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Appendix S2: Superposing Significant Interaction Rules (SSIR) algorithm 

 
This appendix briefly describes the foundation of SSIR method when employed as a 
variable selector. The procedure was originally designed into the field of combinatorial 
chemistry and QSAR but here the text has been adapted for the treatment of categorized 
variables that describe a set of available samples. In general, each variable can be 
partitioned into an arbitrary number of levels but in this work each variable was 
dichotomized and presents only two states: high (H) or low (L). In present application, the 
goal of SSIR is to find combinations of variable levels that correlate with a particular binary 
property of the samples: being a treated cork sample or a non-treated one. In the cited 
references of SSIR (see main text), the reader can find more details about the method 
nuances. 
 
 
Descriptor variables 
 
Consider a set of samples described by n categorized variables, each one presenting two 
possible levels (H or L). Each sample is being represented by a particular n-tuple that 
collects the particular levels that acquires each variable. For instance, if each sample is 
represented by 4 variables, its description can be the HLLH string (level H for first 
descriptor, level L for the second, and so on) or the LLHL one. In this work, and after data 
filtering, each sample has been described by 237 non-redundant representative 
dichotomized variables (see main text). 
 
 
Numerical procedure 
 
SSIR method consists into loop over combinations of k=1, 2, 3, ... variables, and for each 
combination loop over all the possible variations of levels. Each sequence of k level 
variables conforms a rule of order k. It is said that each rule condenses the particular 
subset of samples that conform with the selected variable levels (see the example below). 
Across the subset of condensed samples, some of them will be treated ones and some will 
not. SSIR procedure evaluates the rules (as explained below, comparing the proportion of 
treated/non-treated with the total proportion found across all the available samples) and 
selects some of them in order to correlate some level variables with the samples property. 
 
Each rule is evaluated from a probabilistic point of view, according to the number of 
condensed samples which are of interest. Due to the fact that the sample classification 
property is always binary, the elements labeled as being “of interest” can be either the 
treated ones or the non-treated ones. The evaluation is made by calculating an attached p-
value per rule. The rules exhibiting a low p-value are said to be significant and the involved 
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variable levels receive cumulative votes. It is expected that the higher the number of votes 
a variable level collects, the higher is the correlation of this level with the subset of interest. 
For the particular application of this work, and taking into account that the variables are 
dichotomic, it is enough to keep the reckoning of the variables (not the levels) that entered 
in significant rules.  
 
 
Probabilistic significance attached to a variable 
 
Let us suppose that we have to classify a set of a samples, and b of them are labeled as 
being of interest (either treated ones or non-treated ones in the main text). Then, if a 
particular rule condenses c of those samples and d of them are also of interest, one can 
ask for the conditional probability of this event: 
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This probability is equivalent to the one concerning the random selection (pick-up) of c 
samples and, a posteriori, performing the reckoning of how many are of interest. Hence, a 
rule can be understood as a random selector. 
 
The p-value attached to the rule is obtained from the cumulated probabilities that the rule 
condenses d or more (d+) structures of interest. In other words, given that the set of a 
samples presents b of interest, then the conditional probability of finding d or more of 
interest when randomly selecting c is: 
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Rules generation 
 
SSIR algorithm computes the respective p-value for all the possible rules (of pre-selected 
orders) definable in the samples set. In general, if the samples are described by n 

variables, there is a total of C(n,k)=
n

k

 
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 combinations of groups of k variables. Each 

combination generates a fixed number of rules of order k. If each variable presents 2 
levels, each combination of order k generates 2k rules. It is common to explore only low 
rule orders, as it is justified in the literature. 
 
From the algorithmic point of view, the systematic generation of rules is performed nesting 
two combinatorial entities (see below the SSIR basic algorithm). The first one generates 
combinations among k variables in order to set up the rule order, and the second one 
generates the permutations with repetition among the levels of the previously selected 
variables. In the literature it is described how a third combinatorial entity can be also 
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considered in order to define the so-called level negations, but this is not treated here 
because this entity does not apply for dichotomized variables. 
 
 
Algorithm 
 
The following algorithm constitutes the basic implementation of SSIR employed to rank a 
series of dichotomic variables. The procedure generates the rules, evaluates the 
corresponding p-values, selects the variables involved in rules presenting a p-value below 
the threshold defined per each order and, finally, sorts the variables according to the 
number of times the variable was employed in significant rules. It is assumed that the first 
ranked variables are more suitable to classify the samples (for instance, using PCA, 
Discriminant analysis or other linear or non-linear techniques). 
 
