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Abstract: Hemp seeds have a wide variety of chemical compounds which present biological activity.
Specifically, the focus on proteins and bioactive peptides are increasing as alternative sources of
nutraceutical uses. In the literature, hemp protein products (HPPs) have reported antioxidant and
anti-inflammatory properties. This study aimed to determine the inflammation-related modulatory
effects of HPPs on lipopolysaccharide (LPS)-activated primary human monocytes. CD14+ cells were
immunomagnetically isolated from buffy coats and the anti-inflammatory activity of hemp protein
isolate (HPI) and hydrolysates (HPHs) was evaluated on LPS-stimulated human primary monocytes.
The specific markers of inflammation, polarization, and chemoattraction were measured by RT-qPCR
and ELISA assays. Our results showed that HPPs decreased the pro-inflammatory mediators
(TNF-α, IL-1β, and IL-6) and increased the anti-inflammatory mediators (IL-10 and IL-4). In addition,
M1 polarization marker gene expression (CCR7 and iNOS) was downregulated by HPPs and, M2
polarization marker gene expression (CD200R and MRC1) was upregulated. Finally, the mRNA
expression of chemotaxis genes (CCR2 and CCL2) was downregulated by HPPs. In conclusion,
this study suggests that HPPs may improve chronic inflammatory states and promote regenerative
processes by reprogramming monocytes toward M2 polarization phenotype.

Keywords: hemp seed; protein hydrolysates; peptides; inflammation; monocytes; polarization;
microglia

1. Introduction

Cannabis sativa L. has been widely grown for several millennia [1]. Industrially, the plant is used
for a stem fiber (also called hemp) and an edible oil derived from seeds. Plant varieties utilized for
fiber and oilseed usually are low in the euphoria-inducing chemical named ∆9-tetrahydrocannabinol
(THC) compared to drug varieties [2,3]. Hemp crop is legal since 1993 in many European countries.
The cultivation area is even expanding, from 8000 ha in 2011 to reach more than 33,000 ha in 2016.
The main reason for this crop to be enhanced is the environmental benefits; hemp is a valuable crop for
less work time, lower costs, and greater profit, which improve the bio-based economy [4]. In addition,
the Grand View Research (2020) reported that the economy of hemp crop will be increased, with
at least USD 15 billion in 2027 [5]., due to hemp being the source of 25,000 biodegradable products
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which have increasing uses [4]. In recent years, hemp crop is increasing not only for industrial uses,
but also for its health benefits. Due to multiple phytochemical compounds hemp seeds have also
reached a greater degree of international scientific attention [6–8]. In particular, protein represents
around 25% of the total hemp seed composition [9]. The major fraction of the total seed protein
consists of storage proteins as globulins (65–75%), albumins (25–37%), and sulfur-rich proteins [10].
The most significant protein in hemp seed is edestin, a globulin rich in arginine and a recognized
precursor of nitric oxide, which makes hemp seed protein of high interest to enhance cardiovascular
health [10]. Nevertheless, the poor water solubility of hemp proteins are an obstacle for their use,
which was technologically overwhelmed by enzymatic hydrolysis [11]. Hemp protein hydrolysates
(HPHs) generated by enzymatic hydrolysis are composed of polypeptides, oligopeptides, and free
amino acids displaying high availability of biological activity [8]. In the literature, HPHs have showed
different biological activities as antihypertensive, hypocholesterolemic, antioxidant, antithrombotic,
and immunomodulatory effects [8,9,11–15]. In addition, neuroprotective HPHs have been recently
described in preliminary studies by our research team in a microglial BV2 cell line stimulated with
lipopolysaccharide (LPS) [9]. However, HPHs’ effects have not yet been investigated in primary human
blood circulating cells.

