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Abstract: Transition metals interact with a large proportion of the proteome in all forms of life,
and they play mandatory and irreplaceable roles. The dynamics of ligand binding to ions of transition
metals falls within the realm of Coordination Chemistry, and it provides the basic principles controlling
traffic, regulation, and use of metals in cells. Yet, the cellular environment stands out against the
conditions prevailing in the test tube when studying metal ions and their interactions with various
ligands. Indeed, the complex and often changing cellular environment stimulates fast metal–ligand
exchange that mostly escapes presently available probing methods. Reducing the complexity of the
problem with purified proteins or in model organisms, although useful, is not free from pitfalls and
misleading results. These problems arise mainly from the absence of the biosynthetic machinery and
accessory proteins or chaperones dealing with metal / metal groups in cells. Even cells struggle with
metal selectivity, as they do not have a metal-directed quality control system for metalloproteins,
and serendipitous metal binding is probably not exceptional. The issue of metal exchange in biology
is reviewed with particular reference to iron and illustrating examples in patho-physiology, regulation,
nutrition, and toxicity.

Keywords: transition metals; redox activity; regulation; chaperone; metal toxicity; inflammation;
specificity; labeling; recombinant technology; iron

Foreword

This review deals with the dynamics of transition metals’ homeostasis in the context of, mainly,
mammalian cells. Two unrelated points must be clarified at the onset.

First, this review does not pretend to be comprehensive, and only a few examples will illustrate
the presented items. Relatively recent references will be quoted, so that the reader can go back in time
and details if interested. Only in a few cases, the work of the actual pioneers will be mentioned when
it is unambiguously known and attributed by this author.

Second, the word ‘metal’ is too often improperly used, principally in the literature that has little
interest in even basic principles of chemistry, hence of biochemistry. Consequently, inorganic elements
beyond group 15 of the periodic table (such as arsenic and, worse, selenium) will not be considered
here, since their properties are hardly or not at all those of metals. Instead, this review deals with
only transition metals, i.e., those with outer d orbitals, and mainly the 3d one among them, which also

Biomolecules 2020, 10, 1584; doi:10.3390/biom10111584 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0001-5615-9852
http://dx.doi.org/10.3390/biom10111584
http://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/10/11/1584?type=check_update&version=3


Biomolecules 2020, 10, 1584 2 of 26

excludes metals of groups 1 (lithium, sodium), 2 (magnesium, calcium), 13 (aluminum, gallium),
and 14 (tin, lead).

1. Introduction

It follows from the second point above that transition metals are involved in non-covalent bonds
that are generally weaker than the covalent ones involving the elements of (organic) biochemistry,
including combined forms of carbon, oxygen, nitrogen, and a few other elements. Therefore,
the paraphernalia of high-energy-requiring enzymes supporting the core part of the Chemistry of
Life is less developed, although not absent, for the activities dealing with transition metals in biology.
However, ionic forms of transition metals build the essential part (very often at the active site) of a
wealth of enzymes and proteins. Estimates indicate that at least 25% of the proteomes require metals
for function [1,2]. However, as the authors of such estimates indicate, bioinformatics approaches
rely on the screening of characteristic metal-binding sites in protein sequences, and identification of
metals in structural studies. Furthermore, demonstrating the essential roles of metals in the function of
parts of the proteome is not always straightforward. As will be shown below with a few examples,
metal binding reactions to proteins exist beyond easily identified ones. It can thus be safely stated that
the above proportions of the ‘metalloproteome’ are underestimations when considering all reactions in
which proteins interact with metals. Pushing these lines of thinking further, it may even be posited
in a provocative and largely unsupported statement that seemingly all proteins do bind metal ions
in cells, quite often in a fortuitous, silent, and transient way. Indeed, the serendipitous presence of
unexpected metals may be observed [3,4] (vide infra), and the proteome of selected microorganisms
appears largely dominated by metalloproteins in relation with their living environment [5]. A subset
of amino acid sidechains, such as those of cysteines, histidines, carboxylic acids (glutamate and
aspartate), and a few others in particular local environments, are the main ligands of transition metal
cations. Occasionally, the C- and N-termini and the amide group of the peptide bond may participate
in the coordination sphere, e.g., [6,7]. The metal-binding sidechains are ubiquitous in proteins (the
above listed represent more than 15% of the amino acids in the proteomes of animals), and they very
often participate in building proper coordination spheres around transition metal ions if given the
opportunity by suitable folding of the protein. In the following, because the boundaries between the
family of proteins that tightly binds specific metal compounds at their active site (metalloproteins) and
that of proteins interacting with metals in a way or another (metal-protein complexes) leave room for
large uncertainties, no differences between them will be made.

When considering the dynamics of metal–protein interactions, attention must be focused on
(cat)ionic solutions. Indeed, the state of transition metals relevant in Biology is rarely gas or solid.
Exceptions may be found for gaseous mercury or the fumes to which welders may be exposed, and for
accidental ingestion of metals or the occurrence of pica disease (metallophagia). However, in all these
exposure cases, the ensuing metal toxicity, thus the biological relevance, is due to the released or
converted ions, in the acidic stomach of animals after ingestion for instance.

The relative weakness of chemical bonds involving metal cations in biological environments
makes ground for a very active dynamics of metal exchange in proteins. In terms of kinetics, transition
metal ions in biologically relevant aqueous solutions are minimally surrounded by water molecules
and hydroxide ions. To set a very approximate time frame, the rate of substitution of the poor ligand
water is generally faster than 106 s−1 with ions of transition metals [8]. It means that the replacement
of the aqueous coordination sphere of transition metals occurs in a time range that is hardly accessible
for most biochemical methods. Such rate constants give only a general idea, and they significantly
fluctuate with other ligands, but they indicate that metal–ligand exchange in biochemistry can be
fast and transient in many situations. In parallel, the occurrence of a “free” transition metal cation as
implying a mere Mn+ ion (M for a given metal, n for its oxidation state, which is an integer) devoid of
any ligand in a biological environment is totally unrealistic and misleading. Let us hope the use of the
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‘free metal’ term fades in the future biochemical literature because of its lack of accuracy, although it
does not seem to be a strong current tendency.

2. Biological Availability of Transition Metals: Not So Easy, even in an Ocean of Plenty

2.1. Evolution Could not Get Rid of Transition Metals

The presence of metals in present-day Biochemistry is more than a remnant of the prebiotic world
since the most sophisticated living species have developed new activities around metalloproteins and
metalloenzymes. For instance, mammalian iron homeostasis significantly differs from the use and
regulation of iron found in other organisms. A defensin (hepcidin) plays a pivotal role in systemic iron
homeostasis, whereas cellular iron sensing relies on either assembly and destruction of an iron sulfur
cluster in Iron Regulatory Protein (IRP) 1 [9], or that of an oxo-bridged binuclear iron center coupled
with the redox switch of a [2Fe-2S] cluster in the alternative iron sensor FBXL5 [10]. These features and
their associated biochemical networks are absent in other organisms, and they appear as evolutionary
recent events involving metals. In all these and other cases, the dynamics of iron exchange on the
regulating proteins through biosynthesis and degradation of their clusters, or binding and release of a
metal, is a central feature of the molecular mechanism.

