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Abstract: Many-body physics poses one of the greatest challenges to science in the 21st century.
Still more daunting is the problem of accurately calculating the properties of quantum many-body
systems in the strongly correlated regime. Cold atomic gases provide an excellent test ground, for
both experimentalists and theorists, to study the exotic and sometimes counterintuitive behavior of
quantum many-body problems. Of particular interest is the appearance of collective excitations in
these systems, such as the famous Goldstone mode and the elusive Higgs mode. It is particularly
important to assess the robustness of theoretical and computational techniques to study such excita-
tions. We build on the unprecedented opportunity provided by the fact that, in some cases, exact
numerical predictions can be obtained through quantum Monte Carlo. We use these predictions
to assess the accuracy of the Random Phase Approximation, which is widely considered to be a
method of choice for the study of the collective excitations in a cold atomic Fermi gas modeled
with a Fermi–Hubbard Hamiltonian. We found good agreement between the two methodologies
for the dynamic properties, particularly for the position of the Goldstone mode. We also explored
the possibility of using a renormalized, effective potential in place of the physical potential. We
determined that using a renormalized potential is likely too simplistic a method for improving the
accuracy of generalized Random Phase Approximation and that a more sophisticated approach is
needed.

Keywords: cold atoms; quantum Monte Carlo; Random Phase Approximation; dynamical correla-
tions; response functions

1. Introduction

The equations of quantum mechanics provide the most complete description of the
world known. However, the equations are extremely difficult to solve for many-body
systems. Cold atomic gases serve as an excellent laboratory to see the equations of quantum
mechanics at work [1–10]. Experimentalists can exercise a great deal of fine control over
the properties of cold atoms. By embedding a cold atomic gas in standing waves of laser
light, supercooled gases of Rubidium atoms (bosons) or Potassium atoms (fermions) can
be confined to move on lattices of different dimensionality [3]. By using the Feshbach
resonance, different inter-atomic potentials can be engineered. This opens the exciting
possibility of using cold atoms as physical models of seemingly unrelated systems, from
the superfluid interiors of neutron stars to exotic phases in condensed matter physics.

In their turn, theoretical and computational physicists have risen to the challenge of
the quantum many-body problem, and a wide selection of methods exist to study cold
atoms. Some of the most common families of methodologies available include Density Ma-
trix Renormalization Group (DMRG), Dynamical Density Functional Theory (DDFT) [11],
Generalized Random Phase Approximation (GRPA) [12–14], and Quantum Monte Carlo
(QMC) [15–18], to name a few. While there has been significant progress in the realm of
calculating static properties, such as the equation of state, and static correlations such as
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the radial distribution function or pairing correlations, dynamical properties, such as dy-
namical green’s functions or dynamical structure factors are harder to obtain. In the realm
of cold atomic Fermi gases, the accurate description of collective excitations, in particular
the Goldstone mode and the more elusive Higgs mode, is still a crucial task for many-body
physics. The Goldstone mode represents the oscillations of the phase of the superfluid
order parameter, while the Higgs mode represents the oscillations of the amplitude of
the superfluid order parameter and has exciting connections with the Higgs boson in the
Standard Model. Since QMC has seen such dramatic progress over the past 30 years, it
is now possible, in certain cases, to obtain exact results for some dynamical properties of
cold atomic gases [15,16,19]. This is very exciting since laboratory experiments naturally
measure dynamical properties [20] and can be readily compared with the results of QMC.
Still, in the determinantal family of QMC methodologies, we are limited to relatively
small systems of several hundred particles since the calculations involved are unavoidably
computationally expensive. QMC also suffers from the fact that the dynamical correlations
produced are in imaginary time. An analytic continuation step is required to perform
the transform from imaginary to real-time, and the accuracy of the results suffers in this
step. Finally, the sign problem presents significant challenges to QMC itself, but does not
appear in certain special cases, such as the unpolarized attractive Fermi gas considered
in this paper. Though the families of approximate methods do not provide exact results,
they are computationally inexpensive and allow the calculation of the real-time dynamical
properties of very large systems. GRPA is widely considered the gold standard in the study
of superfluids and has been used to study cold atomic gases [12–14]. Still, when using
GRPA by itself, it is difficult to control the accuracy of the approximations involved.