Peripheral blood mononuclear cells (PBMCs) are particularly linked to systemic inflammation
and several diseases [16–19]. PBMCs include lymphoid cells as lymphocytes (T cells, B cells, and
NK cells) and myeloid cells as monocytes. Monocytes are mononuclear cells that develop in the
bone marrow and diffuse inside of the bloodstream. Monocytes have a plastic nature, which are
capable of a notable range of phenotypic and functional changes which are conditioned by signals
from local microenvironments [20,21]. In humans, monocytes are classified into three defined subsets:
classical monocytes (CD14++CD16−), intermediate monocytes (CD14++CD16+), and non-classical
monocytes (CD14+CD16++) [22]. As described previously, the polarization of macrophage-like
cells from monocyte is classified into classically (M1) and alternatively (M2) activated groups [23].
Classical monocytes-derived M1 macrophages provoke the production of inflammatory cytokines
and reactive nitrogen or oxygen reactive species that contribute to host defense, whereas non-classical
monocytes-derived M2 macrophages attenuate inflammation and participate in tissue renovation.
Regarding the current research, we further investigated whether hemp protein products (HPPs) may
act as an immune-modulator and anti-inflammatory effector on human primary monocytes.

2. Materials and Methods

2.1. Chemical Compounds and Sampling

Seeds of Cannabis sativa L. were purchased from Sensi Seeds Bank. Alcalase 2.4 L (2.4 AU/g) and
flavourzyme (1000 L) were a gift from Novozymes (Bagsvaerd, Denmark). Ficoll Histopaque and LPS
(E. coli 055: B5) were provided by Sigma-Aldrich Chemistry. TRIsure (Bioline, Meridian Life Science,
Inc. Memphis, TN, USA) and cDNA synthesis kits from Bio-rad (Berkeley, CA, USA) were used for
RNA isolation. Quantitative PCR was performed by iTaq™ Universal SYBR® Green Supermix from
Bio-rad. Primers were provided by Eurofins Biolab S.L.U (Barcelona, Spain). All reagents and solvents
were of analytical grade and provided by Sigma Chemical Co. (St. Louis, MO, USA), Bachem AG
(Bubendorf, Switzerland), and Gibco (Paisley, UK).

2.2. Hemp Protein Products Preparation

HPPs, that include hemp protein isolate (HPI) and hydrolysates (HPHs), were extendedly
explained in preliminary studies as well as their chemical characterization [9]. Briefly, to obtain the
HPI, the first step was defatting with n-hexane in a soxhlet, then was performed a first solubilization in
alkali at pH 10.5 for 1 h, and, finally, the protein isolate was obtained by precipitation at the isoelectric
point (pH 4.3). Second, the HPI was treated with proteases as alcalase or llavourzyme to obtain the
different HPHs in a bioreactor under controlled conditions. In line with our previous results, HPI
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and HPHs with better ex-vivo antioxidant properties and in-vitro anti-neuroinflammatory potential,
HPH20A and HPH60A15F, were used in this study. The HPH20A was obtained from HPI hydrolyzed
during 20 min with alcalase; and HPH60A15F, was obtained from HPI hydrolyzed during 60 min with
alcalase and an additional 15 min with alcalase+flavourzyme. These hydrolysates were boiled at 85 ◦C
for 15 min to stop the enzymatic reaction. Finally, the supernatant was centrifugated (7500 rpm, 15 min)
to obtain the HPHs. The resulting hydrolysates were composed of a mixture of amino acids and small
peptides with biological activity. As an example, the HPHs were rich in negatively charged amino
acids like asparagine and aspartic acid, and glutamine and glutamic acid, and also rich in arginine [9].
The chemical composition and amino acid characterization of hemp seed and HPPs are shown in the
Appendix A (Tables A1 and A2).

2.3. Blood Collection and Monocyte Isolation

To carry out this study, we used the Good Clinical Practice Guidelines procedure with the
principles outlined in the Helsinki Declaration of the World Medical Association [24]. Peripheral blood
mononuclear blood cells (PBMCs) were centrifugated over a Ficoll–Histopaque gradient isolated from
buffy coat. Blood was donated by the Regional Blood Transfusion Center (Seville, Spain. Agreement
#33130099). The donors were male, 25–35 years, declared themselves as non-smokers, and they were
not taking any medication. Monocytes were isolated from PBMCs using CD14 MicroBeads (MACS,
Myltenyi). Flow cytometry (FACScanto II flow cytometer and FACSDiva software, BD) showed a
purity of the CD14 monocytes isolations > 95%, routinely. Following isolation, monocytes were
maintained at Roswell Park Memorial Institute (RPMI) in 1640 medium enriched with L-glutamine,
10% heat-inactivated foetal bovine serum, and 1% penicillin/streptomycin in 5% CO2 at 37 ◦C in a CO2

incubator (Thermo Con Electron Corporation, Waltham, MA, USA).