2.2. Transition Metals vs. Oxygen: Marriage or Divorce?

The dynamics of metal exchange on proteins is obviously directly associated with metal availability.
Whereas organic molecules (sugars, lipids, a very wide diversity of substrates for microorganisms,
etc.) can be enzymatically processed to provide the biomass and energy needed by cells (metabolism),
metals pose specific problems. Most transition metals are now present in the biosphere in a form that
is hardly suitable for biological assimilation, for high eukaryotes, such as plants and animals, at least.
Indeed, environmental transition metals are mostly oxidized in the present-day oxygen-rich atmosphere,
and they are generally poorly soluble in water, except for those forming stable oxyanions, such as
molybdate. Yet, multicellular organisms did not find better ways than metal-centered molecules
to deal with oxygen and use it: hemoglobin and cytochrome c oxidase are prominent examples.
The problem of transition metal oxidation and precipitation was likely absent in the Archean terrestrial
conditions under which Life began and relied heavily on transition metals, iron in particular [11].
As photosynthetic oxygen production increased, transition metals got more efficiently oxidized and
buried in the lithosphere, a progression in which the Great Oxygenation Event, about 2–2.5 Ga ago,
played a prominent role [12]. It follows that present-day living species cope with difficult-to-get but
mandatory transition metals.

The preceding paragraphs emphasize that transition metals are mandatory for all life forms,
that present-day living cells deploy costly uptake strategies, and that most aspects of cellular metal
homeostasis rely on weak bonding and fast exchange. The latter point will be developed in the
following with some bias toward examples taken from iron homeostasis and the roles of iron-sulfur
proteins since these are topics this author has been active in. However, many of the items reviewed
herein and their underlying principles are not restricted to iron, and they have significant bearings for
other transition metals. The present review may be considered as a partial update with a different
shade of a previously published tutorial [2].

3. Getting Metals In and Out of Cells: Metal Exchange in Action

As stated above, getting metals from the environment for cells nowadays is not as straightforward
as it might have been in the conditions prevailing in the Archean ages. However, it appears that
evolution has been quite active to maintain a sufficient level of metals for cellular purposes despite the
increasing cost of obtaining them. For several decades now, knowledge has been increasing on both the
means cells develop to extract transition metals from their surroundings, and the often sophisticated
pathways leading them to their proper intra-cellular targets.
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3.1. Metal Exchange through Biological Membranes

For simple forms of transition metal cations, a range of trans-membrane transporters has been
characterized. By ‘simple form’, it is meant metal cations with loose ligands. The simplest one may
be aquated Mn+; however, as already indicated, such ions—with exceptions—surrounded by usually
six water molecules or hydroxide anions for a complete coordination sphere are neither very stable
in oxygenated solutions nor very soluble. Despite this drawback, simple forms of metal cations are
available for cells. For instance, copper in mammalian plasma is mainly bound to proteins, such as
ceruloplasmin and albumin [13], that deliver it to cells via the copper transporter 1 (CTR1, also know
as SLC31A1) uptake system. According to the currently held model for the mechanism of this trimeric
transporter [14], plasma protein-bound (cupric) copper is transferred as cuprous ion to the CTR1
ectodomain in which methionine residues that are close in the sequence play an important role.
The metal ion then travels through the pore by hopping between transient metal-binding sites in
which other methionine and histidine residues are probably involved [15]. The intracytoplasmic
domain, which also plays a regulatory role in the transport mechanism, gets the metal for delivery to
intracellular targets (chaperones, vide infra). Intracellular binding and use of copper likely creates a
copper gradient through the membrane that triggers transport.

Even though not all molecular details of copper uptake by CTR1 have been fully revealed,
the mechanism sketched in the preceding paragraph (Figure 1) is widespread for a variety of metal
cations, organisms or cellular types, locations, and transporter families. The source of energy for
transport may vary (metal gradient, ATP, electrochemical gradient, etc.), but a general trend is that
a chain of metal-binding sites leads the metal ion to its target. This implies that trans-membrane
transporters of metals under their simple ionic forms are metal-binding proteins. However, they would
be worthless if the metal ions to be transported stick to them. Hence, dynamic exchange and transient
binding are mandatory to fulfill the transport function. To illustrate that dynamics supports the
whole process, tight binding, as in the case of large concentrations of cadmium or lanthanide ions to
calcium channels, modifies the transport function [16]. Furthermore, a few examples evidence that the
transient metal-binding sites afford selectivity filters for metal cations. A single His2Asp2 site in the
ZNT (SLC30A) family of mammalian zinc transporters excludes transport of the chemically similar
cadmium ions [17]. The same general scheme of a succession of well-organized and thermodynamically
and kinetically adjusted sites offers satisfactory rationales in a variety of situations. For example,
polyanionic compounds, such as phytates, i.e., inositol phosphates, and polyphenols, bind essential
metal cations, such as iron and zinc, in food. Their excess, as in nearly exclusively cereal-based diets,
contributes to anemia and zinc deficiency by interfering with metal absorption. Two combined effects
are at work here: decreased solubility of the diet-derived metal complex, hence decreased metal
availability, and unsuitable transfer of the metal ions to the intestinal metal transporters. It may be
safely stated in this respect that metal loading to the iron transporter Divalent Metal Transporter 1
(DMT1, SLC11A2) [18,19] and to the Zinc regulated transporter, Iron regulated transporter-like Protein
(ZIP, SLC39A) family [20] is impaired when phytates, polyphenols, and other cation-scavenging
compounds are present in the intestinal lumen. For this reason, food processing resulting in separating
or degrading such cation-binding food molecules is useful to improve iron and zinc availability for
animals [21].
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Figure 1. Schematic representation of a transmembrane metal transporter. Mn+ (red) is the transported
cation, L1, L2, etc. the transporter-associated transient metal ligand sets, and Mi

p+ (green) a potential
metal inhibitor of transport.

3.2. Crossing Membranes Alone or as a Party?

In the microbial world, the critical fight for survival and growth depends on the availability
of transition metal ions, which is supported by the synthesis or use of sidero- or zinco-phores for
instance. In the case of iron, siderophores may be molecules of various sizes and complexity, such as
citrate, desferrioxamine, or enterobactin, but all with suitable ferric iron liganding groups (carboxylates,
hydroxamates, catecholates) [22]. Once the siderophore-iron complex interacts with the microbial
cell, two strategies may be observed. One involves reduction of the complex at the cell surface
and transport of the ferrous ion by transporters following the general picture described above for
CTR1. The second requires more specific siderophore receptors that can recognize and transport the
complex from the outside to the cytosol. There, mechanisms, such as siderophore degradation and
complex reduction, help liberate the precious metal for internal use. Thus, in the first case, ferrous iron
exchange occurs along the transmembrane transport, whereas the metal-binding site of the tight
siderophore-iron complex changes only once inside the organism in the second case. However, in both
cases, iron acquisition is a dynamic process at the metal-binding site that is coupled to even minute
changes of the surrounding conditions, such as those triggering a redox transition or the distant
modification, e.g., bond cleavage, of a ligand. The main objective of these different mechanisms is
to decrease the affinity constant of the iron-bound species, hence dissociating the metal ion at the
right place, at the right time, and in the suitable oxidation state for further use [23]. The possibility
of transporting metals bound to organic molecules through membranes is clearly not restricted to
the microbial uptake of iron bound to siderophores. Another example, among many, is provided by
multidrug resistance proteins that contribute to expel divalent metal cations in the form of complexes
with glutathione [24].

