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Abstract: Esophageal adenocarcinoma (EAC) incidence has been rapidly increasing,
potentially associated with the prevalence of the risk factors gastroesophageal reflux disease
(GERD), obesity, high-fat diet (HFD), and the precursor condition Barrett’s esophagus (BE).
EAC development occurs over several years, with stepwise changes of the squamous esophageal
epithelium, through cardiac metaplasia, to BE, and then EAC. To establish the roles of GERD and HFD
in initiating BE, we developed a dietary intervention model in C57/BL6 mice using experimental HFD
and GERD (0.2% deoxycholic acid, DCA, in drinking water), and then analyzed the gastroesophageal
junction tissue lipidome and microbiome to reveal potential mechanisms. Chronic (9 months) HFD
alone induced esophageal inflammation and metaplasia, the first steps in BE/EAC pathogenesis.
While 0.2% deoxycholic acid (DCA) alone had no effect on esophageal morphology, it synergized with
HFD to increase inflammation severity and metaplasia length, potentially via increased microbiome
diversity. Furthermore, we identify a tissue lipid signature for inflammation and metaplasia, which is
characterized by elevated very-long-chain ceramides and reduced lysophospholipids. In summary,
we report a non-transgenic mouse model, and a tissue lipid signature for early BE. Validation of the
lipid signature in human patient cohorts could pave the way for specific dietary strategies to reduce
the risk of BE in high-risk individuals.

Keywords: lipid; lipidomics; cardiac metaplasia; Barrett’s esophagus; esophageal adenocarcinoma;
microbiota

1. Introduction

There are two main forms of esophageal cancer: esophageal squamous cell carcinoma and
esophageal adenocarcinoma (EAC) [1]. Over a period of three decades, the incidence of EAC has risen
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sixfold, while esophageal squamous cell carcinoma has remained relatively stable [2,3]. In the United
States, incidence of EAC was estimated to increase from 0.40 to 2.58 cases per 100,000 between 1975
and 2009 [4]. From less than 5% of all esophageal cancer cases before the mid-1970s [5], EAC now
represents almost half of all cases [2,3], making it one of the most rapidly increasing cancers in Western
populations. Despite recent advances in surveillance and treatment protocols, the prognosis for patients
with advanced EAC is poor, with a 5 year survival rate of less than 16%, and a median survival of less
than 1 year [6,7].

EAC is widely accepted to develop via a stepwise sequence, as a consequence of gastroesophageal
reflux disease (GERD). GERD leads to chronic inflammation in the esophagus and reflux esophagitis [8].
In ~10%–15% of GERD patients, the damaged squamous epithelium of the distal esophagus is replaced
by cardiac mucosa with intestinal metaplasia, a condition termed Barrett’s esophagus (BE) [9,10].
Although BE itself has limited adverse health effects, patients with BE have a 30–60-fold increased risk
of developing EAC [11], with estimated annual progression rate of ~0.1%–0.5% per year [12,13].

In addition to GERD and BE, epidemiology studies have identified male gender, tobacco smoking
and obesity as risk factors for EAC [14]. To investigate the causality and to delineate the molecular
mechanisms of GERD, surgical rodent models have been reported [15], but with high mortality rates
due to the challenging surgeries. An alternative approach using dietary intervention was reported by
Quante et al. [16], using 0.2% deoxycholic acid (DCA) in drinking water as a mimic of GERD to induce
Barrett’s-like metaplasia in interleukin 1β transgenic mice. A follow-up study showed that high-fat diet
(HFD) accelerated tumor development in the interleukin 1β transgenic mouse model [17]. While the
authors report an increased inflammatory tumor microenvironment and altered intestinal microbiome
as potential mechanisms, HFD may also promote EAC through lipid dyshomeostasis and esophageal
dysbiosis. Circumstantial evidence suggests roles for both lipids and the esophageal microbiome in
BE/EAC pathogenesis. Patients receiving cholesterol-lowering statin therapy exhibit reduced incidence
of BE [18,19] and EAC [20–23]. Alterations to the esophageal microbiome have been reported in human
esophageal tissues during BE/EAC disease progression [24,25], while gastric Helicobacter pylori infection,
or altered gastric microbiota, may influence EAC development by modulating refluxate composition
or frequency [26,27].

To evaluate the impact of obesity and/or GERD on esophageal tissue morphology, and to address
the hypotheses that the pathogenic mechanisms of HFD or GERD involve esophageal microbiome
and/or tissue lipids, we employed HFD dietary intervention and 0.2% DCA exposure in non-transgenic
mice, to mimic obesity and GERD, respectively. The mouse model mimicking early BE was adapted
from a previous report using BE transgenic mouse [16,17]. We found that a 9 month HFD increased
esophageal tissue inflammation and cardiac metaplasia. DCA in drinking water increased the severity
of HFD-induced esophageal inflammation and metaplasia segment length, potentially via increased
esophageal microbiome diversity. Tissue lipidomics analyses revealed a phospholipid and sphingolipid
signature associated with esophageal inflammation and cardia development.