 

Algorithm: Basic SSIR procedure for variable sorting (dichotomic variables). 
 

1. Samples data information: 
1.1. Set the number of samples: a. 
1.2. Partition the sample set into two subsets: the ones of interest and the ones of non-interest. 

Count the total number of samples of interest: b. 
1.3. Set the number of dichotomic variables describing each sample: n. 
1.4. Set variable counters to zero: V(v)=0 for v=1,n. 

 

2. Set the range of rule orders to be explored: [ki , kf] where 1  ki   kf  n. 
 
3. Set the threshold p-value per rule order: p(k), k = ki , ... , kf.  
 
4. Generate rules and explore the probabilistically relevant ones: 
 Loop for k = ki , kf. Loop over rule orders. 

  Loop: For each rule order generate the C(n,k) combinations of variable selections. 
   Loop: Generate the 2

k
 variations among the levels of the selected variables. 

Each particular variation among combined variables defines a rule: r. 
For each rule r: 

     Count how many samples are condensed by the rule: c. 
     Count how many of these samples are of interest: d. 

     If p(d+,c|b,a)  p(k) then the rule is a significant one and then 
      For v=1,k: Loop over the involved variables in rule r 
       V(Mv,r)=V(Mv,r)+1: Increment the counter of variable Mv,r (v-th variable in rule r). 
      End Loop 
     end if 
   End Loop of variations. 
  End Loop of combinations. 

 End Loop over rule orders. 
  

5. The original set of variables is ranked. Sort variables according to counters: V(1)  V(2)  ...  V(n). 

 
 
Alternatively, if necessary, along the algorithm instead of reckoning variables present in 
significant rules, the V(v) counters, it is also possible to cumulate the votes along the 
levels of these variables: instead use L(V,v) counters. In our work we were interested in 
detect relevant variables but the algorithm can be used to go a step beyond and detect the 
relevant level(s) of each variable. This is particularly useful if some of the variables present 
more than two levels. 
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A simple example 
 
A very simple artificial example follows in order to show how SSIR algorithm operates. Let 
us suppose we have a set of a=100 samples and that b=3 of them are samples classified 
as being of interest. The samples are described by n=4 binary variables. Each descriptor 
exhibits the value of H or L. The following table collects all the data: 
 
 

Sample 
# 

Is of 
interest 

Variable 
1 

Variable 
2 

Variable 
3 

Variable 
4 

1 Yes H L H L 

2 Yes H H L H 

3 Yes H H H L 

4 No H L L L 

5 No H H L H 

6 – 97 No L L L L 

98 No L L L H 

99 No L H H L 

100 No H L L H 

 
For sake of simplicity, the samples 6–97 are of non-interest and all the respective 
descriptors exhibit the level L at each variable. 
 
If rules of order k=2 are being considered, these rules arise from the C(n,k)=C(4,2)=6 
possible combinations of variables. One of these combinations involves variables 1 and 2. 
As each variable exhibits two levels, there are a total of 2k=4 possible rules obtained with 
the combination of variables 1 and 2. The rules arising from this particular combination of 
variables and levels are {1:L,2:L}, {1:L,2:H}, {1:H,2:L}, and {1:H,2:H}. That is: variable 1 at 
level L and variable 2 at level L; variable 1 at level L and variable 2 at level H; and so on. 
Take for instance the last rule {1:H,2:H}. The number of samples that are condensed by 
this rule is c=3 (i.e., only samples # 2, 3, and 5 fulfill the conditions of the rule). Among this 
subset, the number of condensed samples that are of interest is d=2 (samples # 2 and 3). 
This event is attached to a p-value of 
 

p(2+,3|3,100) = P(2,3|3,100) + P(3,3|3,100)  0.001800 + 0.000006  0.001806.   
 
If it is considered that this p-value is small enough, the rule becomes significant. In this 
case the involved variables (variables # 1 and 2 in this example) will increment their 
counters in one unit. As said, it is also possible to increment the counters attached to the 
levels present in the rule. 
 
After all the possible rules are generated (considering all the combinations and all the 
variations) and the eventual counters incremented, the variables (or levels) collecting the 
greatest number of votes are to be ranked first. 
 

___________________________ 
 