2.4. Treatments of Cells in Culture

After isolation, monocytes (5 × 105 cells/well) were incubated with LPS (100 ng/mL) followed or
not by 24 h treatment in 24-well plates with HPI, HPH20A, and HPH60A15F at 50 and 100 µg/mL.
At the end of exposure time, supernatants were extracted and stored at −20 ◦C, and RNA was obtained
using these cells.

2.5. Measurement of Cytokine Release

The supernatant was obtained in order to quantify the cytokine levels of TNF-α, IL-1β, IL-6, and
IL-10 by the enzyme-linked immunosorbent assay (ELISA), using the instructions of the manufacturer
protocol (Diaclone, Besancon, France). The amount of cytokine was calculated from calibration
standard curves and expressed in pg per mL.

2.6. RNA Isolation and RT-qPCR Analysis

RNA from monocytes was isolated to quantify gene expression by RT-qPCR. Total RNA was
obtained by using TRIsure Reagent. RNA quality was evaluated by A260/A280 ratio in a NanoDrop
ND-1000 Spectrophotometer (ThermoFisher Scientific, Madrid, Spain). After that, the RNA was
subjected to reverse transcription. The resulting cDNA was used in an amount of 10 g for RT-qPCR
amplifications. A CFX96 system (Bio-Rad) was used to determine the mRNA levels for genes indicated
below. For each PCR reaction, the Brilliant SYBR green QPCR Supermix containing the primer
pairs for either gene, or for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hypoxanthine
phosphoribosyltransferase (HPRT) as housekeeping genes, was added to cDNA template. All PCR
amplifications were accomplished in three identical copies and average threshold cycle (Ct) numbers of
the triplicates were used to determine the relative mRNA expression of selected genes. The magnitude
of change of mRNA expression for selected genes was assessed by using the 2−(∆∆Ct) mathematical
method. All data were normalized to housekeeping gene constituents and expressed as relative
fold-change of control. The designed oligonucleotides sequences are shown in Table 1.
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Table 1. Primer sequences for RT-qPCR gene expression analysis.

Target GeneBank Accession
Number

Forward
Reverse Sequence (5′ → 3′)