2. Materials and Methods

2.1. Animal Experiments

The study was approved by The University of Queensland Animal Ethics Committee.

2.1.1. Materials

Chow diet (Irradiated Rat and Mouse Diet) and HFD (SF04-001) were obtained from Specialty
Feeds (Western Australia). Both diets were produced as cylindrical pellets with a diameter of 12 mm
and comparable fiber contents of 5.2% and 5.4% respectively. The standard chow provides 12% of
digestible energy from fat, 23% from protein and 65% from carbohydrates, and contained 0.78%
saturated fats, 2.06% monounsaturated fats and 1.88% polyunsaturated fats by weight. The HFD
provides 43% of calories from fat, 21% from protein and 36% from carbohydrates, and contained 10.03%
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saturated fats, 8.24% monounsaturated fats and 5.11% polyunsaturated fats by weight. Both diets were
wheat- and soy-based, but differed in the primary source of fat; namely, fish meal, mixed vegetable oils
and canola oil for the standard chow, or lard and soybean oil for the HFD. Deoxycholate was obtained
from Sigma (Missouri, USA).

2.1.2. Dietary Treatments

Eight-week-old male C57BL/6 mice were randomly assigned to one of four treatment groups for
9 months (n = 12).

A. ad libitum standard chow diet and drinking water
B. ad libitum standard chow diet and 0.2% deoxycholic acid (unconjugated bile acid, pH 7) in

drinking water [16]
C. ad libitum HFD and drinking water
D. ad libitum HFD and 0.2% deoxycholic acid in drinking water.

Mice were housed in groups in autoclaved standard shoe-box cages in a ventilated rack system.
Drinking water with or without deoxycholate was prepared and replaced fresh weekly. All interventions
were performed during the light period of a 12 h/12 h light/dark cycle.

2.1.3. Tissue and Serum Collection

Tissue was collected within the same 3 h window to avoid discrepancies due to circadian variations.
Blood was collected via cardiac puncture under isoflurane anesthesia followed by cervical dislocation.
Blood was centrifuged at 5000× g for 10 min at 4 ◦C, and serum removed and stored at –80 ◦C.
Distal esophagus and gastroesophageal junction tissues were collected from each mouse. The entire
gastroesophageal junction was fixed for histology, while distal esophageal tissues were cut in half
lengthwise. One half was fixed in formalin for histology, and one half snap frozen in liquid nitrogen
for 16S ribosomal DNA (rDNA) sequencing for microbiome analysis.

2.1.4. Histology

Tissues were fixed in 10% formalin for 24 h and embedded in paraffin. Embedded tissue blocks were
cut into 4 µm sections and used for hematoxylin and eosin (H&E) staining. Histological evaluation and
grading was performed by a specialist gastrointestinal pathologist (IB). For grading, inflammation was
graded on a scale of 0 to 3 (0 = nil inflammation; 1 = mild; 2 = moderate; and 3 = severe). The presence
and length of cardiac-type mucosa was recorded.

2.2. Lipidomics Experiments

2.2.1. Materials

SPLASH LipidoMix Mass Spec Standard mixture (#330707), containing deuterated lipids of
14 species at various concentrations, and the Ceramide/Sphingoid Internal Standard Mixture II
(#LM-6005), were purchased from Avanti Polar Lipids, Inc. (Alabaster, U.S.A). ESI-L low concentration
tuning mix (#G1969-85000) was purchased from Agilent Technologies (Mulgrave, VIC, Australia).

2.2.2. Lipid Extraction

All steps except for sonication and sample blowdown were performed on ice. Serum and tissue
samples were homogenized differently but lipids were extracted using the same methyl-tert-butyl
ether (MTBE)/methanol extraction method [28].

Mouse serum (30 µL) was added to 215 µL of ice-cold methanol containing 50 µg/mL butylated
hydroxytoluene (BHT). Samples were homogenized by three rounds of vortex mixing for 30 s, freezing in
liquid nitrogen for 1 min, thawing for 2 min and sonicating for 10 min at 15 ◦C, power 100% in a Grant
XUB18 bath sonicator.
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Tissue wet weight was determined using a Mettler-Toledo XS105 balance (Mettler-Toledo,
Melbourne, Australia). Biopsies were transferred to Eppendorf tubes containing 500 µL ice-cold
methanol, 50 µg/mL BHT and one steel bead and homogenized in a TissueLyzer LT (Qiagen, Melbourne,
Australia) for six minutes at 50 Hz. Homogenate was transferred to new tubes and the original tube
was washed with 400 µL methanol and transferred. Samples were dried down under nitrogen flow
and resuspended in 20 µL water and 200 µL methanol (50 µg/mL BHT). Samples were homogenized
by three rounds of vortex mixing for 30 s, freezing in liquid nitrogen for 1 min, thawing for 2 min and
sonicating for 10 min at 15 ◦C, power 100% in a Grant XUB18 bath sonicator.

