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The structural analyses of plasticizer MV, ML and TL.

In total four reactions were performed, including a control reaction with only eugenol, and the
obtained products were characterized by a series of techniques. Three of the obtained products (TL,
ML and MV) were further evaluated as antibacterial plasticizers for PLA. The details of reactions and

products were summarized in the table below.

Reaction Abbreviation for
R t Catalyst T .
cagents analys emp Time obtained plasticizer
Control
E 1
Reaction HEeno /
Synthesis 1 Eu‘genolszzvulinic p-toluene TL
acid = 3:1 in mole sulfonic acid
monohydrate, | 140 °C | 24 hours
. Eugenol:Levulinic 1 mol% equiv.
Synthesis 2 acid = 1:1 in mole to eugenol ML
. Eugenol:Valeric
Synthesis 3 acid = 1:1 in mole MV
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Plasticizer ML & TL Plasticizer MV
Figure S1. Atom numbering for correlation signal assignments in 2D NMR.
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Figure S2. '"H NMR spectrum of the product from control reaction with only eugenol.
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Figure S3. °C NMR spectrum of the product from control reaction with only eugenol (the
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carbonyl carbon signal generated from solvent ethyl acetate).
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Figure S4. COSY spectrum of the product from control reaction with only eugenol.
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Figure S5. HSQC spectrum of the product from control reaction with only eugenol.
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Figure S6. HMBC spectrum of the product from control reaction with only eugenol

(calibrated by dn/dc = 1.29/76.80 ppm).
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Figure S7. 'TH NMR spectrum of plasticizer MV.
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Figure S8. *C NMR spectrum of plasticizer MV.

(wdd) 14

1023-20191122/3

Q.0

1.0

1.5

T
3.5

4.0
2 (ppm)

S6



Figure S9. COSY spectrum of plasticizer MV.
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Figure S10. HSQC spectrum of plasticizer MV.
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Figure S11. HMBC spectrum of plasticizer MV (calibrated by du/dc = 1.21/71.24 ppm).
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Figure S12. '"H NMR spectrum of plasticizer ML.
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Figure S13. *C NMR spectrum of plasticizer ML.
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Figure S14. COSY spectrum of plasticizer ML.
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Figure S15. HSQC spectrum of plasticizer ML.
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Figure S16. HMBC spectrum of plasticizer ML (calibrated by 6u/dc =1.20/71.77 ppm).
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Figure S17. 'H NMR spectrum of plasticizer TL.
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Figure S18. 3C NMR spectrum of plasticizer TL
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Figure S19. COSY spectrum of plasticizer TL.
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Figure 520. HSQC spectrum of plasticizer TL.
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Figure S21. HMBC data of plasticizer TL (calibrated by du/dc = 1.20/71.79 ppm).

Table S1. Ratios of selected proton integrations from 'H NMR analyses of four obtained reaction

products.
Feeding ratio of Arene/ Alkene/ |y fothyl (<15 Methyl (2.1
Product |\ rting material )/Methoxyl )/Methoxyl
starting materials | thoxyl Methoxyl ppm)/Methoxy ppm)/Methoxy
Product
from
control Eugenol onl 7.82/9.33 = | 3.00/9.33 = / /
reaction genot only 0.84 0.32
with only
eugenol
Eugenol:Velaric 6.73/7.19= | 3.00/7.19 =
MV acid=1:1 0.94 0.42 / /
ML Eugenol:Levulinic | 10.61/13.38 | 3.00/13.38 11.81/13.38 = 10.13/13.38 =
acid=1:1 =0.79 =0.22 0.88 0.76
Eugenol:Levulinic | 8.30/9.57= | 3.00/9.57 = 3 B
TL acid = 3:1 0.87 031 7.49/9.57 =0.78 4.73/9.57 =0.49

S13




Table S2. Summary of *'P NMR analyses of neat eugenol and four obtained reaction products.

Control
Eugenol TL ML | MV

reaction
Sample Weight (mg) 26.20 31.36 | 29.68 | 29.86 | 30.55
Integration of NHND (equiv. to 3 mg NHND) 1.00 1.00 1.00 | 1.00 | 1.00
Integration of Aliphatic OH 0 0 0.14 | 0.03 | 0.02
Integration of Phenolic OH (Substituted type) 0 2.26 0.83 | 0.33 | 055
Integration of Phenolic OH (Non-substituted type) 8.69 6.82 527 | 4.05 | 4.65
Integration of Carboxylic Acid 0.00 0.00 0.08 | 0.02 | 0.01
Overall Phenol Content (mmol/g) 5.55 4.85 344 | 246 | 2.85
Alcohol Content (mmol/g) 0.00 0.00 0.08 | 0.02 | 0.01
Carboxyl Content (mmol/g) 0.00 0.00 0.05 | 0.01 | 0.01
Ratio of Phenolic OH (Substituted:Non-substituted) 0.00 0.33 0.16 | 0.08 | 0.12