In this work, we explore the possibility of using GRPA and QMC together, so that
the deficiencies of one are made up for by the benefits of the other. To this end, we im-
plemented a systematic comparison of the results obtained from GRPA and Auxiliary
Field Quantum Monte Carlo (AFQMC) coupled with cutting-edge analytic continua-
tion techniques [16,21–23], for the dynamical properties of a cold Fermi gas on a two-
dimensional (2D) optical lattice, modeled with a Fermi–Hubbard Hamiltonian. The system
was spin-balanced, where the number of spin up particles equals the number of spin down
particles, and at half-filling, where the number of lattice sites equals the number of particles.
This placed the system in the dense, highly non-perturbative regime, where the system
exists in the exotic supersolid phase [16], which poses a major challenge for approximate
methods. We calculated the imaginary time intermediate scattering function for the density
and spin, using the direct output of AFQMC and the appropriately transformed output of
GRPA, and compared the results. For the density–density dynamical structure factor, we
found good agreement between AFQMC and GRPA on the position of the Goldstone mode.
For the static correlations, that is, the zero time limit of the imaginary time density–density
autocorrelation functions, we noted a discrepancy between the AFQMC and GRPA results.
We attempted to renormalize the inter-particle potential to more closely match the results
of GRPA to those of AFQMC. It is not clear that a simple renormalization using an effective
potential can provide a significant improvement on the original, physical potential.

This paper is organized as follows. In Section 1, we give our introduction. In Section 2,
we comment on some of the main points in the theory of dynamical correlation functions
and give the expressions needed to implement GRPA, so that the interested reader can
reproduce our results. In Section 3, we give our AFQMC and GRPA results for the inter-
mediate scattering functions for a selection of momenta values. We also provide the new
results obtained after using an effective potential in GRPA, optimized using our AFQMC
data. Finally, in Section 4, we summarize our work and suggest future directions for
our research.
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2. Models and Methods
2.1. The Fermi–Hubbard Model and Correlation Functions

In this section, we provide a brief review of the main theoretical concepts. We begin
with a discussion of the Fermi–Hubbard model Hamiltonian [16]. We then review the
definitions of the dynamical correlation functions that are the key result of this work: the
intermediate scattering function and the dynamical structure factor. After this, we turn
to a concise review of the concepts of GRPA. In the supplemental materials, we give the
explicit expressions for the BCS response functions, which are the core quantities needed
to implement a BCS-based GRPA scheme.

For us the crucial object is the Fermi–Hubbard Hamiltonian:

Ĥ = −t ∑
〈r,r′〉,σ

ĉ†
r,σ ĉr′ ,σ + U ∑

r,σ
n̂r,↑n̂r,↓. (1)

Both sums run over the square lattice of Ns = L × L = V sites, where V is the
“volume”, for the 2D lattice, with the first sum being over nearest neighbor sites. n̂r,σ =
ĉ†

r,σ ĉr,σ is the density operator for spin σ, and ĉ†
r,σ and ĉr,σ are the creation and annihilation

operators, respectively, in the position basis. t is the hopping amplitude and is taken
to be unity in this study. U is the inter-particle potential strength, and will be negative
throughout this paper, as we are studying an attractive system.

The Hamiltonian Equation (1) is a very common model for cold atomic Fermi systems
and can be engineered experimentally. In fact, it is now possible to cool down to degeneracy
collections of lithium and potassium atoms, tune their interactions, and embed them
in external potentials. In particular, for a cold gas in a trap, Equation (1) provides a
regularization of the true Hamiltonian, which can be recovered by allowing the lattice
parameter to tend to zero. On the other hand, it is possible to generate an optical lattice
using standing waves of laser light. In this case, the lattice in Equation (1) models the
physical lattice. We comment that, while in the experimental system there is an external
trap, implemented with a pancake potential, its role is to fix the particle density over
regions of space that are large on an atomic scale. Since the external trap potential does not
vary significantly over atomic scale distances, in theoretical approaches it is common not to
include the trap explicitly. Rather, we fix a value of the particle density, which corresponds
to a particular region in the experimental system.