TNF-α NM_000594 Forward
Reverse

TCCTTCAGACACCCTCAACC
AGGCCCCAGTTTGAATTCTT

IL-1β NM_000576 Forward
Reverse

GGGCCTCAAGGAAAAGAATC
TTCTGCTTGAGAGGTGCTGA

IL-6 NM_000600 Forward
Reverse

TACCCCCAGGAGAAGATTCC
TTTTCTGCCAGTGCCTCTTT

IL-10 NM_000572 Forward
Reverse

GCCTAACATGCTTCGAGATC
TGATGTCTGGGTCTTGGTTC

IL-4 NM_021283.2 Forward
Reverse

TCAACCCCCAGCTAGTTGTC
TGTTCTTCGTTGCTGTGAGG

CCR7 NM_007719.2 Forward
Reverse

GTGTGCTTCTGCCAAGATGA
CCACGAAGCAGATGACAGAA

iNOS NM_ 000625 Forward
Reverse

ACCCAGACTTACCCCTTTGG
GCCTGGGGTCTAGGAGAGAC

CD200R NM_138940.2 Forward
Reverse

GTTGCCCTCCTATCGCATTA
TGGAAATTCCCATCAGGTGT

MRC1 NM_ 138806 Forward
Reverse

GGCGGTGACCTCACAAGTAT
ACGAAGCCATTTGGTAAACG

CCR2 NM_001123396.1 Forward
Reverse

TGCCTGACTCACACTCAAGG
GGCTTCTCAGCAACTGAACC

CCL2 NM_002982.3 Forward
Reverse

CCCCAGTCACCTGCTGTTAT
ACGAAGCCATTTGGTAAACG

HPRT NM_001289746 Forward
Reverse

ACCCCACGAAGTGTTGGATA
AAGCAGATGGCCACAGAACT

GADPH NM_001289746 Forward
Reverse

CACATGGCCTCCAAGGAGTAAG
CCAGCAGTGAGGGTCTCTCT

2.7. Statistical Method

All values are expressed as arithmetic means ± standard deviations (SD). The output values were
evaluated with Graph Pad Prism Version 5.01 software (San Diego, CA, USA). The one-way analysis of
variance (ANOVA) was used to evaluate statistical significance of any difference in each parameter
among the groups, following Tukey multiple comparisons test as post hoc tests. p values considered
statistically significant were less than 0.05.

3. Results

3.1. Anti-Inflammatory Properties of Hemp Protein Hydrolysates

Chronic inflammation is key in several disorders [16–18,25–31] and the activation of circulating
monocytes is a recognized process during inflammation [18,19]. Therefore, to assess the
anti-inflammatory effect of HPHs, gene expression of TNF-α, IL-1β, IL-6, IL-10, and IL-4 was measured
by RT-qPCR in LPS-stimulated primary human monocytes. As shown in Figure 1A–C, the inflammation
induced by LPS upregulates the mRNA levels of TNF-α, IL-1β, and IL-6 compared to those in untreated
cells. However, this inflammatory state is blocked with the presence of HPI, HPH20A, and HPH60A15F
at 50 or 100 µg/mL. In addition, the mRNA levels of the anti-inflammatory cytokines IL-10 (Figure 1D)
and IL-4 (Figure 1E) are upregulated with the presence of HPH60A15F at 50 or 100 µg/mL. However,
the treatment with HPI and HPH20A does not show an upregulation of these anti-inflammatory genes
compared to HPH60A15F. At higher concentration, HPI slightly upregulates IL-10, meanwhile HPI and
HPH20A slightly upregulate IL4 in LPS-stimulated primary human monocytes. This capacity of HPPs
to decrease the transcriptional activity of pro-inflammatory genes and to increase the transcriptional
activity of anti-inflammatory genes, is also linked with a reduced release of TNF-α (Figure 2A), IL-1β
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(Figure 2B), and IL-6 (Figure 2C) cytokines and an increased release of IL-10 (Figure 2D) into cell
culture supernatant.

Biomolecules 2020, 10, x 5 of 14 

monocytes. This capacity of HPPs to decrease the transcriptional activity of pro-inflammatory genes 

and to increase the transcriptional activity of anti-inflammatory genes, is also linked with a reduced 

release of TNF-α (Figure 2A), IL-1 (Figure 2B), and IL-6 (Figure 2C) cytokines and an increased 

release of IL-10 (Figure 2D) into cell culture supernatant. 

 

Figure 1. Effect of hemp protein products (HPPs) on inflammatory cytokine gene expression in LPS-

stimulated primary human monocytes. Monocytes were treated with LPS (100 ng/mL) and then 

incubated with hemp protein isolate (HPI), HPH20A, and HPH60A15F at 50 (light green bar) and 100 

(dark green bar) μg/mL for 24 h. Relative mRNA expression levels of TNF-α (A), IL-1β (B), IL-6 (C), 

IL-10 (D), and IL-4 (E) were detected by real-time quantitative PCR. Data are show as means ± SD (n 

= 3) and the significantly different (p < 0.05) are labeled with contrasting letters. 

Figure 1. Effect of hemp protein products (HPPs) on inflammatory cytokine gene expression in
LPS-stimulated primary human monocytes. Monocytes were treated with LPS (100 ng/mL) and then
incubated with hemp protein isolate (HPI), HPH20A, and HPH60A15F at 50 (light green bar) and 100
(dark green bar) µg/mL for 24 h. Relative mRNA expression levels of TNF-α (A), IL-1β (B), IL-6 (C),
IL-10 (D), and IL-4 (E) were detected by real-time quantitative PCR. Data are show as means ± SD
(n = 3) and the significantly different (p < 0.05) are labeled with contrasting letters.

