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Abstract: Rhodobacter sphaeroides is an α-proteobacterium that has the particularity of having two
functional flagellar systems used for swimming. Under the growth conditions commonly used in the
laboratory, a single subpolar flagellum that traverses the cell membrane, is assembled on the surface.
This flagellum has been named Fla1. Phylogenetic analyses have suggested that this flagellar genetic
system was acquired from an ancient γ-proteobacterium. It has been shown that this flagellum has
components homologous to those present in other γ-proteobacteria such as the H-ring characteristic
of the Vibrio species. Other features of this flagellum such as a straight hook, and a prominent
HAP region have been studied and the molecular basis underlying these features has been revealed.
It has also been shown that FliL, and the protein MotF, mainly found in several species of the family
Rhodobacteraceae, contribute to remodel the amphipathic region of MotB, known as the plug, in order
to allow flagellar rotation. In the absence of the plug region of MotB, FliL and MotF are dispensable.
In this review we have covered the most relevant aspects of the Fla1 flagellum of this remarkable
photosynthetic bacterium.

Keywords: bacterial flagellum; Rhodobacter sphaeroides; motility; FliL; FlgT; flagellar rod; flagellar
hook; FlgP

1. Introduction

1.1. The Flagellar Structure

The bacterial flagellum is driven by a complex molecular motor. The flagellar basal body contains
the rotor and the export apparatus, and is composed of numerous proteins arranged in several rings
and a central rod (reviewed recently in [1]). The MS ring, embedded in the internal membrane, is the
base platform for the assembly of the rod. At the center of the MS ring a flagellar-specific export system
is responsible for the export of most of the axial proteins that form the basal body [2–5]. The flagellar
rod traverses the cell envelope and in its proximal end is formed by FlgB, FlgC and FlgF, and the distal
end by FlgG [6]. Around the distal rod, the P and L rings act as a bushing allowing rod penetration
through the peptidoglycan and the outer membrane, respectively [7,8]. This process is favored by the
action of the bifunctional protein FlgJ that acts as a scaffolding rod-capping protein and also possesses
glucosaminidase activity to penetrate the cell wall [9–12]. Once the rod reaches the outer membrane,
the hook is assembled outside the cell. This structure transmits torque to the flagellar filament [13].
The physical properties of these two axial structures are different given that the filament is a long
rigid helix and the hook is a short flexible structure that acts as a universal joint [14–16]. The distal
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end of the hook is connected to the filament via the hook associated proteins, FlgK and FlgL that
mediate the transition from the flexible hook to the rigid filament [6,17]. The filament is the most
prominent component, typically 5–10 µm in length and is several times longer than the cell body.
The flagellar motor contains a stator that is composed by multiple units of the MotA/MotB complexes
(4:2 stoichiometry) that form an ion channel that conducts the ions (H+ or Na+) of the transmembrane
electrochemical gradient and generates motor rotation that propels the bacterial cell [1,18–20] (Figure 1).
Recruitment of the MotA/B complexes and activation of the proton channel are complex processes that
have been extensively reviewed recently [1,18,19,21]. Briefly, it is important to mention that recruitment
of these complexes to the basal body has been related to the interaction of the cytoplasmic loop of
MotA with FliG, which is part of the C-ring (Figure 1) [22–24]. Besides, in Vibrio the proteins MotY and
MotX form the periplasmic T-ring that interacts with PomB (equivalent to MotB in Vibrio) and stabilize
the stator complexes [25,26]. Activation of the proton channel requires extensive remodeling of the
periplasmic region of MotB [27–32], and it has been proposed that the flagellar protein FliL participates
in this process [33–37].
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The flagellum has been thoroughly studied in various bacterial species, and recently the
advancement of cryo-electron tomography, a powerful non-invasive technique, has revealed a high
complexity and variability of its ultrastructural components [38–44].