Taking the theme of metal exchange in the acquisition process one step further, endocytosis of
the transferrin receptor is the main iron uptake system in mammalian cells. In this process,
circulating transferrin binds one or two ferric ions loaded by oxidation of newly absorbed or recycled
ferrous iron. Transferrin is recognized by its receptor at the surface of cells and internalized by
clathrin-mediated endocytosis [25,26]. Decreasing pH in the endosomes triggers iron release from the
complex, a member of the STEAP (six transmembrane epithelial antigen of the prostate) reductase
family reduces the ferric ions, and the resulting divalent iron crosses the endosomal membrane via
transporters, such as isoforms of DMT1. Therefore, here again, the molecular mechanism of the
important uptake pathway involving an essential transition metal relies on a series of metal exchange
steps involving precisely located and regulated proteins and enzymes.
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4. Methodological Hurdles in the Study of the Dynamics of Intracellular Transition
Metal Trafficking

One may be rightly impressed by the gathered knowledge over the last several decades about the
diversity of ways transition metals cross membranes. However, once the metal reaches the interior
of the cells, the current description of real-time sub-cellular metal trafficking is generally less clear.
To follow the just presented example of transferrin endocytosis, the fate of the ferrous ions coming out
from endosomes remains debated [27]. It may be posited that methodological problems impair such
studies for a large part.

Indeed, although easier to say than to do, knowing how much transition metals are in or out of
cells can be precisely obtained. Direct analytical methods, such as atomic absorption spectroscopy
and mass or optical detection after formation of inductively coupled plasmas, continuously improve
their sensitivity. They can be straightforwardly implemented because cells can be readily and rapidly
separated from the medium. Radioactive isotopes have also been instrumental in measuring rates of
transition metal transport across the plasma membrane. However, these methods are less conveniently
implemented as soon as cells are broken to get access to the sub-cellular traffic; indeed, this requires
more sample processing than simply separating cells, and more time, during which artifacts in the
metal movements may happen.

4.1. Transition Metals Biophysics: Diverse and Sophisticated

The properties of transition metals make them nicely suitable to the application of biophysical
methods that are of little or no relevance in other areas of biochemistry. The electronic structure of
paramagnetic transition metal ions and clusters enables recording of electronic paramagnetic resonance
(EPR) signals [28]. The usefulness of the method is witnessed by the detection of metals in complex
biological systems as early as at the turn of the 1960s [29,30]. The characteristic properties of metals’
interactions with radiations afford ample application of X-ray absorption spectroscopy and derived
methods (X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure
(EXAFS)). The contribution of species containing transition metals to near ultra-violet and visible
absorption has supported informative resonance Raman spectra. On the nuclear side of the properties
of transition metals, the Mössbauer effect of the iron atom has illuminated the study of iron proteins [31].
Even though the nuclear transitions of metals have not been largely studied by direct nuclear magnetic
resonance (NMR) of metalloproteins, probably by lack of convenient probes and implementation,
the influence of the peculiar electronic structure of transition metals on the surrounding ‘organic’
nuclei has received widespread attention. This is true, for instance, for magnetic resonance imaging:
the presence of paramagnetic transition metals perturbs the relaxation properties of nearby protons or
other nuclei, which enables the detection of endogenous metal deposits, in neurodegenerative diseases
in particular [32]. Additionally, exogenous metal labels have found a range of applications in NMR
following the same principles. Solid-state NMR has more recently developed the usefulness of the
method in the study of metalloproteins [33].

4.2. Transition Metals Biophysics: Necessarily Limited

Thus, all these methods have been instrumental in characterizing the metal site(s) of metal-binding
proteins, in complement to structural methods. However, purified or otherwise processed proteins to
obey the methodological requirements are not exactly in the conditions found inside cells. The main
drawback is the loss or the alteration of the dynamic component of these proteins’ behavior that is
inevitably modified in pure diluted or very concentrated solutions, or in the solid or frozen state. Further,
the sensitivity of each of these methods is limited, although improvements have been tremendous
for seemingly all of these methods over the years; consequently, the concentration of samples must
often be increased in order to reach sufficient signal/noise ratios. In addition, the temporal resolution
of most of these methods does not correspond to the kinetic steps involving metal exchange that
one would like to monitor. An exception to this statement may be NMR, the temporal resolution of
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which can be adjusted by the strength of the applied magnetic field available for series of instruments.
NMR can record molecular movements, such as protein conformational changes or large variations
of the magnetic properties of the sample, hence indirectly binding or release of metals. However,
being able to reconstitute in real time the sequence of events involving the movements of metals inside
cells between several partners and in a changing environment is a formidable task that cannot yet be
straightforwardly achieved. Not surprisingly excellent approaches aiming at this purpose involve the
combination of several biophysical methods [34].

5. Labeling Transition Metals in Cells: Pros and Cons

5.1. The Resolution Problem

Thus, for the moment, following the intra-cellular trafficking of transition metals and their binding
molecules is complex, requires time, and remains an exceptional feat. Mapping the distribution of
heavy elements, including metals, in combination with other analytical methods inside cells has become
available and with ever increasing resolution, at synchrotron facilities in particular [35]. However,
samples have to be processed and immobilized for this purpose. One way of overcoming this static-only
view of the problem would be to use fluorescent molecules binding specifically to the metal of interest
and monitoring the fluorescent signal in real time in live cells. This approach has provided invaluable
tools in the study of the roles of calcium [36] and zinc [37] in Biology. However, the divalent Ca2+ and
Zn2+ do not readily exchange electrons, which does not interfere with increased (turn-on) fluorescence
upon binding. In contrast, the easy uptake or release of electrons by most transition metal ions (those
with unfilled d orbitals) turns them into fluorescence quenchers, meaning that metal binding to the
probe results in a less convenient negative (turn-off) fluorescent signal. Some progress has been made
to circumvent this problem [38], but applicability remains tedious in most cases.

In an ideal world, integrating the above fluorescent methods in super-resolution fluorescence
microscopy [39] would come close to precisely monitor intra-cellular metal exchange. Unfortunately,
even though “super-resolution” means that the diffraction barrier of optical microscopy is overcome,
the high-resolution microscopic technics are still far from picturing the changes in the coordination
sphere of a metal. In addition, the time needed to acquire images, despite continuous improvements,
is longer than most molecular events occurring near the metal.