3.2. Hemp Protein Hydrolysates Shifts M1 toward M2 Macrophage Phenotype

The cytokine microenvironment of monocytes may define the polarization state toward M1 or M2
macrophage phenotypes. The cytokines associated to M1 phenotype are pro-inflammatory cytokines
such as TNF-α, IL-1β, and IL-6. Hence, the current classification between M1 and M2 macrophages
gives emphasis to the expression of other genes which are related to their functional properties [21,23].
Gene expression of phenotypic markers for M1, such as CCR7 and iNOS, and phenotypic markers for
M2, such as CD200R and MRC1, was investigated. As shown in Figure 3A,B, the transcriptional mRNA
levels of CCR7 and iNOS are upregulated with LPS. However, HPHs downregulate the transcriptional
mRNA levels of M1 polarization marker genes. In contrast, HPHs particularly promote CD200R
(Figure 3C) and MRC1 (Figure 3D) transcriptional activity. These results may indicate that HPPs,
particularly HPH60A15F, shift macrophage polarization from M1 toward M2.



Biomolecules 2020, 10, 803 6 of 12
Biomolecules 2020, 10, x 6 of 14 

 

Figure 2. Effect of HPPs on inflammatory cytokine release in LPS-stimulated primary human 

monocytes. Monocytes were activated with LPS (100 ng/mL) and then treated with HPI, HPH20A, 

and HPH60A15F at 50 (light green bar) and 100 (dark green bar) μg/mL for 24 h. Concentration of 

TNF-α (A), IL-1β (B), IL-6 (C), and IL-10 (D) in culture supernatants was detected by ELISA. Data are 

presented as means ± SD (n = 3) and the significantly different (p < 0.05) are labeled with contrasting 

letters. 

3.2. Hemp Protein Hydrolysates Shifts M1 toward M2 Macrophage Phenotype 

The cytokine microenvironment of monocytes may define the polarization state toward M1 or 

M2 macrophage phenotypes. The cytokines associated to M1 phenotype are pro-inflammatory 

cytokines such as TNF-α, IL-1, and IL-6. Hence, the current classification between M1 and M2 

macrophages gives emphasis to the expression of other genes which are related to their functional 

properties [21,23]. Gene expression of phenotypic markers for M1, such as CCR7 and iNOS, and 

phenotypic markers for M2, such as CD200R and MRC1, was investigated. As shown in Figure 3A,B, 

the transcriptional mRNA levels of CCR7 and iNOS are upregulated with LPS. However, HPHs 

downregulate the transcriptional mRNA levels of M1 polarization marker genes. In contrast, HPHs 

particularly promote CD200R (Figure 3C) and MRC1 (Figure 3D) transcriptional activity. These 

results may indicate that HPPs, particularly HPH60A15F, shift macrophage polarization from M1 

toward M2. 

Figure 2. Effect of HPPs on inflammatory cytokine release in LPS-stimulated primary human monocytes.
Monocytes were activated with LPS (100 ng/mL) and then treated with HPI, HPH20A, and HPH60A15F
at 50 (light green bar) and 100 (dark green bar) µg/mL for 24 h. Concentration of TNF-α (A), IL-1β (B),
IL-6 (C), and IL-10 (D) in culture supernatants was detected by ELISA. Data are presented as means ±
SD (n = 3) and the significantly different (p < 0.05) are labeled with contrasting letters.
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Figure 3. Effect of HPPs on macrophage polarization marker gene expression in LPS-stimulated
primary human monocytes. Monocytes were activated with LPS (100 ng/mL) and then treated with HPI,
HPH20A, and HPH60A15F at 50 (light green bar) and 100 (dark green bar) µg/mL for 24 h. Relative
mRNA expression levels of M1 markers, CCR7 (A) and iNOS (B), and M2 markers, CD200R (C) and
MRC1 (D), were detected by real-time quantitative PCR. Data are presented as means ± SD (n = 3) and
the significantly different (p < 0.05) are labeled with contrasting letters.
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3.3. Hemp Protein Hydrolysates Modulates CCR2-Dependent Migration