1.2. The Two Flagellar Systems of Rhodobacter sphaeroides

R. sphaeroides is an α-proteobacterium from the non-taxonomic group of the purple non-sulfur
photosynthetic bacteria. This microorganism frequently found in lakes and stagnant water bodies has a
versatile metabolism since it grows by aerobic or anaerobic respiration, photosynthesis or fermentation [45].
The genome of several strains of R. sphaeroides has been sequenced and it consists of two chromosomes
and several plasmids [46–48] or by one chromosome, one chromide and several plasmids as it has been
recently suggested [49,50]. This microorganism was described as motile [45]. The characterization of these
motile cells revealed the presence of a single subpolar flagellum (later named as Fla1) (see Figure 2)
that promotes a swimming pattern characterized by linear runs interrupted by short stop events.
This bacterium swims in liquid medium at average velocities of 80 to 45 µm/s [51,52]. The flagellar
motor is dependent on the H+ gradient and it rotates unidirectionally interrupted by short stop
periods [51,53]. During the stop events the flagellum is locked by an unknown mechanism [54].
The initial characterization revealed that most of the genes encoding for this structure were clustered
and its organization in the genome was similar to that found in other well characterized bacteria, such
as Escherichia coli and Salmonella enterica [55]. However, further studies on the molecular structure of
this flagellum have shown that it has particular components that evoke those found in Vibrio [18,56,57].
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When the genome sequence of R. sphaeroides was completed, the presence of a second flagellar gene
cluster was evident [46]. The cluster was later named fla2, given that it could potentially form a complete
functional flagellum. However, these genes were apparently not expressed according to microarray
studies (data accessible at NCBI GEO database accession, GSE139, and GSE12269) [58,59]. Phylogenetic
studies revealed that the fla2 cluster is vertically inherited in this bacterium, whereas the fla1 genes
were probably acquired by a horizontal transfer event from an ancestral γ-proteobacterium [60]. Later
on, we showed that the expression of the fla2 genes was possible under specific conditions in the
laboratory [61]. Nonetheless, the signals that triggers in nature the expression of these genes remain to
be determined. The expression of the second gene cluster gives rise to several polar flagella that, like
the Fla1 flagellum, allow R. sphaeroides to swim in a liquid medium [60,62] (Figure 2). The number of
flagella per cell ranges from two to nine with an average of 4.5 [62]. The chemosensory response of
the Fla2 flagella is controlled by a set of CheY proteins, i.e., CheY1, CheY2, CheY5 that, until the fla2
cluster was expressed, lacked a motility phenotype when mutated [63–65].

The evolution of the Fla1 flagellum has allowed its adaptation to support efficient swimming
of this bacterium. In this review we present the outstanding features of this flagellum and the main
differences with the fla2 genetic system.
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Figure 2. Electron micrograph showing Rhodobacter sphaeroides expressing either the Fla1 flagellum or
Fla2 flagella. Cells were grown separately and under different growth conditions (for details see, [62]).
Bar = 500 nm. The schemes showing the regulatory pathway of each flagellar system are shown at the
right side of each micrograph [60,61].

2. Overview of the Flagellar Genetic System in R. sphaeroides

The fla1 genes are mainly organized in a single locus that also includes several genes related to
the chemotactic response of this flagellum, as well as several regulatory genes. This region is located in
chromosome I and it is comprised of approximately 56.6 kb; other flagellar genes whose products are
part of this flagellum are motAB, that are not located within this cluster [46,47,66].
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The σ54 factor (RpoN) together with the RNA polymerase core (E) is responsible of the expression
of the fla1 genes. The gene encoding for this particular sigma factor, rpoN2, is located within the
fla1 flagellar locus [67,68]. It should be noted that R. sphaeroides has the peculiarity of having four
different genes encoding for σ54 (rpoN1 to rpoN4), and only σ54-2 is responsible for the expression of
the flagellar genes [68]. Phylogenetic analysis suggests that the different copies of the rpoN genes arose
from duplication events followed by selection processes that allowed them to specialize [69]. Eσ54-2

also controls the expression of some chemotactic genes as is explained later.
It is known that the σ54 factor bound to the catalytic core of the RNA polymerase (E) is unable to

form an open complex for transcription initiation. This step requires that an activator protein remodels
the DNA-Eσ54 complex by hydrolyzing ATP [70,71]. The master activator protein for the expression
of the class I flagellar genes is FleQ that together with Eσ54-2 promotes the expression of an operon
that includes a second σ54 activator protein named FleT as well as the genes fliEFGHIJ. FleQ forms a
heterodimeric complex with FleT and activates the expression of the class III flagellar genes. In this
gene class the sigma factor σ28, also called FliA, and its anti-sigma protein FlgM are expressed, as well
as the genes encoding the components required to complete the basal body, the hook, and the stator
proteins MotA and MotB. When the hook is completed, FlgM is exported out of the cell and FliA directs
the RNA polymerase to express the class IV flagellar genes such as fliC and fliD encoding flagellin and
the filament cap protein, respectively [55,72] (Figure 2).