Table S3. ESI-MS peak assignment for the product from control reaction with only eugenol.

m/z | Corresponding Components
352 | 2 Eugenol + Na*
515 | 3 Eugenol + Na*
680 | 4 Eugenol + Na*
845 | 5 Eugenol + Na*
1009 | 6 Eugenol + Na*
1173 | 7 Eugenol + Na*
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Table S4. ESI-MS peak assignment of plasticizer MV.

m/z

Corresponding Components

Involved Reactions

271

1 Eugenol + 1 VaA - H2O + Na*

1 dehydration

289

1 Eugenol + 1 VaA + Na*

1 addition

373

1 Eugenol + 2 VaA - H.0 + Na*

1 addition & 1 dehydration

435

2 Eugenol +1 VaA - HO + Na*

1 dehydration

520

2 Eugenol + 2 VaA - 2 H20 + Na*

2 dehydrations

537

2 Eugenol + 2 VaA -1 H20 + Na*

1 addition & 1 dehydration

600

3 Eugenol +1 VaA - 1 H20 + Na*

1 dehydration

622

2 Eugenol + 3 VaA -2 HO + Na*

1 addition & 2 dehydrations

684

3 Eugenol + 2 VaA - 2 H20 + Na*

2 dehydrations

702

3 Eugenol + 2 VaA -1 H20 + Na*

1 addition & 1 dehydration

768

3 Eugenol + 3 VaA - 3 H20 + Na*

3 dehydrations

786

3 Eugenol + 3 VaA - 2 H:O + Na*

1 addition & 2 dehydrations

848

4 Eugenol + 2 VaA - 2 H20 + Na*

2 dehydrations
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Table S5. ESI-MS peak assignment of plasticizer ML.

m/z

Corresponding Components

Involved Reactions

401

1 Eugenol + 2 LeA - H20 + Na*

1 addition & 1 dehydration

449

2 Eugenol + 1 LeA - H20 + Na*

1 dehydration

547

2 Eugenol + 2 LeA - 2 H2O + Na*

2 dehydrations

565

2 Eugenol + 2 LeA - 1 H2O + Na*

1 addition & 1 dehydration

664

2 Eugenol + 3 LeA - 2 H2O + Na*

1 addition & 2 dehydrations

828

3 Eugenol + 3 LeA - 2 H2O + Na*

1 addition & 2 dehydrations

927

3 Eugenol + 4 LeA - 3 H2O + Na*

1 addition & 3 dehydrations
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Table S6. ESI-MS peak assignment of plasticizer TL.

m/z

Corresponding Components

Involved Reactions

285

1 Eugenol + 1 LeA - H20 + Na*

1 dehydration

401

1 Eugenol + 2 LeA - H20 + Na*

1 addition & 1 dehydration

449

2 Eugenol +1 LeA - H20 + Na*

1 dehydration

467

2 Eugenol + 2 LeA + Na*

2 additions

547

2 Eugenol + 2 LeA - 2 H2O + Na*

2 dehydrations

565

2 Eugenol + 2 LeA - 1 H2O + Na*

1 addition & 1 dehydration

614

3 Eugenol + 1 LeA - 1 H2O + Na*

1 dehydration

664

2 Eugenol + 3 LeA - 2 H2O + Na*

1 addition & 2 dehydrations

712

3 Eugenol + 2 LeA - 2 H2O + Na*

2 dehydrations

730

3 Eugenol + 2 LeA - 1 H2O + Na*

1 addition & 1 dehydration

778

4 Eugenol + 1 LeA - 1 H2O + Na*

1 dehydration

828

3 Eugenol + 3 LeA - 2 H2O + Na*

1 addition & 2 dehydrations

877

4 Eugenol + 2 LeA - 2 H20 + Na*

2 dehydrations
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Figure S22. 3P NMR spectra of the product from control reaction with only eugenol,
plasticizer MV, ML and TL.

Three plasticizer candidates, plus the products from control reaction with only eugenol, were
examined by 'H NMR, ¥C NMR and 3P NMR to characterize the functionalities, and together with
COSY, HSQC and HMBC to define the structural linkages. With the help of combined NMR and ESI-

MS analyses, probable molecular structures were deduced.