SPLASH LipidoMix Mass Spec Standard (10 µL) and Cer/Sph mixture II (10 µL) internal standards
mixes from Avanti Polar Lipids were then added to each sample. After overnight incubation at −30 ◦C,
750 µL MTBE was added and each tube was vortex mixed for 10 s and shaken for 10 min on a tube
rotator (4 ◦C). MilliQ water (188 µL) was then added, and the tube was vortex mixed for 30 s to form
a biphasic separation. After centrifuging for 15 min at 15,000× g, 700 µL of the clear upper phase
containing lipids in MTBE was transferred to another tube and dried down using a gentle stream
of nitrogen. After drying down of lipids, extracts were resuspended in 50 µL methanol (containing
50 µg/mL BHT)/toluene (90%/10%, v/v). Dry weight of the remaining pellets from tissue samples was
determined in triplicate using a Mettler-Toledo XS105 balance. Dry weights were used to normalize
lipid injection volumes of tissue samples prior to mass spectrometry analysis. For serum samples
equal volumes were injected.

2.2.3. Untargeted Lipidomics

An Agilent Technologies 1290 Infinity II UHPLC system with an Agilent ZORBAX Eclipse plus C18
1.8-micron column (#959757-902) and guard column (#821725-901), coupled online to an Agilent 6550A
iFunnel QTOF mass spectrometry system, was used for untargeted lipidomics. The mass spectrometer
was tuned in the low mass range (1700 m/z), high sensitivity slicer mode and the instrument mode was
set to Extended Dynamic Range (2 GHz). The quadrupole and time-of-flight (TOF) sections of the
mass spectrometer were both tuned prior to each experiment. The quadrupole was tuned to reference
masses 118.09, 622.03 and 1221.99 in positive ionization mode. Experiments were performed if the
quadrupole component passed the check tune for each reference mass in wide, medium and narrow
modes. The TOF component was tuned using reference masses 118.09, 322.05, 622.03, 922.00, 1221.99
and 1521.97 in positive ionization mode. TOF mass calibration indicated that at around 110–120 m/z
the resolution was ~12,000–13,000 and increased to 20,000–21,000 around 600–620 m/z range. The ion
source used was Dual Agilent Jet Stream electrospray ionization, which allows for the simultaneous
introduction of sample and reference masses into the mass spectrometer. Source capillary voltages were
set to 4000 V for positive ionization mode whilst the nozzle voltage was set to 0 V, fragmentor was set
to 365 and octopoleRFPeak to 750. Nitrogen gas temperature was set to 250 ◦C at a flow of 15 L/minute
and a sheath gas temperature of 400 ◦C at a flow of 12 L/min. During the experiment reference masses
were enabled (121.05 and 922.01 Da) to enable auto-recalibration of compounds with known masses.
MS1 data was acquired between 100–1700 m/z at a scan rate of 2.5 spectra per second.

The sample dilution and injection volume used for experiments was determined by testing a
representative sample prior to analyzing the cohort. Reversed phase buffers A and B contained
25 millimolar (mM) ammonium formate and 0.1% formic acid in 60%/40% (v/v) acetonitrile/water
or 90%/10% (v/v) isopropanol/water respectively. The separation gradient was run at a flow rate of
0.5 mL/min to separate the lipids during a 16 min gradient. The method started at 15% B and increased
to 30% B at 2:00, 48% B at 2:30, 82% B at 11:00, 99% B at 11:30. The gradient was retained at 99%
B until 13:00 and retained at the starting condition of 15% B between 13:06 and 16:00. The column
compartment was maintained at 60 ◦C for the duration of the experiment.
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2.2.4. Targeted Lipidomics

Targeted lipidomics were performed on an Agilent Technologies 1290 Infinity UHPLC system with
an Agilent HILIC Plus RRHD 2.1 × 100 mm 1.8 micron column, coupled online to an Agilent 6490A
Triple Quadrupole mass spectrometer with iFunnel and Agilent Jet Stream electrospray ionization
source, operated in dynamic MRM mode. The source nitrogen gas temperature was set to 250 ◦C
at a flow rate of 15 L/min, and the sheath gas temperature set to 400 ◦C at a flow rate of 12 L/min.
The capillary voltage was set to 4000 V for positive mode and 5000 V for negative mode and the
nebulizer operated at 30 psi. Ion funnel low and high pressure in positive mode were 150 and 60, and in
negative mode 150 and 120, respectively. Check tunes were performed in wide, unit and enhanced
modes prior to each experiment to confirm the performance of the mass spectrometer. The quadrupole
was tuned to reference masses 118.09, 322.05, 622.03, 922.01 and 1221.99 in positive ionization mode,
and 112.99, 302.00, 601.98, 1033.99 and 1333.97 in negative ionization mode.