In accordance with the expression of the fla1 genes, FleQ and Eσ54-2 also activate the expression of
the chemotactic genes located within the flagellar locus, achieving the expression of the cytoplasmic
chemotactic receptor tlpT, and the chemotactic signal transduction system that includes cheA4 and
cheA3, cheW4, cheR3, cheB2 and cheY6 [65,73,74]. FliA is responsible for the expression of the chemotactic
operon that includes cheY4 and the chemotactic receptor mcpG, which is localized in chromosome II [73].
Other chemotactic components that control rotation of Fla1 are encoded in the chemotactic operon
cheOp2 that includes cheY3, cheA2, cheW2 and cheW3, cheR2, cheB1 and tlpC. This operon is expressed
by the housekeeping σ70 factor and also from a promoter dependent on σ28 [73,75]. The control of the
chemotactic response mediated by these proteins is complex and it has been reviewed elsewhere [74].

On the other hand, the expression of the fla2 genes requires the absence of the Fla1 flagellum, and the
activation of a two-component system, formed by the histidine kinase CckA, the phosphotransferase
ChpT and the response regulator CtrA [61]. Details of the mechanisms that control CckA activation and
the negative control of Fla1 over Fla2 are currently being studied by our group. Nevertheless, when
CtrA is phosphorylated by CckA, the expression of the fla2 genes is turned on. These genes include
those within the fla2 cluster (of approx. 32 kb), fliM and fliG that are located elsewhere in chromosome I,
as well as flaA (flagellin), and its regulators flaF and flbT that are located in plasmid A [76,77]. Recently
it was demonstrated that CtrA also activates the expression of the chemotactic operon cheOp1 that
includes three chemotactic receptors i.e., mcpA, mcpB and tlpS, as well as the chemotaxis genes cheD,
cheX, cheW1, cheR1, cheY1, cheY2 and cheY5 [73]. It has also been shown that all these components
specifically control the chemosensory response of the Fla2 flagella [64]; CtrA also activates other
chemotactic receptors [77]; however, it remains to be tested if these receptors affect the chemotactic
response mediated by this flagellum.

3. The Hook and Basal Body

Initial characterization of the Fla1 flagellum revealed two prominent features that contrasted from
the canonical well-studied flagellum from E. coli and S. enterica. One of these features was that Fla1 has
a straight hook and the second is that it shows a bulky hook-associated-protein (HAP) region [78–80]
(Figure 3A). The bulky HAP region correlates with the large molecular mass of FlgK1 with 1363 residues,
which is three times larger than its homologue in S. enterica. FlgK1 has well-conserved N and C-terminal
regions with residues present in orthologous proteins, and a large central non-conserved region of
860 residues that accounts for the large molecular mass of this protein. Discrete deletions of 100 amino
acids within this non-conserved region revealed that the complete protein is required for normal
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swimming since practically all these mutants showed a severe reduction in swimming velocity and
jiggling trajectories. Importantly, cells expressing FlgK1 lacking residues 340–440 or 840–940 located
in the non-conserved region, produced flagella indistinguishable from the wild-type; nevertheless,
the mutant cells were unable to swim in liquid medium, revealing that these non-conserved regions
are indeed relevant to handle the load exerted by motor rotation [81]. The presence of at least three
flagellin-hook IN motifs (pFam07196) detected with the HMMER software package [82] and at least two
internal repeats detected with SMART (Simple Modular Architecture Research Tool) [83,84], suggests
that this central region could be the result of several processes of internal duplication. So far, few
studies have addressed the relevance of the HAP region and its influence on the correct polymorphic
shape of the filament when torque is applied [85].