In gaining deeper insight into the role of HPPs on human monocyte plasticity, we studied the
modulation of the CCR2/CCL2 axis. Classically activated or M1 macrophages are recruited into the
inflamed tissue via the CCR2 signaling pathway, which regulates the monocyte migration. Conversely,
the alternatively activated or M2 macrophages are characterized for their poor migratory ability [21,23].
In establishing the physiological relevance of this pathway, the mRNA expression of CCR2 and CCL2
genes in the presence of hemp protein products was analyzed by RT-qPCR (Figure 4). The mRNA
levels of CCR2 (Figure 4A) and CCL2 (Figure 4B) are upregulated with LPS compared to those in
untreated cells. The transcriptional activity of CCR2 and CCL2 are downregulated in the presence of
HPHs but not in the presence of HPI. Notably, HPH60A15F significantly downregulates mRNA levels
compared to HPH20A. These results might confirm that HPHs polarize primary human monocytes
toward M2 poorly migratory anti-inflammatory macrophages.Biomolecules 2020, 10, x 8 of 14 
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Figure 4. Effect of HPPs on chemotactic CCR2/CCL2 gene expression in LPS-stimulated primary human
monocytes. Monocytes were activated with LPS (100 ng/mL) and then treated with HPI, HPH20A, and
HPH60A15F at 50 (light green bar) and 100 (dark green bar) µg/mL for 24 h. Relative mRNA expression
levels of CCR2 (A) and CCL2 (B) were detected by real-time quantitative PCR. Data are presented as
means ± SD (n = 3) and the significantly different (p < 0.05) are labeled with contrasting letters.

4. Discussion

Current dietary habits are driven towards the consumption of ready-to-eat foods rich in refined
sugars and unhealthy fats. Nutritional interventions have been consistently proposed as a part of a
comprehensive strategy to lower the incidence and severity of several diseases. Excessive consumption
of animal-based proteins is associated with an increased risk of atherosclerosis and cancer [29–31].
By contrast, replacement of animal- with plant-based proteins has been reported to be inversely
associated with risk of atherosclerosis [30]. The industrial hempseed, i.e., the non-drug cultivars of C.
sativa, is undoubtedly an underexploited protein-rich seed [32]. Hempseed proteins are an excellent
natural source of digestible amino acids in comparison to other protein sources, such as borage meal,
canola meal, and heated canola meal [33,34]. The literature evidence shows that the most effective HPPs
identified so far are ACE-inhibitory peptides, which are composed of 2–20 amino acids. In addition,
they should present good chemical properties such as the balance of hydrophobicity/hydrophilicity and
some particular structural characteristics related to its sequence [13,32,35,36]. In previous results of our
research team, we evaluated the potential antioxidant activity of the HPIs, HPHs with alcalase, and HPHs
with alcalase and flavourzyme in cell-free in vitro and microglial BV2 experiments [9]. HPHs inhibited
oxidative stress and inflammatory response in activated microglia, however, the immunomodulatory
effects of HPHs have not yet been investigated in primary human monocytes.

Monocytes are determinative cells in the development and propagation of the inflammatory
nature and atherosclerosis onset. The normal activity of primary human monocytes is known to be
substantially disturbed by activation during the plaque formation [24,25]. Activation of monocytes
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is observed in chronic inflammatory processes, i.e., cardiovascular diseases. When monocytes are
exposed to LPS, they produce several inflammatory mediators which are involved in different injuries
and diseases, particularly in inflammation, metabolic, and vascular-related disorders [17–19]. During
inflammation, the dual roles of monocytes are defined in part by two specific morphological phenotypes
of macrophages that they have the tendency to be polarized into. The M1 macrophages stem from
classical monocytes, which are rich in CD14 and show high expression of chemotaxis genes such as
CCR2 (C-C chemokine receptor 2) and CCL2 (C-C ligand 2, also referred to as monocyte chemoattractant
protein 1) [18,22]. On the other hand, the M2 macrophages stem from non-classical monocytes, which
are rich in CD16 and show high expression of CD200R (Cell surface glycoprotein CD200 receptor)
and MRC1 (C-type mannose receptor 1) [21,23]. The M1 phenotype is a pro-inflammatory state and is
involved in the production of inflammatory mediators, including pro-inflammatory cytokines (IL-1β,
TNF-α, and IL-6) and chemokines, and induces oxidative stress damage by iNOS (inducible nitric
oxide synthase) induction. Alternatively, the M2 phenotype is involved in the production of protective
cytokines (IL-4 and IL-10) and plays an important role in tissue repairs [21].