5.2. The Specificity Problem

Beyond the above-indicated limitations, other potential difficulties in monitoring metals inside
cells have to be considered with appropriate controls. They include the ability to master the localization
and concentration of the metal probes, their metal specificity inside cells that may be challenged as
compared to validation in vitro, and the always-questionable introduction of engineered molecules
to observe the endogenous object of interest. Indeed, small molecules binding metals do trap them.
They divert them from their normal path. They usually perform best on loosely bound complexes,
and, as exogenous species, may perturb the integrity of cells, at least above concentrations that may be
needed to get sufficient signals. These drawbacks may be amplified with labeled proteins that influence
the kinetics of metal-centered reactions and associated cellular events, due to their size and their larger
tumbling time as compared to those of short-lived endogenous metal ligands. Last, metal specificity is
a constant effort with all designed metal probes, and it is difficult to achieve given the largely shared
coordination properties of subsets of transition metals. In addition, the biological interest in transition
metals very often lies in their ability to switch oxidation states. Thus, the problem is worsened by the
need to monitor the same element with different electronic configurations. The binding properties,
including of probes, are strongly modified by the redox change, which affects specificity. The preceding
few lines should show that applying the intrinsically integrative high-resolution microscopies to metals
in biology or metal-binding proteins is far from being a mastered approach.
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5.3. Monitoring Labeled Metals and Proteins: Work in Progress

However, the just recalled impediments in following fluorescently labeled metals or metal-binding
proteins should not dismiss the various successes obtained with the derived methods in the study of
transition metals in Biology. An example is given by monitoring iron uptake and use in mammalian
cells via the transferrin-transferrin receptor system. Use of radioactive isotopes, fluorescent labeling
of transferrin, and sub-cellular fluorescent makers, all followed by appropriate detection methods,
including confocal microscopy, led to the proposal that internalized iron was directly injected from
endosomes into the main organelle for biosynthesis of iron-proteins, namely mitochondria [40,41].
Further developments along the same lines supported the hypothesis of “tunneling” iron to
ferrochelatase for incorporation into hemoglobin in highly iron-demanding reticulocytes [42]. Yet,
the still limited spatial and temporal resolution of this combination of methods leaves room for
questioning the universality of this phenomenon [43]. Clearly, more work integrating qualitative [44]
and quantitative [45] data is needed to clarify the traffic of iron in and out of the cytosol of
mammalian cells.

By taking proper account of the present biophysical frontier in the study of metalloproteins,
getting close to actually seeing transition metal traffic in intra-cellular space and time is a stimulating
challenge that will undoubtedly keep talented scientists busy for many years to come.

6. Divide and (Try to) Conquer in Monitoring Transition Metals

The above presented approaches aiming at closely monitoring transition metals in minimally
processed biological samples are relatively recent developments. In a previous period, the biochemistry
of transition metals has largely benefited from the huge progress of separation and characterization
methods since the middle of the 20th century. Metal-oriented biophysical techniques have been recalled
above, but it should be kept in mind that their implementation was backed by less specific biochemical
methods affording scientists tools for focused investigations.

Indeed, the increasing availability of purified metalloproteins over the years revealed a wealth of
new information. From the mid-1980s onward, microbial genetic engineering allowed biochemists to
produce proteins in abundance and to change their sequence at will. These developments opened
a wide range of new investigations and consequent discoveries. Metal-binding proteins were not
exceptions in this respect.

In the following, the aim is not to shed a negative light on all the data produced by the reductionist
approach and structure–function relationships: they form the base of a great deal of knowledge on
metal-binding proteins, and this review would fall short of giving credit to all accomplishments. Rather,
the purpose is to highlight frequently overlooked, and difficult to publish, pitfalls associated with
biochemical metal exchange that newcomers, and maybe others, may experience in this field.

6.1. Metal Exchange as a Probe

The ability of metals to exchange at the active site of enzymes was early used as a means to probe
the structural and mechanistic properties of ill-characterized metalloproteins at the time. For instance,
the evidence for association of zinc with proteins dates back to the 1940s [46], and substitution of zinc for
cobalt in purified proteins gave useful insight into the molecular details of numerous zinc-enzymes by
highlighting features hidden by the often spectroscopically silent zinc [47,48]. Such metal substitutions
were guided by the purposes of the investigators to get proteins with their full load of the wished
transition metal: this approach was successful in most reported examples.
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6.2. The Metal Trap of Model Organisms

However, the advent of genetic methods allowing researchers to obtain large quantities of otherwise
difficult-to-purify proteins were the ground for metal exchange phenomena at the metal-binding
site of metalloproteins, often in an insidious way. Model microorganisms, such as Escherichia coli or
Saccharomyces cerevisiae, were the workhorses of recombinant technologies. The availability of various
mutants and the ease of manipulation of their genetic material from the late 1980s onward provided
tremendous power to the thorough structural and mechanistic characterization of a variety of proteins,
including metallo-ones. However, producing proteins in abundance in given non-native hosts led
to unexpected metals at the binding site(s) of recombinant proteins. For instance, rubredoxins are
small proteins initially characterized as iron binding through four cysteine residues in anaerobic
bacteria [49]. They can be readily produced in E. coli as the iron-containing protein [50]. However,
upon characterizing this recombinant material, it soon appeared that another form was present in
E. coli lysates, namely the zinc-substituted protein in which zinc is quasi-isostructural to iron [51,52]
(Figure 2A,B). Interestingly and concomitantly, a similar observation was made with recombinant
Pseudomonas aeruginosa azurin [53] (Figure 2C,D). This type I copper protein and rubredoxin are parts
of electron transfer chains. Beforehand, exchange at the electron-transferring sites with a diversity
of non-native, including redox inactive, metals had been demonstrated for both purified proteins.
Among the different metal-substituted forms, the ones with the native metal were found to be more
stable than the zinc-containing ones [51,54]. Escherichia coli, the microbial host used in the mentioned
series of studies, can be grown in minimal media with perfectly controlled metal concentrations.
By varying the relative concentrations of iron and zinc in such a medium, the relative amounts of
recombinant iron- and zinc-rubredoxin accurately reproduced the metal distribution of the medium
(Jacques Meyer, personal communication). It follows that E. coli, which does not hold any rubredoxin
gene in its genome, is unable to discriminate between iron and zinc at the metal-binding site of
Clostridium pasteurianum rubredoxin. Of note, the implemented gene expression system [55] stops any
transcription at the time of induction except that of the gene of interest. Thus, assembly of the exogenous
rubredoxin exclusively occurs with the E. coli biosynthetic machinery already present before induction,
without means to adjust to the new biosynthetic needs. It must be concluded that E. coli cannot
quantitatively incorporate the right metal in a protein as simple as rubredoxin, which has no other
high-affinity binding site than that formed with the four cysteine residues [49]. Another conclusion
from these observations is that, in contrast to E. coli, the rubredoxin natural host C. pasteurianum does
exclusively address a single metal at the active site of this protein following a still uncharacterized
pathway. Indeed, the presence of any other rubredoxin form besides the iron-containing one in
C. pasteurianum is unlikely to have escaped detection since iron and zinc rubredoxins co-purify and
the absorption spectra of the mixture easily indicates whether iron rubredoxin is exclusively present
(J-M.M. and J. Meyer, unpublished observations). The zinc- and iron-rubredoxins can only be separated
by high-resolution anion exchange chromatography [51].
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Figure 2. Comparison of the metal-substituted recombinant Clostridium pasteurianum rubredoxin
and Pseudomonas aeruginosa azurin produced in Escherichia coli. The panels show the metal ion
coordination spheres for (A) Fe(III) rubredoxin (RCSB PDB 1IRO, resolution 1.10 Å), (B) Zn(II)
rubredoxin (1IRN, resolution 1.20 Å), (C) Cu(II) azurin (5AZU, resolution 1.90 Å), and (D) Zn(II) azurin
(1E67, resolution 2.14 Å). The images were generated on the rcsb.org site using Mol* ((D). Sehnal, A.S.
Rose, J. Kovca, S.K. Burley, S. Velankar (2018) Mol*: Towards a common library and tools for web
molecular graphics MolVA/EuroVis Proceedings. doi:10.2312/molva.20181103).