As mentioned above, another characteristic feature of the Fla1 flagellum is the presence of a
straight hook (Figure 3B). Purified flagella showed a straight hook in a wide range of pH values, from
4 to 9 [66]. This is in contrast with other bacteria such as E. coli, S. enterica, and the α proteobacterium
Magnetospirillum magnetotacticum that have a curved hook [66]. The R. sphaeroides hook protein FlgE1 is
50% similar to FlgE from S. enterica (FlgESe), however it has twice as many proline residues than its
counterpart FlgESe (23/423 versus 12/403), and several of these residues are clustered in short regions
not found in FlgESe [86]. According to the structural model defined for FlgESe [15,87–89], one of these
insertions is located in the Dc domain and the other in the D1 domain. A deletion of six residues in one
of these regions did not prevent hook assembly but the structure was conspicuously curved (Figure 3C).
The swimming trajectories of these cells were wavy instead of the smooth trajectories commonly seen
for wild type R. sphaeroides cells [86]. This mutation affects the D1 domain that participates in the axial
interactions between subunits. Interestingly, it has been recently shown that a short insertion in the Dc
domain of FlgESe made the hook straight. From this study, it was suggested that the Dc domain acts as
a structural switch to coordinate axial packing interactions of the D1 domain with the supercoiling of
the hook structure [90]. Therefore, these studies concur on the role of the axial packing interactions of
D1 domains of the FlgE protein to profoundly affect the final structure of the hook.
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Figure 3. Electron micrographs showing (A) wild-type Fla1 filament-hook-basal body [62], arrow
denotes the bulky HAP region; (B) sheared Fla1 wild-type filament-hook; (C) sheared Fla1 filament-hook
from a mutant lacking residues 91–96 of FlgE [86]. Bar = 50 nm.

4. Rod Assembly and Opening of the Peptidoglycan Barrier

Another interesting aspect of the basal body is the order in which the different subunits that form
the flagellar rod are assembled. Previously, work in S. enterica, showed that FliE and FlgB formed the
proximal end of the rod; likewise, previous reports indicated that FlgG is the most distal component.
However, the order of assembly was not known i.e., if FlgC or FlgF followed after FlgB. Using purified
preparations of the five different rod proteins from R. sphaeroides, a possible assembly order was recently
suggested. In this study, specific interactions between FliE and FlgB, FlgB and FlgF, and between
FlgC and FlgG, were detected. From these results, it was proposed that the order of assembly of the
rod proteins in R. sphaeroides is FliE, FlgB, FlgF, FlgC and FlgG [91]. This order is different to the one
proposed for the Gram-positive bacterium Bacillus subtilis and the spirochete Borrelia burgdorferi, where
it was suggested that the rod proteins are assembled in the following order: FliE, FlgB, FlgC, FlhO
(FlgF), and FlgG [40,92]. The difference between the order of assembly proposed for R. sphaeroides and
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B. subtilis or B. burgdorferi could be explained by the different experimental approaches used in these
studies or possibly due to an actual difference between these organisms in the order of assembly of
the rod structure. The limited amount of studies that addresses this issue prevent a comparison with
species related to R. sphaeroides.

Additional proteins are required during the assembly process of this axial structure. In Salmonella
a chaperone protein (FlgJ) has a dual function, as a scaffold and also as a muramidase that degrades
the peptidoglycan layer to facilitate rod penetration [9]. In contrast, in R. sphaeroides FlgJ lacks the
muramidase domain but it retains its ability to function as a scaffold for rod assembly [93]. It was also
found that a gene in the flgG operon codes for a protein that has a signal sequence at its N-terminus
followed by a soluble lytic transglycosylase domain, and could act as a muramidase to remodel
the peptidoglycan wall [94]. The protein encoded by this gene is indeed a flagellar soluble lytic
transglycosylase named SltF that specifically interacts with FlgJ through its C-terminus. SltF is exported
to the periplasm by means of the SecA pathway where it encounters the scaffold protein that directs it to
the specific site in the peptidoglycan layer that will be remodeled to allow the passage of the rod [94,95].
Given that SltF is exported by the general secretion pathway, it is possible that this protein must be
distributed throughout the periplasmic space potentially causing widespread damage. However, it
was recently shown that the enzymatic activity of SltF is modulated by the interaction of the different
rod proteins. It is stimulated by the flagellar rod protein FlgB, and inhibited by FlgF [96].