The products from control reaction with only eugenol. consisted of a series of single sodium ion
adducts of eugenol oligomers, as shown in ESI-MS, Figure 2a and Table S3. The results from 3P
NMR, Figure S22 and Table S2, showed the oligomers had a lower phenolic hydroxyl group content
(4.85 mmol/g) than the starting materials (6.09 mmol/g, theoretical value). The alkene and arene
protons were also consumed in the reaction, as indicated by the decreasing ratio of integration of
alkene (or arene) towards methoxyl groups in 'H NMR, Figure S2 and Table S1. The methoxyl group
was considered relatively stable in this case since harsh conditions of demethylation were not utilized.
Therefore, it was likely that the phenolic hydroxyl groups, alkene and arene protons were involved
in the reaction. The COSY, Figure S4, characterized coupling signals from isopropyl chains, Figure
S1, determined Ci was the reaction site which followed the Markovnikov's Rule. Mainly two types
of linkage formed the oligomers, i-O-1 bonds and i’-6" bonds, both were confirmed by HMBC, Figure
S6. As shown in Figure S1 and S6, the correlation signals between C1 (145.59 ppm) and Hi (4,45 ppm)
and correlation signals among Hi’ (4.13 ppm), C5" (120.72 ppm), C1’ (141.33 ppm), (' (12.65 ppm),
Cé6’ (137.06 ppm) and Cd’ (130.57 ppm) indicated the presence of i-O-1 bonds and i’-6" bonds
respectively. The presence of substituted phenolic hydroxyl groups (dr = 143.53 - 144.23 ppm),

S18



detected in 3'P NMR spectrum, Figure S22, further suggested the formation of i’-6" bonds. The ratio

of amount of i-O-1 bond and i’-6" bond was 52:16 = 3.25 if no side reactions were considered.

Compared to the control reaction, the addition of valeric acids led to a group of eugenyl valerates
(plasticizer candidate MV), as shown in ESI-MS, Figure 2b and Table S4. Similarly, the joint results
from 'H NMR, Figure S7, HMBC, Figure S11, and 3'P NMR, Table S2, indicated the exist of i-O-1
bonds and i’-6" bonds. However, the formation of those bonds was significantly inhibited by the
competitive reactions of carboxylic acids, addition of carboxyl on alkene double bond and
dehydration on phenolic hydroxyl group. Ester bonds were consequently produced which were
reflected by two chemical shift peaks (6c=172.15, 173.50 ppm) in *C NMR spectrum, Figure S8. Those
ester linkages were further validated by HMBC, Figure S11. The proton H23 coupling with C22, C24
and C25 symbolized the existence of phenolic ester bonds. The correlation of protons H14. and H14»
with C11, C12, C13, C15 and C16, and proton H15 with C12 and C17, demonstrated the presence of

aliphatic ester bonds created by the direct addition of carboxyl on alkene double bonds.

Levulinic acid had a similar structure to valeric acid and the behaviors of its carboxyl groups in
reactions could be predicted based on the previous analyses on the reaction of eugenol and valeric
acid. But its extra ketone functionality played a special role in the reactions with eugenol. The ESI-
MS spectra, Figure 2c and 2d, suggested two families of distributed products (plasticizer candidate
ML and TL) and their peak assignments revealed the existence of additional linkages, Table S5 and
S6. Nevertheless, the signals of i-O-1 bonds and i’-6” bonds that link eugenols disappeared in HMBC,
Figure S16 and S21. In addition, based on a comparison of the proton integration, Table S1, more
methyl groups (0.9 - 1.5 ppm) were obtained than the estimated value (by direct carboxyl addition
on alkene) and the methyl groups adjacent to ketone groups (2.1 ppm) and arene protons were both
consumed. Hence, nucleophilic addition on ketone groups could be deduced and those linkages were
identified by the correlation signals (eg. du/0c = 1.46 ppm/76.51, 132.39, 38.39 ppm) in HMBC, Figure
§16. It has been acknowledged that diphenolic acids can be obtained through condensations of
levulinic acids and phenols in the presence of sulfuric acids [1], i.e. the ketone groups can react with
arene protons. Moreover, higher alcohol and carboxyl content were found in TL than ML by 3P NMR
analysis, Table S2, implying that the process of nucleophilic addition on ketone could be influenced
by the stoichiometric ratio of reagents. As expected, signals from aliphatic and phenolic ester bonds
were clearly recorded in *C NMR, Figure S13 and S18, and HMBC, Figure S16 and S21. Interestingly,
the plasticizer candidate TL had much higher phenolic hydroxyl group content than that of ML,
Table S2.
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Miscibility of PLA with Plasticizer Candidates

Table S7. The glass transition temperatures (Ts) of PLA blends with plasticizer candidates.