Given the importance of monocytes on innate immune function, our study highlights the effects
of HPPs on the inflammatory response in LPS-activated primary human monocytes. In the literature,
it is possible to find a representative number of cases where plant-derived biopeptides are used as
anti-inflammatory or antioxidant chemicals. A model of them is 1,2,3,4,6 penta-O-galloyl-β-D-glucose,
a naturally occurring polyphenolic chemical present in some therapeutical herbs as Rhuschinensis
Mill [37]. One more example of a bioactive plant is Fagopyrum tataricum, widely named as
buckwheat. Other isolated chemicals with anti-inflammatory activity in activated PBMCs (monocytes
or macrophages) are the Brazilian red propolis (Apis mellifera), Copaifera oleoresins, Citrus bergamia
juice flavonoid fraction, effusanin C (Isodon japonicus), and oligomeric proanthocyanidins (Crataegus
oxyacantha) [38–42]. Lunasin, a 43-amino acid multifunctional bioactive peptide in soybean seeds,
has been found to exert numerous biological activities, including anti-inflammatory and antioxidant
properties, in human monocytic leukemia cell line THP-1 cells [43]. In addition, GPETAFLR, an
octapeptide isolated from Lupinus angustifolius L., showed an anti-inflammatory effect in LPS-stimulated
primary human monocytes [44]. In the present study HPHs have shown diminished inflammation
in LPS-stimulated primary human monocytes. These observations are consistent with the mRNA
levels of inflammatory cytokines, with additional contributions to the M2 phenotype polarization,
as well as the CCR2-dependent migration markers. Hence, the activated macrophages treated with
HPPs might target the inflammation and successfully prevent inflammatory states and inflammatory
derived complications from several human diseases. This anti-inflammatory capacity may be a result of
biopeptide presence or the synergistic association of free amino acids which exert primary antioxidant
activity [8,9].

Our study is supplementary to a previous one in which HPPs were demonstrated to show
an antioxidant ability in ex-vivo experiments as well as anti-inflammatory properties in murine
BV-2 microglial cells [9]. However, the targeting pathways of the immune system by HPHs are
unknown. Subsequent to these observations, the literature evidence have been suggested that the
LPS-activated-macrophages promote pro-inflammatory pathways such as the nuclear factor (NF)-κB
signaling pathway and the Janus-activated kinase (JAK)/STAT3-dependent pathway [17,29]. On this
matter, some authors have observed that LPS is recognized by TLR4 (toll like receptor-4) in human
monocytes [28,29]. This receptor could activate the NF-κB pathway. As a result, the activated
pro-inflammatory pathways are involved in the release of iNOS. Our results showed that LPS-activated
monocytes produce an increase in iNOS transcriptional levels, though the HPP treatments have
induced a normalization of the iNOS transcriptional levels. In addition, other observations may drive
the investigation to the nucleotide-binding domain and leucine-rich repeat containing protein (NLR)
expression and the NLRP3 inflammasome activation pathway which regulate the secretion of IL-1β [20].
As was observed, IL-1β was increased in the LPS-activated monocytes, which may indicate NLRP3
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inflammasome activation. At which time, further studies should be directed toward the targeting
pro-inflammatory pathway in presence of HPHs.