Each sample was analyzed in 3 separate dynamic MRM runs using two different HILIC buffer
systems, both using 50%/50% (v/v) acetonitrile/water as Buffer A and 95% acetonitrile/water (v/v) as
buffer B. The buffers were supplemented with 25 mM ammonium formate, pH 4.6 and 0.1% formic
acid (denoted methods F1, F2) or 10 mM ammonium acetate, pH 7.6 (denoted method A). As detailed
in Table S1, the methods had 155 (F1), 156 (F2) and 126 (A) transitions, including internal standards.
The minimum dwell times were 4.2 milliseconds (ms), 4.1 ms and 3.1 ms respectively for methods
F1, F2 and A. The method started at 0.1% A and increased to 40% A at 8:00, 90% A at 9:30 until 10:30.
The gradient decreased to 0.1% A between 10:30 and 11:30 and was retained at the starting conditions
of 0.1% A until 14:00. The column compartment was maintained at 30 ◦C for the duration of the
experiment. A pooled quality control (QC) sample was injected multiple times to condition the HPLC
column prior to analyzing samples, and also queued after every 6–7 biological samples to monitor
mass spectrometry performance for the duration of the experiment [29,30].

2.2.5. Data Treatment and Analysis

Feature integration of untargeted lipidomics data was performed using the XCMS Centwave
method and retention time alignment was performed using the Obiwarp method [31]. Features were
grouped and peak filling was performed using the fill ChromPeaks method. Finally, feature information
and abundances per samples were exported as a .csv file format. Lipid identification was performed
using MS-DIAL version 3.90 (RIKEN Center for Sustainable Resource Science, Kanagawa, Japan) and
the included FiehnRT (v47) lipid database [32]. Identifications were made based on accurate mass,
retention time and database matching, and then manually confirmed. The MS1 tolerance was set
to 0.01 Da and the tolerance for MS2 peaks was set to 0.05 Da. Database retention times were not
used for scoring in the lipid identification. An identification score cut-off of 70 was set to remove
most inaccurate identifications. The possible adduct ions were set to [M + H]+, [M + NH4]+ and
[M-H]−. Manual confirmation included the visual inspection of all database matches, assessing the dot
and reverse dot product similarity scores. Ambiguous identifications of features with multiple likely
identifications were excluded from the analysis. Lipid identifications, accurate masses and retention
times were exported from MS-DIAL and integrated into the data exported from XCMS.

Acquired targeted lipidomics data was imported into Skyline (MacCoss Lab, Department of
Genome Sciences, University of Washington) [33], peak integration was automated but manually
confirmed and corrected if required. Internal standard retention time was used to confirm correct peak
integration of lipids belonging to the same class. Peak areas were exported from Skyline for further
analysis in R (R Foundation for Statistical Computing, Vienna, Austria) [34].

The datasets were filtered to remove any lipids with a coefficient of variation greater than 20%
among the quality control samples. Missing values were imputed using the MinDet method from the
imputeLCMD R package using the default q-value of 0.01. All datasets were log2 transformed and
normalized using the probabilistic quotient normalization method as described by Dieterle et al. [35].
Lipid information such as lipid class, number of unsaturated bonds and fatty acid chain lengths
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were parsed from the original lipid names using the lipidr R package [36]. Further analyses and
visualizations, including principal component analysis (PCA) and lipid class boxplots were produced
using lipidr [36]. The enrichment of lipid classes was determined using the LSEA (lipid set enrichment
analysis method) [36]. Pearson correlation was used to determine the correlation between total lipid
fatty acid chain lengths and the development of disease conditions.

2.3. Microbiome Profiling

2.3.1. DNA Extraction

Unless otherwise stated, solvents were purchased from Sigma (Missouri, USA). Mouse tissues
were preincubated with lysis buffer (20 nanomolar (nM) Tris/HCl; 2 mM EDTA; 1% Triton X-100; pH 8;
supplemented with 20 mg/mL lysozyme) for 60 min at 37 ◦C, then with 25 µL Proteinase K (20 mg/mL;
Ambion, CA, USA) at 56 ◦C until completely lysed. DNA was extracted using the ISOLATE II Genomic
DNA Kit (Bioline, London, UK) following manufacturer’s standard protocol. The DNA samples were
eluted in two lots of 50 µL Elution Buffer G from the kit.

2.3.2. Library Preparation and Sequencing

Library preparation was performed in batch. Polymerase chain reaction (PCR) preparation was
conducted in a designated DNA template-free room. Sequencing library preparation of the samples
and control (no DNA template) was based on the 16S Metagenomic Sequencing Library Preparation
guidelines provided by Illumina. Q5 Hot Start High-Fidelity 2×Mastermix polymerase (NEB, Ipswich,
MA, USA) was used for the Amplicon PCR step. Primers used for the amplification of the V6–V8
region of the 16S ribosomal RNA gene were primers 927-Forward (AAACTYAAAKGAATTGRCGG;
universal) and 1392-Reverse (ACGGGCGGTG WGTRC; universal) with Illumina adapter sequences.
Samples were barcoded using the Illumina dual-index system (Nextera XT v2 Index Kit Set A) for
the Index PCR step. PCR products were purified using AMPure XP beads (Beckman Coulter, Brea,
CA, USA). The DNA concentration for each barcoded amplicon mixture was quantified following
manufacturer’s instructions (Quantus, Promega, Madison, WI, USA) and all samples were pooled to
provide 4 nanomol of each amplicon. The pooled libraries were sequenced using the Illumina MiSeq
platform (Illumina, San Diego, CA, USA) and the MiSeq Reagent Kit v3 (2 × 300 bp) by the Australian
Centre for Ecogenomics, located at the University of Queensland.