Additives
TL ML MV Eugenol LeA
Con. of
Additives
10 wt % 51.5+0.1°C | 51.4+03°C | 44.7+0.2°C / /
20 wt % 41.8+0.1°C | 43.2+08°C | 29.6+03°C | 36.5+59°C | 41.4+1.4°C
30 wt % 365+03°C | 34.8+03°C | 15.6+0.3 °C / /

Note: The data was based on the second heating scan of DSC programme. The T of PLA100 was
59.4 +0.2 °C, from previous work [2].

Thermal Stability of Plasticizer Candidate and its PLA Blends

Table S8. The onset temperatures of 5 % weight loss of PLA blends with plasticizer candidates.

Additives
TL ML MV Eugenol LeA
Con. of
Additives
10 wt % 198 +5°C | 207 +2°C | 1791 °C / /
20 wt % 174 +8°C | 197 +2°C | 181 +3°C | 139+3°C | 131 +1 °C
30 wt % 185+2°C | 195+5°C | 1823 °C / /

Note: The onset temperature of 5 % weight loss for PLA100 was 319 + 0 °C, from previous work [2].
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Figure S23. TGA curves of the three plasticizer candidates and their building blocks

eugenol, levulinic acid and valeric acid.

materials (b.p. was stated for starting materials).

Table S9. The onset temperatures of 5 % weight loss (T5) of plasticizer candidates and starting

TL ML MV Eugenol LeA VaA
T5 (°C) 138.1+3.5 | 158.1+1.8 | 143.1+7.3 | 105322 | 1129+15 | 73.5+29
Boiling point (°C) / / / 254 245 185
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Mechanical Performance of PLA Blends with Plasticizer Candidates
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Figure S24. Representative stress-strain curves of neat PLA and its blends.
10TL
50
45
40
< 35
S 30
L
$ 20
& 15
10
5
0
0% 20% 40% 60% 80% 100% 120% 140%
Strain

Figure S25. The tensile stress-strain curve of 10TL.
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Figure S26. The tensile stress-strain curve of 10ML.
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Figure S27. The tensile stress-strain curve of 10MV.
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Figure S28. The tensile stress-strain curve of 20TL.
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Figure S29. The tensile stress-strain curve of 20ML.
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Figure S30. The tensile stress-strain curve of 20MV.
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Figure S31. The tensile stress-strain curve of 20eugenol.
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Figure S32. The tensile stress-strain curve of 20LeA.
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Figure S33. The tensile stress-strain curve of 30TL.
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Figure S34. The tensile stress-strain curve of 30ML.
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Figure S35. The tensile stress-strain curve of 30MV.
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Table S10. The tensile test of neat PLA and its blends with plasticizer candidates.

Young's Modulus (GPa) Strain at Break (%) Stress at Break (MPa)

PLA100 2.1+0.18 54+1.1 57 £6.9
10TL 1.9+0.10 91 +£28 21+1.3
10ML 1.5+0.26 220 +40 21+4.1
10MV 1.3+0.13 270 +32 25+24
20TL 1.4+0.10 330 £27 24+1.2
20ML 0.83+0.16 260 + 44 16+1.9
20MV 0.89+0.13 470 +41 33+27
20Eugenol 0.11+0.01 440 + 58 12+1.4
20LeA 0.49+0.11 250 +21 21+1.6
30TL 0.33+0.08 480 + 41 17 +1.8
30ML 0.61+0.08 400 +43 24+3.6
30MV 0.06 +0.01 560 + 35 26+4.5

Note: The data of PLA100 were from previous work [2].
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Antibacterial Study of Three Synthesized Plasticizers

Table S11. Gap distances between the plasticizer droplets and inhibition zones.

Plasticizer
TL ML MV
Strain
E. coli 2.39 +0.46 mm N/A N/A
S. aureus 6.11 + 0.33 mm 3.66 + 0.48 mm 2.07 £ 0.56 mm

PLA100 TL ML - MV

Figure S36. Zone of inhibition test of PLA and its blends with plasticizers (A: 10 wt%
plasticizers, E. coli; B: 10 wt% plasticizers, S. aureus; C: 20 wt% plasticizers, E. coli; D: 20 wt%

plasticizers, S. aureus).
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Table S12. Diameters of inhibition zones (S. aureus) of paper disks loaded with plasticizers

Plasticizer
TL ML MV
Content
1 mg Plasticizer | 10.61 + 0.41 mm N/A 10.36 + 0.46 mm

5 mg Plasticizer | 12.29+0.78 mm | 10.66 + 0.69 mm | 12.21 + 0.95 mm
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