorphin with opioid receptors
resulted in a NO-mediated antihypertensive effect [20]. Therefore, considering the present findings,
AVFQHNCQE produced its NO-mediated antihypertensive effect through the interaction with opioid
receptors, clarifying the reason why this peptide does not require to be absorbed to produce its
physiological effect.

Interestingly, Hpp11 chicken foot hydrolysate, in which initially identified the peptide
AVFQHNCQE, was able to reduce BP in both groups, in the naloxone-treated group and saline-treated
group indicating that its BP-lowering effect was not mediated through the interaction with opioid
receptors (Figure 2). According to this, Hpp11 was demonstrated to produce its antihypertensive
effect by reducing ACE activity [24]. According to this, Captopril, an ACEI antihypertensive drug [35],
was also able to reduce BP in rats treated with Naloxone and in rats treated with saline, confirming that
as an ACE inhibitor, its effect is not mediated by opioid receptor and it is absorbed and transported to
reach the cardiovascular system and to inhibit ACE (Figure 3) [36].
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Figure 1. Changes in systolic blood pressure (SBP) caused in spontaneously hypertensive rats after 6 h
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Figure 2. Changes in systolic blood pressure (SBP) caused in spontaneously hypertensive rats after 6 h
post-administration of the different treatments: oral administered water + intraperitoneal injected saline,
oral administered saline + intraperitoneal injected 3 mg/kg bw Naloxone, oral administered 55 mg/kg
Hpp11 + intraperitoneal injected saline or oral administered 55 mg/kg bw Hpp11 + intraperitoneal
injected 3 mg/kg bw Naloxone. Data are expressed as mean ± standard errors. The experimental groups
always had six animals each. Different letters represent statistically significant differences (p < 0.05).
P was estimated by one-way ANOVA.
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Figure 3. Changes in systolic blood pressure (SBP) caused in spontaneously hypertensive rats
after 6 h post-administration of the different treatments: oral administered water + intraperitoneal
injected saline, orally administered saline + intraperitoneal injected 3 mg/kg bw Naloxone, oral
administered 50 mg/kg bw Captopril + intraperitoneal injected saline or orally administered 50 mg/kg
Captopril + intraperitoneal injected 3 mg/kg bw Naloxone. Data are expressed as mean ± standard
errors. The experimental groups always had six animals each. Different letters represent statistically
significant differences (p < 0.05). P was estimated by one-way ANOVA.

4. Conclusions

In the present study, it was demonstrated that AVFQHNCQE showed high resistance to gastric
digestion, but it was mainly hydrolyzed into free amino acid residues after 60 min in the duodenum.
In addition, this peptide was not absorbed through intestinal epithelium, indicating that AVFQHNCQE
does not require its absorption to produce its BP-lowering effect. Indeed, it was demonstrated
that the peptide produces its NO-mediated antihypertensive effect through their interaction with
opioid receptors. Future studies are required to demonstrate their antihypertensive effect in humans.
Nevertheless, the results presented in this work that includes the mechanistic study about the way of
action of AVFQHNCQE are relevant because they open doors to the use of this chicken-foot derived
peptide to formulate antihypertensive functional foods or nutraceuticals that could allow to treat
prehypertension or to prevent the development of hypertension.
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Figure S1: Recovery and reproducibility of the evaluated peptide extraction methods from plasma.
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