2.3.3. Bioinformatics and Statistical Analysis

Raw sequencing reads were processed and analyzed using Quantitative Insights Into
Microbial Ecology 2 (QIIME 2, version 2019.7) according to the developer’s recommendations [37].
Sequence quality control was carried out using the DADA2 algorithm, a QIIME 2 plugin-software to
filter low-quality sequences as well as to identify and remove chimeric sequences. Amplicon sequence
variants (ASVs) were generated from the filtered sequences and the SILVA_132 99% reference database
was used to train the feature classifiers and provide taxonomic assignment accordingly. An ASV table
was generated and normalized using total sum normalization (TSS) for all further analyses using
Calypso (version 8.84) [38].

3. Results

3.1. High-Fat Diet and Bile Acid Exposure as a Mouse Model for the Development of Esophageal Inflammation
and Cardiac Metaplasia

Chronic treatment with the unconjugated bile acid, deoxycholic acid (DCA, 0.2%), in drinking
water was previously reported to accelerate Barrett’s-like metaplasia development in an interleukin-1β
transgenic mouse model [16]. We hypothesized that obesity induced by chronic HFD will replicate
the chronic inflammation due to interleukin-1β overexpression, and leads to Barrett’s-like epithelium
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development in wild-type mice. To test this hypothesis, male C57BL/6 mice were fed with standard
chow diet or HFD with and without 0.2% DCA, for 9 months prior to sacrifice (n = 11 per group).
Chow and HFD diets had comparable fiber (5.2% vs 5.4%) and protein (23% vs 21%) content, but the
digestible energy from fat increased from 12% in chow to 43% in HFD, while carbohydrate reduced
from 65% to 36%.

Body weight was monitored weekly, and HFD +/− DCA mice had significantly higher body
weight than Chow +/− DCA (q < 0.0001), but no difference in body weight was observed between mice
+/− DCA in either diet group (Figure 1a). Interestingly, weight gain in mice in the HFD + DCA group
was delayed compared to the HFD + water group, potentially indicative of DCA-induced esophageal
damage reducing food intake and subsequent recovery (Figure 1a).
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Figure 1. Chronic high-fat and/or bile acid dietary intervention in wild-type mice induces chronic
inflammation and cardiac metaplasia development at the gastroesophageal junction. C57BL/6 mice
(n = 11 per group) were given +/− high-fat diet (HFD) and +/− 0.2% deoxycholic acid (DCA) over a
9 month period, and gastroesophageal junction tissue morphology evaluated in hematoxylin & eosin
(H&E) stained sections for inflammation and epithelial changes. (a) Body weight over time for each of
the four groups. Values are mean ± SD; (b) Example esophageal epithelium morphology for normal
and cardiac metaplasia. (c) Example inflammation grading. (200×; scale bar 100 µm).

Next, we examined the impact of the dietary treatments on tissue morphology of the
gastroesophageal junction, where BE arises. H&E stained tissues were evaluated, and graded
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for inflammation severity and metaplasia length by an expert gastrointestinal pathologist in a
blinded manner. Figure 1b shows the morphology of the normal squamous epithelium of the
gastroesophageal junction, which was observed in most samples. In contrast, cardiac metaplasia with
neutral mucin-producing glands was observed immediately adjacent to the squamous epithelium,
observed in all four groups with varying frequency. Furthermore, varying grades of inflamed esophageal
tissue were observed (Figure 1c). Inflammation grade 0 lacks inflammatory cells in the lamina propria,
whereas mild inflammation with small numbers of lymphocytes and eosinophils are observed in
inflammation grade 1. Inflammation grade 2 is marked by moderate inflammation, with a prominent
infiltration of the lamina propria by lymphocytes and small numbers of eosinophils. Additionally,
lymphocytes infiltrate the squamous epithelium. In severe inflammation, grade 3, a prominent
infiltration of the lamina propria by lymphocytes, plasma cells, eosinophils and neutrophils is observed.
Neutrophils and eosinophils are present within the epithelium.