5. Conclusions

Taken together, our outcomes suggest that both hydrolysates, HPH20A and HPH60A15F, have
significant anti-inflammatory properties in LPS-activated primary human monocytes. Additionally,
both hydrolysates have the capacity of regenerated inflammatory processes by an over-activation of M2
phagocytes, as is summarized in Figure 5. Therefore, the present study reveals new beneficial effects of
hemp protein products, including HPH20A and HPH60A15F, as well as allows their potential uses in
the prevention and treatment of inflammation-related conditions as natural bioactive compounds.
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Appendix A

Table A1. Chemical composition of hemp seed, HPI, HPH20A and HPH60A15F. Data, expressed as
percentage in dry basis, are mean ± standard deviation of triplicates [9].

Nutrient (g/100 g Product) Hemp Seed Hemp Protein
Isolate (HPI)

Hemp Protein
Hydrolysate:

HPH20A

Hemp Protein
Hydrolysate: HPH

60A + 15AF

Proteins 24.18 ± 1.01 96.46 ± 0.93 86.56 ± 0.78 83.02 ± 0.29
Carbs 3.81 ± 0.76 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Fat 32.35 ± 0.57 ——— ——— ———
Humidity 4.49 ± 0.01 2.19 ± 0.01 7.34 ± 0.03 8.85 ± 0.04

Ash 5.09 ± 0.07 1.06 ± 0.10 6.10 ± 0.75 8.13 ± 0.26
Fiber 29.72 ± 1.44 00.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Polifenols 0.35 ± 0.02 0.04 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table A2. Amino acid profile of defatted hemp flour (DHF), HPI, HPH20A and HPH60A15F by HPLC.
Values were expressed as a percentage of amino acids on the total amino acid content, are the mean ±
standard deviation of triplicates [9].

Amino Acids
(g/100 g Protein)

Defatted Hemp
Flour (DHF)

Hemp Protein
Isolate (HPI)

Hemp Protein
Hydrolysate:

HPH20A

Hemp Protein
Hydrolysate: HPH

60A + 15AF

Aspartic acid + asparragine 11.34 ± 0.37 12.35 ± 0.34 12.40 ± 0.29 12.08 ± 0.51
Glutamic acid + Glutamine 18.41 ± 0.13 18.86 ± 0.35 18.83 ± 0.25 18.58 ± 0.12

Alanine 4.89 ± 0.10 5.01 ± 0.14 4.99 ± 0.10 5.00 ± 0.11
Arginine 12.68 ± 0.21 13.44 ± 0.03 13.34 ± 0.24 13.78 ± 0.23
Cysteine 1.22 ± 0.02 1.98 ± 0.08 1.81 ± 0.18 1.65 ± 0.21
Glycine 4.74 ± 0.07 4.79 ± 0.23 4.64 ± 0.11 4.64 ± 0.12

Histidine 3.07 ± 0.01 2.85 ± 0.05 2.80 ± 0.02 2.79 ± 0.03
Isoleucine 4.23 ± 0.08 3.02 ± 0.40 3.57 ± 0.15 3.85 ± 0.20
Leucine 7.12 ± 0.05 7.13 ± 0.11 7.12 ± 0.13 7.34 ± 0.07
Lysine 3.78 ± 0.09 3.04 ± 0.08 3.10 ± 0.06 3.23 ± 0.04

Methionine 2.14 ± 0.02 0.89 ± 0.34 0.60 ± 0.03 0.64 ± 0.04
Phenylalanine 4.76 ± 0.09 5.12 ± 0.02 5.04 ± 0.05 5.19 ± 0.08

Proline 2.66 ± 0.69 3.02 ± 0.00 2.83 ± 0.05 1.29 ± 0.19
Serine 5.57 ± 0.11 6.31 ± 0.21 6.36 ± 0.19 6.31 ± 0.22

Threonine 3.79 ± 0.08 3.79 ± 0.10 3.89 ± 0.06 4.02 ± 0.07
Tryptophan 0.76 ± 0.05 0.55 ± 0.02 0.66 ± 0.01 0.82 ± 0.03

Tyrosine 3.57 ± 0.06 4.08 ± 0.06 3.98 ± 0.03 4.06 ± 0.12
Valine 5.27 ± 0.11 3.77 ± 0.40 4.05 ± 0.42 4.71 ± 0.19
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