5. The Flagellar Motor of R. sphaeroides

In the absence of a chemical gradient R. sphaeroides swims following a random pattern of runs and
stops. During the run periods the Fla1 flagellum rotates unidirectionally in the clockwise direction
and uses H+ as the coupling ion. When rotation stops, the filament coils up against the cell body,
and the swimming trajectory changes [51,97]. Biochemical and genetic studies of the flagellar motor
have revealed that, apart from the core structure characterized in E. coli and S. enterica, other accessory
components form part of this flagellum. In this regard it has been shown that in Fla1, proteins
homologous to FlgT, FlgP, and MotF (a protein of restricted distribution in some species of the family
Rhodobacteraceae), are part of this structure (Figure 4).
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Figure 4. Schematic drawing of the R. sphaeroides flagellar motor. The model is based on the electron
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different components and proteins that form this structure are indicated. This figure was created with
BioRender.com (website: https://biorender.com/).
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FlgT is a periplasmic protein exported by the general secretion pathway. It forms the H-ring
that surrounds the PL-rings and it is widely distributed in several species of Vibrio, Aeromonas,
Pseudoalteromonas and also several species of the family Rhodobacteraceae [98–100]. We have demonstrated
that FlgT from R. sphaeroides forms a characteristic H-ring (Figure 5), and that this protein, apart from
interacting with itself, interacts with FlgH that forms the L-ring of the flagellar core structure, where
this interaction would assist to anchor the H-ring to the basal body [56,57]. However, in contrast with
the situation observed in V. alginolyticus, and V. cholerae where the absence of FlgT affects flagellar
assembly, as well as the penetration of the outer membrane [98,100,101]; in R. sphaeroides the absence of
FlgT results in a Mot− phenotype [56]. This indicates that in this bacterium the function of the H-ring
is mainly associated with torque generation and motility and not with flagellar assembly. Although its
role may not be direct, as discussed below, since FlgT interacts with other proteins that are directly
related with torque generation.
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The flagellar motor of R. sphaeroides also includes the protein FlgP that is an outer membrane
lipoprotein essential for flagellum formation [57]. In this work, we observed that FlgP interacts with
itself suggesting that it could form an oligomeric structure. It was also proposed that FlgP could form
the basal ring that is located under the outer membrane, as it has been previously observed in C. jejuni
and V. fisheri [102]. FlgP also interacts with FlgT and FlgH, these interactions would be an additional
support for the formation of the basal disk [57]. Nevertheless, in the absence of FlgT, FlgP should be
included given that the flagellar structure is formed; whereas in the absence of FlgP the flagellum is
not assembled. More precisely, in the absence of FlgP the flagellar hook is not assembled, even though
the hook protein FlgE is present in the cytoplasm. Hence, the anti-sigma factor FlgM is not exported
from the cell, and the flagellar genes dependent on σ28, such as those encoding for flagellin and other
chemotactic proteins, are not expressed. In contrast, in ∆flgP mutants the flagellar rod is assembled;
therefore, it was proposed that FlgP is required for a proper rod to hook transition [57]. Since, the L-ring
assembly has also been related with this process it can be presumed that in R. sphaeroides the L-ring
could be remodeled by the basal disk. It should be noted that in V. alginolyticus it has been proposed
that FlgP forms the middle part of the H-ring [101]; however, given the different phenotypes associated
with the loss of FlgT and FlgP, we chose to name the structures as H-ring and basal disk respectively,
as it was proposed for V. fischeri [102].

A flagellar gene named motF was identified in R. sphaeroides and it is present in some species of
the family Rhodobacteraceae. MotF is a 24 kDa protein that has a transmembrane region spanning from
residue 54 to 74 and a large periplasmic C-terminal portion. It was shown that a proper localization of
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a fluorescent version of this protein is dependent on the presence of an activated proton channel, given
that in the absence of MotA/B, or FliL, GFP-MotF forms several fluorescent foci per cell instead of the
single one observed in wild-type cells. The presence of several different populations of GFP-MotF in
these mutants could be caused by a weak association of GFP-MotF with the flagellar structure when
the stator complexes are not present or activated [103].