6.3. Serendipitous and Understated Metal Binding

In the introduction, the occurrence of unexpected metal binding to proteins in structural studies
was recalled, e.g., [3,4]. The presence of a supposedly alien metal ion (Figure 3) may reflect the
composition of the solutions used in the crystallization process, but such ions may also be selected by
the protein without any intentional addition in the medium [3]. Thus, binding of transition metals to
proteins may remain undetected, unless metal-specific methods, such as X-ray fluorescence, are applied
to the sample, sometimes for other purposes than detecting any cryptic metal. This apparent difficulty
has been profitably used to solve many crystallographic protein structures by expediting the phase
problem [56]. The presence of metal-binding sites at the surface of proteins (Figure 3) contributes to
crystal packing in cytosolic aconitase [3], and it might be an indication that the interaction also occurs
in other states than crystals. In the case of the different forms of cytosolic aconitase/Iron Regulatory
Protein 1, evidence for the interaction of zinc, cadmium, and trivalent metal ions was obtained in
solution with consequences on the properties of the protein, including solubility, hence activity [57].
These observations were made with purified proteins, and their relevance inside cells is usually difficult
to demonstrate.

The traps in which scientists with interest in metalloproteins may fall using recombinant proteins
go beyond the above metal exchanges or occasional binding. They also include artificial metal binding
to proteins that do not require them for function.
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6.4. When Metals Spoil the Show

A popular strategy is to produce recombinant proteins with histidine tags to expedite purification.
Yet, the production of proteins, particularly those encoded by the genome of high eukaryotes,
occurs under different conditions in the cytosol of E. coli than in their native hosts. In particular,
such proteins do not correctly fold without the proper eukaryotic quality control systems and they
are prone to forming inclusion bodies. In addition, those containing cysteine-rich domains may grab
metals available in the bacterial environment and trap them. For instance, the mammalian protein
onzin (PLAC8) is cysteine-rich: the mouse sequence contains 15 out of 112 aminoacids, i.e., more than
13%, a value similar for other mammalian species, whereas the average cysteine frequency in the
proteomes of vertebrates in general is of the order of 3.5%. Mouse onzin was found in inclusion
bodies when produced as a fusion with glutathione-S-transferase in E. coli. When iron was added to
the medium during production, the inclusion bodies became dark (Magali Chemali, Jérôme Garin,
personal communication), and they released the characteristic smell of hydrogen sulfide when treated
with hydrochloric acid (J-MM unpublished). These observations strongly suggested the presence
of iron-sulfur clusters. However, when 32D mouse cells were labeled with radioactive iron-loaded
transferrin, anti-onzin antibodies did not fix more iron than the pre-immune serum used to raise
these antibodies (J-MM unpublished). Therefore, onzin likely does not bind iron in mammalian
cells. Its possible involvement in iron homeostasis and biogenesis of iron-sulfur clusters, under some
conditions at least [58], may be mediated by its interaction with components of these pathways rather
than direct binding of the metal. Furthermore, the opportunistic binding of metals by cysteine-rich
domains in heterologous proteins is not restricted to iron-sulfur clusters, as zinc [59] or other divalent
metals [60] may also be found associated with such proteins.

6.5. Questioning Metal ‘Reconstitution’

If a reason exists to suspect that some proteins interact with metals and if they are nevertheless
synthesized as recombinant apo-proteins, it may be tempting to ‘reconstitute’ them by adding the
supposedly ‘natural’ metal ions after purification. For instance, hepcidin has become the master
regulator of metazoan iron homeostasis over the last two decades. Its mature form recognizes its target,
the iron cellular exporter ferroportin, mainly by its 5 N-terminal amino acids [61], and it has 8 cysteines
among the 20 amino acids of its C-terminal sequence. It is thus not surprising that metals including
ferric ions bind to the reduced peptide in vitro [62], but the physiological relevance of such binding
has never been demonstrated and it is fairly unlikely for a secreted protein folding via formation
of disulfide bridges [63]. Indeed, heterologous production of mature hepcidin in engineered E. coli
with proximal disulfide bridge-building ability via a thioredoxin domain afforded the properly folded
oxidized active hepcidin without evidence of transition metal binding [64]. Similarly, production of
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C-terminal histidine-tagged hepcidin in the yeast Pischia pastoris was not reported to be associated
with transition metal binding [65], even though the risk of anecdotal metal binding is amplified
when His tags remain associated with proteins after synthesis. For example, in vitro reconstitution of
N-terminal His-tagged Iron Regulatory Protein 1 with iron and sulfide yielded a protein with a linear
cluster, the aconitase activity of which was not reported [66], and which was previously found in the
denaturated purified mitochondrial aconitase enzyme [67].

From the preceding paragraphs, it appears that a range of activities and conditions that cannot yet
be introduced in vitro modulates the combinatorial interactions between transition metal cations and
cysteine-rich proteins. In bacteria, such as the Gram (-) E. coli largely used for heterologous protein
production (vide supra), protein disulfide isomerases are periplasmic enzymes involved in the oxidative
folding pathway, and the ribosomal cytoplasmic environment is mainly reducing in the absence of
stress. Therefore, metal delivery systems probably have time to act on nascent proteins before disulfide
bridges are formed. In eukaryotes, quality control and addressing mechanisms are coordinated and act
on active ribosomes to avoid waste of cellular resources and potential toxic effects of deficient translation
and translocation [68,69]. How metalloproteins balance the function of these complex and successive
monitoring systems with incorporation of metals or metal prosthetic groups is presently a fully open
question. However, in the case of secreted, cysteine-rich, proteins, such as the above mentioned
hepcidin, translocation to the endoplasmic reticulum and further processing and quality control
down to the export vesicles may shield the newly synthesized proteins from irrelevant metal-binding
machineries. These pathways are illustrated in Figure 4. Following this simple reasoning, deficiency
in these tight monitoring systems may lead to improper and deleterious metal–protein interactions,
as observed in a variety of diseases, such as Alzheimer disease, spongiform encephalopathy (mad cow
disease), Parkinson disease, and other tauopathies, with aberrant metalation and oligomerization of
the tau protein, prion protein (itself a copper protein), and α-synuclein, respectively.
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7. Cellular Targeting of Transition Metals

7.1. Different Metal Solutions to the Same Problem

In view of the multiple interactions metalloproteins may display with transition metal ions,
as exemplified above, a question mark soon appeared as to whether the metals found in purified
proteins, usually at the active site, actually reflected the situation in the native environment of whole cells.
Indeed, some proteins and enzymes from different organisms, particularly bacteria, were characterized
with variable identities and concentrations of different metals [70]. This is particularly, but not
only, true for metals, such as ferrous and manganous ions, that are close in the series of divalent
metal-complex stabilities [71,72]. A case in point is the β2 subunit of class I ribonucleotide reductase
(RNR) [73]. This metallosubunit of the enzyme stabilizes a radical that plays a mandatory role in the
reduction of nucleotides. Surprisingly, the dinuclear metal center of subunit β2 may hold different
metals in the form of di-ferric (e.g., class Ia) or di-manganic (e.g., class Ib) active sites. Therefore,
a given activity may not be uniformly associated with a site holding a specific metal. This can be true
in a single organism depending on the conditions, sometimes by use of different isomers, [74], or by
comparing different organisms, such as those employing class Ia and class Ib RNR.