The main focus of our paper is the density–density and spin–spin imaginary time
intermediate scattering functions, defined as:

Fnn(q, τ) =

〈
Ψ0

∣∣∣∣eτĤ n̂q e−τĤ n̂−q

∣∣∣∣Ψ0

〉
, Fss(q, τ) =

〈
Ψ0

∣∣∣∣eτĤ n̂s
q e−τĤ n̂s

−q

∣∣∣∣Ψ0

〉
, (2)

where |Ψ0〉 is the ground state of (1). Furthermore, n̂q is the Fourier transform of the total
density operator n̂r = ĉ†

r,↑ ĉr,↑+ ĉ†
r,↓ ĉr,↓, while n̂s

q is the Fourier transform of the spin–density
n̂s

r =
1
2 (ĉ

†
r,↑ ĉr,↑ − ĉ†

r,↓ ĉr,↓).
The imaginary time intermediate scattering functions are not measurable. However,

the functions (2) are connected to the dynamical structure factors through the relations:

Fnn(q, τ) =
∫ +∞

0
dω e−τωSnn(q, ω), Fss(q, τ) =

∫ +∞

0
dω e−τωSss(q, ω). (3)

Dynamical structure factors can be readily measured in scattering experiments and
are the crucial tools to detect both single particles and collective excitations, such as the
Goldstone and Higgs modes. Double photon Bragg scattering is the method of choice for
the direct measurement of spin and density dynamical structure factors in cold atoms [20]
and is analogous to neutron scattering experiments in condensed matter physics.

We focus on the imaginary time correlations, Equation (2), because they are directly
accessible from QMC, and we recently computed them [16]. In this work, we will treat our



Atoms 2021, 9, 88 4 of 13

QMC data as the “exact solution” [15] for benchmark purposes in our comparison with
GRPA. Crucially, for the spin-balanced attractive Hubbard model, the QMC method does
not suffer from the infamous sign problem [24,25], so we can make exact calculations of
the system’s physical properties. In this context, “exact” means that, for a given choice
of the number of particles and the number of lattice sites, we can always choose the
parameters of the quantum Monte Carlo run in such a way that the systematic error is
smaller than the statistical uncertainty for a given computation time. For readers who
are interested in reproducing our QMC results, we refer them to [19], where are all the
details of the implementation are presented. In order to obtain the real-time results, that
is S(q, ω) from F(q, τ), an analytic continuation step is required that performs an inverse
Laplace transform. Unfortunately, this step severely affects the accuracy of the real-time
results. This is a major drawback of QMC methodologies, and the problem compounds
with the already high computational cost of QMC. GRPA provides an approximate but
computationally inexpensive route to the dynamical structure factors. It also gives us the
real-time results directly, eliminating the need for analytic continuation.

2.2. BCS, GRPA, and Linear Response

Here we sketch the GRPA method for computing the dynamical structure factors,
so that the interested reader can reproduce our results. Our procedure was modeled
after [12,14] and additional details are given in the supplemental materials. The central
objects of GRPA are the linear response functions, and we start with the linear response
theory formalism, which relies on a time-dependent Hamiltonian of the form:

Ĥ(t) = Ĥ + V̂(t), (4)

where Ĥ is the Hubbard Hamiltonian. V̂(t) is a very general form of the perturbation
coupled with the spin-resolved particle density nσ(r) = ĉ†

r,σ ĉr,σ and the pairing operator
∆̂(r) = ĉr,↓ ĉr,↑. It can be written as:

V̂(t) = ∑
r

(
h1(r, t) n̂↑(r) + h2(r, t) n̂↓(r) + h3(r, t) ∆̂(r) + h4(r, t) ∆̂†(r)

)
, (5)

where the sources hi(r, t) are arbitrary time-dependent scalar functions.
The exact calculation of χnn(q, ω) would require the knowledge of the ground state

|Ψ0〉 and the excited states |Ψn〉 of the unperturbed Hamiltonian in Equation (1). GRPA
faces the calculation of χnn(q, ω) by replacing Equation (4) with a Hamiltonian of the form:

Ĥ(t) ' ĤBCS + V̂e f f (t). (6)

In Equation (6), ĤBCS is the usual textbook BCS Hamiltonian, typically written in
momentum space as:

ĤBCS = ∑
k,σ

(ε(k)− µBCS) ĉ†
k,σ ĉk,σ +

U
V ∑

k

(
∆?