Quantitative analysis revealed a basal level of mild inflammation in ~20% of the control and
DCA treatment groups (Figure 2a). The combined HFD + DCA increased the overall incidence
of inflammation to 67%, and was the only group with a grade of severe inflammation (Figure 2a).
HFD alone slightly increased inflammation incidence to 27%, but induced a similarly high level of
metaplasia (64%–67%) as the combined HFD + DCA (Figure 2b). However, all of the instances of
metaplasia for the HFD + DCA group were long segment, while metaplasia induced by HFD alone
comprised short, medium and long segments (Table S2).
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Figure 2. Synergistic action of chronic HFD and DCA promotes inflammation and cardiac metaplasia
at the gastroesophageal junction. H&E stained tissue sections graded for the degree of inflammation
(mild, moderate or severe), and the length of cardiac metaplasia (short, medium or long) were analyzed
for (a) the occurrence and degree of inflammation, and (b) length of cardiac metaplasia in the four
treatment groups. Correlation between presence of cardiac metaplasia was further compared for: (c) all
mice treated with DCA compared to water control; (d) all mice on HFD diet compared to chow diet;
and (e) any level of inflammation. The significance for plots c–e was calculated using the Fisher’s exact
test. ** p-value < 0.05.

The above results demonstrate that chronic HFD with DCA (mimicking GERD) induces the
hallmarks of early BE, namely, tissue inflammation and metaplasia. To further evaluate the correlation
between each dietary treatment, we next asked if the inflammation or metaplasia incidence correlate
with HFD or DCA treatment. When all samples from DCA treatment groups were compared against
all groups treated with water, no significant difference was detected for incidence of cardiac metaplasia
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(Figure 2c). Similarly, HFD, with or without DCA, did not significantly increase the development of
cardiac metaplasia (Figure 2d). Finally, we asked whether the incidence of inflammation and metaplasia
was correlated, and found a significant relationship, with 6% of mice without esophageal inflammation
and 54% of mice with inflammation developing cardiac metaplasia (Figure 2e). Furthermore, among the
mice that developed cardiac metaplasia, the mice with inflammation developed a longer metaplastic
tissue (Figure 2e).

3.2. Esophageal Tissue Microbiome Diversity Increases with DCA

After confirming the induction of gastroesophageal junction inflammation and cardiac metaplasia
by chronic HFD + DCA treatment, we went on to profile the esophageal microbiota of 43 samples from
the four study groups, using 16S ribosomal RNA gene sequencing. One sample gave no sequences and
was removed from subsequent analysis. In total, 21,708 high quality sequences were obtained, with an
average of 504.84 sequences per sample. From these sequences, four major phyla (Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria) were identified, and a total of 23 ASVs were detected at 99%
sequence identity threshold via SILVA_132 database.

We first compared microbial diversity (Shannon index) and richness between treatment groups
using rank test in Calypso. No significant differences in microbial richness was observed, but a
higher microbial diversity was observed in DCA alone, and HFD + DCA groups (Figure 3a).
To further test the relationship between DCA and microbial diversity, we then re-grouped the
data into HFD-treated and DCA-treated groups, as previously done (Figure 2). While no significant
differences in microbial diversity or richness were detected for HFD treatment (Figure 3b), a significant
increase of microbial diversity in DCA-treated groups was detected, with a similar but non-significant
increase in richness (Figure 3c).
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Figure 3. Esophageal microbiome diversity is increased by HFD + DCA treatment. Shannon index
and microbial richness of esophageal microbiome data was measured using rank test for (a) each of
the four treatment groups, (b) combining HFD/Water and HFD/DCA groups into the HFD group,
and Chow/Water + Chow/DCA into the Chow group, or (c) combining Chow/DCA and HFD/DCA
groups into the DCA group, and Chow/Water + Chow/DCA into the Water group. * p-value < 0.01.
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3.3. Lipidomic Changes Associated with Dietary Interventions

In parallel to the esophageal microbiome analysis, we conducted lipidomics analyses on the
collected serum and gastroesophageal junction samples, to determine associations between the
respective lipidomes and dietary treatments (HFD or DCA), inflammation or cardiac metaplasia.
A combined approach of untargeted and targeted lipidomics was conducted, to quantitate 339 and 197
mammalian lipid species in the serum and gastroesophageal junction samples, respectively.

While we observed no separation of gastroesophageal junction lipidome as a result of dietary
treatments by PCA in the first two principal components (Figure 4b), the serum lipidome showed clear
separation and clustering according to dietary intervention groups (Figure 4a).

Differential expression analysis was conducted on the lipidomics data of both datasets. Lipid class
enrichment was conducted to determine if specific lipid classes were selectively altered. The boxplots
in Figure 4c,d summarize the log2 fold change for each lipid class for each group, for serum and
gastroesophageal junction tissue lipids, respectively. Statistically significant changes are colored in
blue. Gastroesophageal junction tissue lipid class analysis (Figure 4d) revealed overlapping impacts
of HFD and DCA treatments. All three treatment groups showed elevated lysophosphatidylcholine
(LPC), as well as decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (Figure 4d).
While triacylglycerol (TAG) was elevated only in group B (DCA alone), phosphatidylglycerol (PG)
was elevated in HFD-treated groups (Figure 4d). For serum lipids, both HFD-treated groups (C and
D) show similar changes, with elevated ceramide (Cer), PG and sphingomyelin (SM), and reduced
lysophosphatidylethanolamine (LPE), PE and phosphatidylinositol (PI) (Figure 4c). In contrast,
DCA treatment alone (Group B) showed a large decrease in ether-PC, with modest changes in PI and
SM (Figure 4c). Interestingly, the reduction in ether-PC was not observed in the combined HFD + DCA
treatment (Group D), suggesting HFD rather than DCA is the main driver of the serum lipidome.