7.2. Several Metal Problems with the Same Protein or Enzyme: Is Toxicity by Metal Replacement
So Much Relevant?

Reciprocally, the inclusion of a different metal than the original one in a metallo-enzyme or protein
may affect the activity. This phenomenon has been proposed as a mechanism of toxicity although its
importance should not be overstated as already warned before [75]. For instance, cobalt salts have
long been known to mimic hypoxia when applied at relatively high concentrations, generally several
tens of µM on cell cultures. Most often, replacement of the active site iron by the inactive Co2+ at the
active site of hydroxylases that modify the hypoxia-inducible factors α is put forward, but various
lines of evidence do not support this proposal. First, the supposed cobalt-containing prolyl- or
asparaginyl-hydroxylases have not been characterized with unambiguous proof they do form in cell
cultures. In this respect, it may be noticed that the active site of these enzymes displays some flexibility,
enabling binding of several metal ions [76]. Second, the transcriptional effects of cobalt salts, on the
one hand, and iron chelators, on the other hand, do not exactly overlap, and their respective inhibition
of the different hydroxylases is not the same in vitro and inside cells [77]. This contrasts with the large
sensitivity of prolyl- or asparaginyl-hydroxylases to iron depletion [78,79], which should favor the
replacement of iron by cobalt or other divalent transition metals in Fe2+-2-oxoglutarate-dependent
dioxygenases [80,81]. Third, the absence of cobalt, not bound to vitamin B12, in mammalian cells turns
it into a toxic element able to negatively interact with a variety of biomolecules. The mechanisms
of cobalt induction of hypoxia have been recently examined [82]. This example, as well as many
others that should become as well documented as this one, emphasizes again that metal replacement
on metalloproteins should not be hastily proposed to explain metal toxicity. Instead, the field of
the mechanisms of toxicity triggered by non-essential metals offers a wide and stimulating range of
chemical and biological investigations that will certainly develop in the future.

7.3. Chaperone, Channeling, and Active Site Synthesis of Metalloproteins

The difficulties outlined above illustrate the problem for scientists and cells alike to put the
correct metal in a metalloprotein. Indeed, it is now very clear that the primary and even ternary
or quaternary structures of a protein may be necessary, but certainly not sufficient, for assembly of
the proper metal or metal group at its active site as it was initially thought. The changing view of
the involvement of accessory agents to carry out this task arose from the strong development of
genetic studies, including improved sequencing methods, and characterization of proteomes. A typical
example is that of iron-sulfur proteins. Indeed, this very large family of proteins bind the metal centers
with a majority of cysteine residues, some of them organized in easily recognized sequence signatures.
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Many of them can assemble clusters when provided with the suitable reactants in vitro. However,
the most complex of these centers, such as those found in the catalytic subunit of the nitrogenases of
diazotrophs, cannot be ‘reconstituted’ from simple reactants in the apo-subunit. Even the most common
forms of iron-sulfur clusters interconvert [83], which shows that a given protein may accommodate
different cluster types, and this has functional application in cellular sensors [84]. Bacterial genomes
revealed operons involved in the biosynthesis or the repair of iron-sulfur centers. Homologs of most
genes identified in bacteria were later found in eukaryotes, where additional proteins participate in
the biosynthesis of these clusters to deal with sub-cellular localization and target specificity. Thus,
proper assembly of iron-sulfur clusters in the proteins designed to hold them requires a series of
protein–protein interactions, with some participants bringing cluster fragments and reactants to the
complex [85–87]. Some participants in metalloprotein assembly pathways shuttle the transition metal
to its targets and received the name of chaperones. The earliest identification of chaperones was for
copper [88,89], a relatively rare yet essential transition metal that is redox active. Cells cannot afford to
waste such a precious material, but they cannot let it redox cycle and catalyze unwanted oxidative
reactions, hence the crucial role of copper chaperones. It is likely that chaperone molecules exist for all
biologically essential transition metals, although many remain to be discovered.

7.4. Tuning Transition Metals’ Reactivity in Metalloproteins

The high reactivity of transition metals is a biochemical asset but a threat as well. The range of
functions in which metalloproteins participate is very large. As well as putting the right metal in the
right place requires costly means, the need to properly orient the reactions or interactions in which a
metalloprotein is involved is not a simple cellular problem. This is probably why cells have developed
complex molecules to which metals bind as a way of preconditioning their reactivity. This way,
prosthetic groups leave only a fraction of the ligand positions available on the metal at the active site,
which limits the number and kind of reactions that may take place. Among prosthetic groups, the most
widespread are those using a tetrapyrrole ring that only leaves the two axial positions of iron or other
transition metals (Ni in F430 of methanogenic archaea) for ligand exchange. Other examples include
cobalamin (vitamin B12), of which animal cells have lost the biosynthetic pathway, and molybdopterin.
The biosynthesis of protoporphyrin IX involves successive reactions that are located partly in and
partly out of mitochondria, and the ferrous ion needed to form a heme is incorporated as the last step by
the enzyme ferrochelatase, itself bearing an iron-sulfur cluster in animal cells [90]. Thus, large cellular
resources are devoted to the synthesis of complex prosthetic groups, emphasizing the crucial need
of properly reacting transition metals for all forms of life. One of the most recent examples of the
importance of this pathway relates to heme oxygenase activity, which degrades heme, in the mechanism
of damage occurring during the new and presently widespread SARS-CoV-2 infection [91]. Despite the
constrained coordination sphere built by the prosthetic group, metal exchange does also occur in
metalloproteins binding them. For instance, under iron deficiency zinc is incorporated, probably
by mere, non-catalyzed, binding, into protoporphyrin IX, and the latter complex can be used as a
biomarker for anemia and in a large series of chronic diseases in which inflammation is enhanced [92],
the COVID-19 disease that prevails at the time of the present writing not being an exception.

8. Extreme Sensitivity of Transition Metal Exchange Reactions to Cellular Conditions

When compared to conventional proteins that do not, or marginally, require metals, the occurrence
of complex pathways leading the right metal or metal group to its target(s) is likely due to the
absence of any quality control system for metalloproteins. Indeed, improperly folded proteins are
readily recognized, labeled, and directed to degradative pathways, such as the proteasome, e.g., [93].
No such process designed to check the correct incorporation of a transition metal at the active site of
a metalloprotein is known. By far, not all apo-proteins fold differently from their holo-counterpart,
especially the largest ones. Thus, cells seemingly have no way to get rid of useless apo-proteins,
all the more so as the protein without metal may have its own function: an example is metazoan Iron
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Regulatory Protein 1 that interacts with its RNA partner, the Iron Responsive Element, in the absence
of bound metal, in this case a cluster [94]. Even when apo-proteins fold around a metal, cells have no
way to selectively identify and eliminate metalloproteins holding the wrong metal.