Remarkably, ∆motFcells recovered the swimming ability by a secondary mutation in the amphipathic
helix of MotB localized after the transmembrane segment of this protein [103]. This region known as
the plug, has been proposed to prevent proton flow before the MotA/MotB complex associates with
the flagellar structure [104]. In addition, eight extragenic suppressors of the Mot− phenotype caused
by the absence of FliL also affected this specific region of MotB [34]. Surprisingly, all these motB
mutant alleles were also able to suppress the Mot− phenotype of ∆motF [103] (Figure 6). Therefore, it is
strongly suggested that FliL and MotF are implicated in remodeling the C-terminus of MotB and hence
promote the activation of the proton channel. If the hydrophobicity of the amphipathic helix of the
plug is reduced, as occurs in the suppressor mutants, the presence of FliL and MotF is dispensable for
flagellar rotation.
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It was observed that the H-ring (FlgT) is necessary for recruitment of GFP-MotF in the flagellar
motor [56]; therefore, the role of FlgT on flagellar rotation could be indirect. In accordance with this
possibility we detected that FlgT interacts with FliL and MotF, indicating that the H-ring could act as a
hub to recruit or stabilize these proteins that are directly involved in the activation of the proton channel.
However, FlgT also interacts with MotB and the mutants in MotB that act as secondary suppressors of
∆fliL and ∆motF, barely improve swimming of the ∆flgT strain, indicating that the H-ring could also
participate in the recruitment of the stator complexes [56]. In this context it is important to mention
that in R. sphaeroides there are no homologues of motX and motY whose products have been proposed
to form the T-ring in V. alginolyticus that contributes to recruit the PomA/PomB (equivalent to MotA/B
in Vibrio) complexes to the flagellar structure [25,101]. Therefore, FlgT could have possibly evolved in
order to gain this role in R. sphaeroides.

6. Dominance of Fla1 over Fla2

An interesting question regarding the coexistence of the two flagellar systems in this free-living
bacterium, is if there is cross-regulation between the two. Under the growth conditions commonly
used in the laboratory, Fla2 flagella have never been observed, suggesting that something in the culture
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medium could favor the expression of the fla1 genes and repress fla2 expression. Routinely, the growth
conditions used for the enrichment and isolation of phototrophic bacteria involve the use of organic
acids as electron donors in the growth medium, under photoheterotrophic conditions. Therefore,
these compounds were obvious candidates to be tested. We have recently demonstrated that the
expression of the cckA and ctrA genes, that encode the histidine kinase and the response regulator
of the two-component system that activates the expression of the fla2 genes, is repressed when a
high concentration (34 mM) of C4-dicarboxilic acids is present in the culture medium. However,
the growth of the wild-type strain (WS8N) in the absence of C4-dicarboxilic acids is not sufficient to
induce activation of the CckA/ChpT/CtrA two-component system and therefore the fla2 genes are not
transcribed. We have speculated that CckA should be activated by additional specific environmental
conditions that remain to be understood. Nevertheless, it was observed that the cells carrying a
mutation in the master regulator fleQ could acquire a gain of function mutation in CckA that allows the
expression of the fla2 genes. As a result, a homogeneous population of bacteria able to swim with the
Fla2 flagella was obtained; however, when these cells were complemented with a plasmid expressing
FleQ, most of the cells stopped synthesizing Fla2 flagella and the number of cells expressing Fla1
flagella increased sharply. Remarkably, cells carrying both types of flagella were never detected. This
suggests that, under laboratory conditions, there is a clear dominance of the Fla1 system over Fla2
mediated by an unknown molecular mechanism [61]. The elucidation of this regulatory mechanism
would shed light on how a complete set of foster genes were acquired and stably incorporated into
the regulatory circuit that controls motility in this organism and also would reveal details of the
evolutionary success of this resourceful bacterium.

7. Future Directions

Given that the fla1 system was laterally acquired, it is important to elucidate the molecular
mechanisms controlling biogenesis and rotation of this structure with particular emphasis on FlgP and
FlgT, which are not present in the vertically inherited flagellar genes of several α-proteobacteria so
far characterized. It is apparent that these proteins do not accomplish the same function that their
homologues in Vibrio, suggesting that they may have evolved differently. In this context, it would be
relevant to look deeper into the molecular role of the family Rhodobacteraceae-specific MotF protein and
test its possible role as a stabilization element of the stator complexes (MotA/MotB).

Regarding flagellar biogenesis, it will be important to determine the molecular mechanisms
underlying the localization and control of the activity of the soluble lytic transglycosylase (SltF) that
is important, not only to understand, how a flagellar-specific lytic enzyme is controlled, but also to
determine if these mechanisms are conserved in other type III secretion systems.

The in situ analysis of the structure of the Fla1 motor by combining cryo-EM and genetic studies
is an important pending assignment to identify the hypothetic basal ring and the localization of MotF.

The elucidation of the genetic mechanisms that control the communication between the fla1 and
fla2 genetic systems that results in a mutually exclusive expression, is of particular relevance.
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