3.4. Lipidomic Changes Associated with Early Tissue Pathology

Since esophageal inflammation or metaplasia occurred in ~10% to 70% of mice in each group,
we next investigated the association between serum and gastroesophageal junction tissue lipidome
with early esophageal pathology. To this end, lipid class enrichment analysis was conducted on
metaplasia vs normal samples, and inflamed vs normal samples. Apart from elevated serum
ether-PC, the serum lipidome returned minor changes of < 25% magnitude (Figure 5a). In contrast,
the tissue lipidome showed similar changes for metaplasia and inflammation, characterized by
reduced lysolipids and elevated ceramides (Figure 5b). This result revealed major differences between
the lipidome associated with dietary intervention (Figure 4) and that associated with esophageal
pathology (Figure 5). Specifically, differences were observed for ceramides and the lysolipids LPC
and LPE. Elevated tissue ceramide was associated with metaplasia and inflamed tissue, but not
with any dietary treatment, even in the HFD + DCA treatment group, where 66.7% of cases were
inflamed (Figure 5). Reductions in the lysolipids LPC and LPE were associated with metaplasia and
inflammation (Figure 5b), but elevated tissue LPC was associated with HFD and DCA treatment
(Figure 4d). These results strongly implicate roles for elevated ceramides and reduced lysolipids in
metaplasia development due to chronic inflammation.
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Figure 4. The impact of dietary interventions on tissue and serum lipidome. After 9 months high fat
diet (HFD) +/- 0.2% deoxycholate (DCA), mouse gastroesophageal junction tissue and serum samples
were subjected to lipidomics analyses. (a) Principal component analysis score plot of mean-centered
unit variance-scaled untargeted serum lipidome data (n = 38). (b) Principal component analysis score
plot of mean-centered unit variance-scaled untargeted gastroesophageal junction tissue lipidome data
(n = 29). Plot ellipses represents the 95% Hotelling’s T2 confidence intervals for the multivariate
data. (c,d) Lipid class boxplots for serum and gastroesophageal junction tissue lipids, showing the
distribution of log2 differences between the treatment group and control. Positive values represent
lipids that are more abundant in the treatment group than in the control group. Blue color indicates
significant enrichment using the fast gene set enrichment analysis (fgsea) method. Cer—Ceramide,
LPC—lysophosphatidylcholine, LPE—lysophosphatidylethanolamine, PC—phosphatidylcholine,
PE—phosphatidylethanolamine, PG—phosphatidylglycerol, PI—phosphatidylinositol, SM—
sphingomyelin, DAG—diacylglycerol, TAG—triacylglycerol.
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Figure 5. Lipid classes associated with gastroesophageal junction tissue pathology. (a,b) lipid class
boxplots for serum and tissue lipids, showing the distribution of log2 differences between the
disease condition and control. The disease conditions cardia and inflammation were visualized
after applying the removeBatchEffect function from the limma R package. Positive values
represent lipids that are more abundant in the disease condition group than in the control group.
Blue color indicates significant enrichment using the fast gene set enrichment analysis (fgsea)
method. Cer—Ceramide, LPC—lysophosphatidylcholine, LPE—lysophosphatidylethanolamine,
PC—phosphatidylcholine, PE—phosphatidylethanolamine, PG—phosphatidylglycerol,
PI—phosphatidylinositol, SM—sphingomyelin, DAG—diacylglycerol, TAG—triacylglycerol.

As differing fatty acid chain lengths on a lipid can greatly impact biological function in cancer
development [39], we next determined whether fatty acid chain lengths were associated with
inflammation or metaplasia for the Cer, LPC and LPE classes. Ceramides comprise a single fatty acid
chain with a sphingoid backbone (commonly 18:1, as illustrated in Figure 6a). Figure 6a plots the log2
fold change for different total fatty acid chain lengths of each measured ceramide species. As evident
in Figure 6a, a significant correlation was found between very long chain ceramides and the disease
conditions inflammation and metaplasia. On the other hand, specificity in fatty acid chain lengths
were not observed for LPC in either metaplasia or inflamed tissues (Figure 6b). Increased LPE chain
lengths were significantly correlated with metaplasia, but not with inflammation (Figure 6c).
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Figure 6. Association of tissue ceramide, LPC and LPE fatty acid chain lengths with gastroesophageal
junction tissue pathology. (a–c) Total chain length plots for tissue lipids, showing the alterations in log2
abundances between the disease condition and control. The x-axis labels refer to the total fatty acid chain
length of the measured lipid. The disease conditions metaplasia and inflammation were visualized
after applying the removeBatchEffect function from the limma R package. Positive values represent
lipids that are more abundant in the disease condition group than in the control group. The metrics
shown in the plots refer to the Pearson correlation coefficient (R) and p-value. The smoothed line and
95% confidence interval were drawn using geom_smooth, by fitting a linear model. The structures
above each plot represent lipid species of the Ceramide, LPC and LPE classes, where the R groups refer
to the hydrocarbon chains of varying lengths.
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4. Discussion