8.1. Coordinating Metal Assembly and Metalloprotein Folding: A Key Component of Stability

The tight connection between protein folding and metal incorporation is an important contributor
to the correct synthesis of metalloproteins. Indeed, the tridimensional structure of metalloproteins, or at
least of some of their domains or subunits, depends on the presence of the metal or metal-associated
group, e.g., [95]. This is one of the reasons why cells have developed metal incorporation pathways,
not only for selectivity of metal addressing but also for help in the folding pathway. For instance,
among the accessory proteins involved in the biosynthesis of metal sites, several ensure the correct
folding of the protein to avoid aggregation but also to prepare the active site for the reception of the
metal. A particularly detailed example is provided by the biosynthesis of iron-sulfur proteins. At least
the products of the mammalian genes ISCU, HSC20, HSPA9, and NUBP1, among around 30 involved
in biogenesis of iron-sulfur clusters, appear to play such a role of chaperoning the assembly complex
on the correct recipients in different sub-cellular locations ([96–99] for recent reviews).

A difference should be made between metal binding to nascent peptides/proteins with some metal
contribution to folding, and metal exchange in fully assembled proteins. The former is a process that
should generally poise the protein in a stable state to secure lasting function. Other post-translational
reactions, such as the formation of disulfide bridges, contribute to folding, stability, and function [100].
Metal exchange on folded proteins is more likely to occur when stability is compromised as for
partly disordered, including small, proteins, or when environmental conditions lead to unfolding.
For instance, it was soon shown that iron-sulfur clusters readily exchange with externally provided
cluster components in chaotropic agents ([101] and Table 1). Interestingly, archaea and bacteria
sometimes have a backup system for biosynthesis of iron-sulfur clusters encoded by the Suf operon
in parallel with the Isc one [102]. Key products of the Suf operon have been shown to be more
stable than corresponding ones of the Isc operon and to participate in cluster building or repair
under stress conditions. Interestingly, this kind of backup system seems to have been replaced in
vertebrates by other mechanisms, such as cluster repair carried out by the mitoNEET protein of the
outer mitochondrial membrane [103]. This protein appears to monitor aspects of iron homeostasis
as they relate to dysfunction of oxygen use through generation of reactive oxygen species, and other
redox imbalance reactions in which metals are key participants.

Table 1. Iron-sulfur stability in 2[4Fe-4S] ferredoxin from Clostridium pasteurianum 1.

Medium % Replacement of [4Fe-4S] by [4Fe-4Se] % Replacement of [4Fe-4Se] by [4Fe-4S]

No urea 0 22
8M urea 28 87

1 The fully loaded 2[4Fe-4S] (column 2) or 2[4Fe-4Se] (column 3) ferredoxin was anaerobically incubated 1 h at 25 ◦C
with a molar excess of 80 moles/protein, i.e., 10x/cluster, of the other chalcogenide, ferrous iron, and dithiothreitol in
Tris-Cl 0.1 M pH 8. The protein was separated from reactants on an anion-exchange column and the proportion of
each chalcogenide-containing cluster was determined as previously described [101].

In all the above examples centered on iron-sulfur proteins, and in many additional ones,
reactions that can be formally considered as metal exchange are central to the correct delivery
of metals to active sites, the repair of these sites in case of insult, and recycling or disposition of metals
in case of denaturation.

8.2. Transition Metals Turned Wild: A Major Cellular Threat

Probably the most studied, and invoked, insults that cells may experience are oxidative stress
or its equivalent with nitrogen derivatives, namely conditions increasing the formation of so-called
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oxygen or nitrogen reactive species. Among these ‘reactive species’ are small molecules, such as
hydrogen peroxide, the hydroxyl radical, or peroxynitrite, that are not equally reactive with different
molecules but that may modify numerous cellular components. They are usually associated with
cellular damage when their concentration is high enough. Some of them also play signaling roles
by shifting the intracellular redox equilibrium and, sometimes, specifically reacting with selected
cellular components acting as signaling relays. The dynamics of transition metals’ reactivity strongly
impinges on the emergence or development of oxidative or nitrosative stress. Indeed, the reactivity of
unshielded or partially shielded forms of iron or copper inside cells catalyzes the formation of the most
reactive species, as in the case of ferroptosis for example [104]. To survive, cells have to damper the
insult, and they often do so by acting on the homeostasis of transition metals. To take a single example,
the Iron Regulatory Proteins are cellular regulators of iron homeostasis that react with, and whose
activities are sensitive to, reactive oxygen and nitrogen species [105–109]. Recovery or enhancement of
the regulatory activities has been shown to require the involvement of small electron shuttles, such as
thioredoxin [110], that are now known to activate by release of their bound iron-sulfur cluster [111]
in addition to reduction by thioredoxin reductase. Thus, the inter-connection between homeostasis
of transition metals, here iron, and redox homeostasis goes both ways: the former catalyzes the
establishment or imbalance of the latter, but the latter contributes to maintain the former. The thorough
characterization of the quantitative traits determining this inter-connection will certainly be an area of
continued interest in the years to come because of its mechanistic importance in a very wide range of
conditions, including many pathological ones.

It has just been indicated that external conditions, such as a redox shift, determine the ability
of proteins to hold metal or metal prosthetic groups. The dynamics of metal exchange, such as
alterations of mitoNEET proteins associated with many diseases (e.g., [112]), underlies a very large
array of pathologies that cannot be extensively listed here. However, a very important example is
the competitive binding of metals to the products of the respective genomes is a key aspect of the
pathogen–host interaction in the immune response [113,114]. The rather unselective metal-binding
protein calprotectin is instrumental in starving the pathogen for transition metals and preserving the
metal-based activities of the host, including those needed to face invasion [114,115]. It is thus not
surprising that calprotectin appears as a severity factor in the SARS-CoV-2 infection [116].

9. Puzzling Interactions of Transition Metals and Metal-Binding Molecules with Proteins

The versatility of the interactions involving metalloproteins also transpire in the observation
of unexpected ligands binding to them. This may occur with metallo-drugs that deliver their
non-essential/toxic metal or exchange it at the active site of metalloproteins [117,118]. Interestingly,
drugs and other molecules not only bind to the active site, but they may also participate in
oligomerization or bind to other sites to affect function [118]. In the quoted example of platinum-based
compounds binding to the copper chaperone ATOX1, it appears likely that the resistance mechanism to
these anticancer drugs involves drug delivery by loaded ATOX1 to the copper export proteins ATP7A
and ATP7B expelling platinum. This way, platinum is diverted from its intended intracellular targets,
DNA and sulfhydryl-rich molecules, thus failing to inhibit DNA replication and transcription.

Taking the versatility of metalloproteins one step further, metal or metal prosthetic group binding
to some proteins, although clearly demonstrated, may have questionable physiological relevance
in some cases. For instance, the prosthetic group heme is both a very hydrophobic and reactive
molecule. Its normal fate is to bind to coordinately synthesized apoproteins to form hemo-proteins and
enzymes. Yet, all cellular reactions of unbound or loosely bound heme remain to be comprehensively
established, although regulation of the transcriptional repressor Btb and Cnc homology 1 (Bach1) and
eukaryotic initiation factor-2α kinase (HRI) has been extensively documented [119,120]. Heme binds
to many different proteins [120], and even though some of these proteins can be unambiguously
associated with heme synthesis, transport, or degradation, the role of others is enigmatic. For instance,
heme-binding protein 1 (HeBP1) was discovered through its induction in the highly demanding



Biomolecules 2020, 10, 1584 17 of 26

pathway of hemoglobin synthesis [121], and, as the name says, it does bind heme, protoporphyrin IX,
and other tetrapyrroles [122–124]. However, the roles of HeBP1, of its ortholog SOUL (HeBP2), and their
domains and fragments now go beyond direct heme metabolism, with involvement in cell death
mechanisms and the immune response in metazoans. Such functions may be due to late developments
during evolution that have little connection to iron and heme homeostasis [125]. Even though neurons
of neurodegenerative animal models and Alzheimer’s disease patients overproduce HeBP1 and are
specifically more sensitive than controls to hemin-induced cell death among other death inducers [126],
the actual role of heme binding to HeBP1 in the surprising enhancement of neuronal cell death and
in other cellular events remains to be delineated [127]. The example of the HeBP1/SOUL family of
proteins deals with binding of a prosthetic group in which the metal may not be the main contributor
to affinity, but it exemplifies the versatility of proteins classified as metalloproteins in their interactions
with metals and their functions. The possible activities of metal-devoid metalloproteins are known
in only a few cases, and it is a sub-domain of the increasingly important one of the moonlighting
proteome that will likely become more scrutinized in the forthcoming years.

10. What May Be the Molecular Basis of Specificity for Cellular Transition Metals?

It should appear from the preceding paragraphs that, whereas transition metals must be
available and their intracellular protein hosts must be in a state enabling correct folding around
them, these two parameters fall short of explaining all traffic, molecular recognition, and exchange
reactions involving metals in biological contexts. Furthermore, the cellular whereabouts of transition
metals in animals have to fulfill the needs of both the relatively stable situation encountered by mature
and specialized cells, and the moving and transient biochemical landscape of cells in developing
organs, harmful environments, and other changing conditions. Clearly, the biosynthetic activities and
the required concentrations of transition metals cannot be the same in all situations.

These issues make the question of defining the basis of cellular specificity for a given transition
metal a very difficult task. Recently, the interplay between metal availability and free energy of binding
in a series of bacterial metal sensors has been considered [128], and prevailing and insightful ideas
in this area have been summarized [129]. The key combination appears to be that of (i) a suitable
metal concentration, (ii) its availability in a chemical form enabling straightened and expedite delivery,
and (iii) a tuned affinity of the protein host. In the more complex situation involving organelles in
eukaryotes, the intracellular trafficking and distribution of metals should contribute to this combination:
this is in line with the notion of muffling introduced some time ago to explain modulation of cellular
metal buffering in mammalian cells [130], following application to the amplitude of pH shifts [131].

None of the above interpretations and conclusions could have been reached without specifically
designed experimental setups and analytical methods, and accurate and extensive quantitative data.
Attempts at any comprehensive understanding of metal homeostasis cannot avoid such a depth of
analysis as witnessed by studies in the minimally autonomous, i.e., able to grow in isolation on a single
substrate, and model eukaryote Saccharomyces cerevisiae [132–134]. However, integration of the data
available for this supposedly simple organism requires more than 150 variables and tens of reactions
influencing them [135,136]. Whereas the latter modeling effort represents a formidable achievement,
the data on which it is based suffer from the kinetic imitations indicated above, relative to the quickest
steps of iron exchange and their potential effects on transient iron homeostasis. Explicitly taking
fast kinetics into account would translate into more components/variables, more reactions, and more
parameters to be evaluated in order to implement more integrative models. The just referenced
work [135,136] certainly provides major insight, but it is easy to realize how more complex the situation
will become when shifting away from a near steady-state condition as for growing yeast on a single
substrate, and stepping up to more complex organisms, such as higher eukaryotes. Contributing to
the building of such thorough descriptions of metal homeostasis is the challenge ahead in the field of
Metals in Biology. However, for the time being, the general picture is that selectivity for the biological
use of a given transition metal relies on its environmental availability, the cellular means to move
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it around as for muffling, the affinity of its cellular sensors and its protein hosts, and other cellular
conditions triggering the need and use of metal ions. All of these aspects contribute together at the
same time, without any clear dominance of one of them.

11. Conclusions and Perspectives

11.1. Metalloproteins: A Previous and Future Bonanza for Coordination Chemistry

The properties and reactivity of all ions of transition metals are relatively similar. Thus, cells deploy
sophisticated means to select only one of them or for assembling relatively complex prosthetic
groups when only one specific feature of a given metal is needed. This quest for the right metal
in the right place is mandatory to avoid unwanted side reactions. Yet, the uniqueness of the
catalyzed reaction/function–metal (group) relationship is not mandatory. In the microbial world,
evolution managed to swap metals in some cases to adjust to their environmental availability. However,
the recognition of a metal by the coordination sphere of a (would-be metallo) protein is not enough
to guarantee selectivity in higher eukaryotes that do not have the genomic plasticity of microbes
(and definitely less time and chances to develop it). Hence, metal exchange and channeling through
particular pathways ensures metal homeostasis and, consequently, cell welfare. With only a few
exceptions, these pathways have been detailed, or altogether discovered, over the last two decades
only. This implies that a lot remains to be elucidated, including the interrelationship among the
newly identified components. These biochemical reactions are inherently transient, which calls for
methodological improvements tracking the metals inside cells, and hopefully later in organs and
organisms, at the appropriate spatial and temporal resolutions. In this endeavor, Coordination
Chemistry has a central place that is far more sophisticated than the mere definition of metal ligands
and binding affinities. Indeed, the thermodynamic component of transition metal–protein interactions
forms the basis upon which kinetic considerations will shape our understanding of metal homeostasis.
With the legion of new methods, tools, concepts, and theoretical background that continuously
develops, coordination chemistry will have to adjust to this moving landscape—a bonanza—and it
will undoubtedly gain increased biological usefulness (Figure 5).
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11.2. Metal Exchange: A Large Array of Applications in Biology

On the side of applications, the simplistic proposal that the toxicity of non-essential or of unduly
abundant transition metals is by replacing essential ones at the active sites of enzymes and proteins will
likely be superseded by subtler and probably more relevant descriptions. Indeed, metal replacement
may make sense upon massive exposure (“shocks”) to one or several metals, but such acute conditions
are relatively rare. Chronic low-level exposure instead instills the potential toxic metal with often
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resulting low intracellular concentrations. This process leverages a diversity of biochemical mechanisms
that affect cellular functioning and lead to harm over time, as reviewed some time ago for one common
metal toxicant [75,137]. Similarly, transition metal-related diseases are pathologies in which metal
exchange on proteins is disturbed. Deeper analysis of the metal dynamics with the associated
mechanistic insight will undoubtedly fuel innovative curative strategies and, possibly, will suggest
efficient preventive measures.

11.3. Metals in Biology: A Plea for a Blended Flavor

All the above conclusions have been obtained with a large diversity of experimental approaches
and heterogeneous data sets. Forthcoming progress will rely on more quantitative measurements
resulting from the use of more realistic biological models than the previously, and efficient,
reductionist approaches that dominated the last four or five decades. This will lead to a shift
in the boundaries of disciplines, such as Coordination Chemistry and “Inorganic” Biochemistry
toward more biologically grounded subjects of studies. Yet, the benefit may be modest if the study of
transition metals in biology remains the prerogative of specialists mastering a single method or a single
experimental model. The time is now likely ripe for merging, rather than juxtaposing, disciplines
contributing to the field. Investigations designed in this new way should lead to a higher level of
understanding of the role played by the dynamics of transition metals exchange in proteins in a wealth
of fundamental and applied biological questions (Figure 6).
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