This is the first study to demonstrate that chronic HFD in non-transgenic mice is sufficient to induce
esophageal inflammation and cardiac metaplasia, the first steps in BE/EAC pathogenesis. While DCA
in drinking water had no effect on esophageal morphology on its own, it increased the severity of
inflammation and length of metaplasia when combined with HFD. HFD clearly induced obesity
and serum lipid derangements, but only a proportion of HFD-treated mice developed esophageal
inflammation and cardiac metaplasia. Intriguingly, the esophageal tissue lipidome showed a similar
signature for inflammation and metaplasia, which was not associated with HFD. These results suggest
that homeostatic mechanisms can buffer HFD/obesity-induced lipidome derangement to an extent,
beyond which inflammation and metaplasia ensue.

Obesity increases the risk of several cancer types, and the mechanisms of specific lipids on
carcinogenesis are beginning to be revealed [39]. In this study, we identified an esophageal tissue
lipid signature for inflammation and metaplasia, which is characterized by elevated very long chain
ceramides and reduced lysolipids, LPC and LPE. Very long chain ceramides have been reported to
increase cancer proliferation, and evade growth suppressor and apoptotic signals [39]. A link between
HFD and tissue ceramide levels was recently reported by Zalewska et al. [40] for submandibular
gland ceramide following HFD treatment in mice. The authors suggested that elevated ceramide
increased mitochondrial reactive oxygen species (ROS) production and respiratory chain, leading to
inflammation [40].

Phospholipid remodeling has recently emerged as playing an important role in disease
pathogenesis, through the characterization of the lysophosphatidylcholine acyltransferase (LPCAT)
family [41]. Lysolipids LPC and LPE contain a single fatty acyl chain, while the more abundant PC and PE
contain two fatty acyl chains. Due to the differing biophysical properties, altered lysolipid:phospholipid
ratio can lead to altered membrane curvature and fluidity, which could translate to organelle remodeling
and altered signal transduction in pathology [41].

Warnecke-Eberz et al. [42] identified the LPCAT1 gene to be elevated in late- and early-stage
esophageal adenocarcinoma tissue, compared to adjacent normal tissue. Elevated LPCAT1 could
explain the decreased LPC and increased PC that we identified for inflamed and cardia gastroesophageal
junction tissue (Figure 5). LPCAT1 enzyme and LPC are elevated in several other cancers,
including colorectal cancer [43], hepatocellular carcinoma [44], gastric cancer [45] and clear cell
renal carcinoma [46]. Interestingly, body fatness is a risk factor for all these cancers [47]. In a
recent study of western diet-associated non-alcoholic steatohepatitis, LPCAT1 and LPCAT2 are
in the top 10 liver genes/transcripts most significantly elevated in mice fed western style diets
compared to standard diets [48]. Together, these data suggest a mechanistic link between high-fat diet,
activation of LPCAT transcripts, altered LPC:PC ratio, and induction of esophageal inflammation and
metaplasia development.

As GERD is a well-established risk factor for BE, the lack of esophageal pathology from the
mice treated with DCA alone was somewhat surprising. This result may suggest that 0.2% DCA
in drinking water does not fully mimic GERD, or that GERD is less damaging to mice esophagus
compared to human. Nevertheless, as expected for the additive effect of risk factors, DCA treatment
in addition to HFD increased the severity of inflammation and length of metaplasia, compared to
HFD treatment alone. DCA treatment increased the esophageal microbiome diversity, which is
consistent with previous reports describing the effect that levels of bile acids in the gut have on the
major division/phyla level taxa of the gut microbiome [49]. These effects could potentially extend
to the esophagus, given that the composition of the esophageal microbiome depends on the oral
and gut microbiome [50]. Previous studies have reported a depletion of Gram-positive Streptococcus,
and enrichment of Gram-negative taxa, including Veillonella and Prevotella, in BE [25,51]. Interestingly,
dysplasia and esophageal adenocarcinoma were reported to have reduced esophageal microbiome
diversity [24]. Further studies will be required to establish the cause–effect relationship and mechanisms
of esophageal microbiota in BE/EAC pathogenesis.
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5. Conclusions

In conclusion, we report the results of a dietary intervention model for early BE, and a lipidomic
signature for inflamed and metaplastic esophageal tissue. In non-transgenic mice, chronic HFD was
sufficient to induce inflammation and cardiac metaplasia at the gastroesophageal junction. As a
GERD-mimic, bile acid in drinking water in addition to HFD increased the severity of inflammation
and length of metaplasia. GERD, but not HFD, increased the esophageal microbiome diversity.
The causality of microbiome in BE development remains to be established.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/5/776/s1,
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