BCS ĉ−k,↓ ĉk,↑ + ∆BCS ĉ†
k,↑ ĉ

†
−k,↓

)
, (7)

where ε(k) = −2t ∑d
i=1 cos(ki) is the dispersion relation of the Hubbard model, while

the chemical potential µBCS and the pairing gap ∆BCS are determined by solving two
self-consistency conditions, namely the particle-number equation:

N = ∑
k

1− (ε(k)− µBCS)√
(ε(k)− µBCS)

2 + ∆2
BCS

 (8)
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and the gap equation:

1 = −1
2

U
V ∑

k

1√
(ε(k)− µBCS)

2 + ∆2
BCS

. (9)

We comment that Equation (7) can be derived directly from Equation (1) by transform-
ing into the momentum representation relying on the operators:

ĉ†
k,σ =

1√
V

∑
r

eik·r ĉ†
r,σ, (10)

We then construct:

ĉ−k,↓ ĉk,↑ = 〈ĉ−k,↓ ĉk,↑〉+ δĉ−k,↓ ĉk,↑ (11)

and neglect terms that are quadratic in the fluctuations. The Hamiltonian in Equation (7) is
the natural starting point of all mean-field treatments of Equation (1).

The effective perturbation V̂e f f (t) in Equation (6) is constructed as follows:

V̂e f f (t) = ∑
r

((
h1(r, t) + Uδ〈n̂↓(r, t)〉

)
n̂↑(r) +

(
h2(r, t) + Uδ〈n̂↑(r, t)〉

)
n̂↓(r)

+
(

h3(r, t) + Uδ〈∆̂†(r, t)〉
)

∆̂(r) +
(
h4(r, t) + Uδ〈∆̂(r, t)〉

)
∆̂†(r)

)
,

(12)

where δ〈n̂↑(r, t)〉, for example, is the change in the expectation value of the local density of
spin-up particles in a system which, starting from an equilibrium state which is the BCS
wave function, the ground state of Equation (7), is subject to the perturbation in Equation (5).
By writing the approximate Hamiltonian in Equation (6), we rely on the mean-field BCS
description of the ground state of the system but we allow the self-consistent mean-fields
to dynamically adjust to the external perturbation. In other words, at any time t we assume
the system is described by a “dynamical” BCS state, with time-dependent, self-consistent
average density and a pairing order parameter.

Finally, using Equation (6), we can find the GRPA response functions by computing
the BCS response functions for the more complicated perturbation V̂e f f (t). For example,
after switching to momentum space for simplicity, we will have:

δ〈n̂↑(q, ω)〉 = χ0
n̂↑ ,n̂↑(q, ω)

(
h1(q, ω) + Uδ〈n̂↓(q, ω)〉

)
+ χ0

n̂↑ ,n̂↓(q, ω)
(
h2(q, ω) + Uδ〈n̂↑(q, ω)〉

)
+ χ0

n̂↑ ,∆̂
(q, ω)

(
h3(q, ω) + Uδ〈∆̂†(q, ω)〉

)
+ χ0

n̂↑ ,∆̂†(q, ω)
(
h4(q, ω) + Uδ〈∆̂(q, ω)〉

)
.

(13)

The matrix:

χ0(q, ω) =


χ0

n̂↑ ,n̂↑
(q, ω) χ0

n̂↑ ,n̂↓
(q, ω) χ0

n̂↑ ,∆̂
(q, ω) χ0

n̂↑ ,∆̂†(q, ω)

χ0
n̂↓ ,n̂↑

(q, ω) χ0
n̂↓ ,n̂↓

(q, ω) χ0
n̂↓ ,∆̂

(q, ω) χ0
n̂↓ ,∆̂†(q, ω)

χ0
∆̂ ,n̂↑

(q, ω) χ0
∆̂ ,n̂↓

(q, ω) χ0
∆̂ ,∆̂

(q, ω) χ0
∆̂ ,∆̂†(q, ω)

χ0
∆̂† ,n̂↑

(q, ω) χ0
∆̂† ,n̂↓

(q, ω) χ0
∆̂† ,∆̂

(q, ω) χ0
∆̂† ,∆̂†(q, ω)

 (14)

can be readily computed with the general expression from linear response theory:

χ0
AB(q, ω) = lim

η→0+
∑
n

(
〈Ψ0|Â|Ψn〉〈Ψn|B̂|Ψ0〉
h̄ω− (En − E0) + iη

−
〈Ψ0|B̂|Ψn〉〈Ψn|Â|Ψ0〉
h̄ω + (En − E0) + iη

)
, (15)
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in the special case where |Ψn〉 are the eigenstates and En are the corresponding ground
state and excited state energies, for n ≥ 0, of ĤBCS. All the matrix elements are written
explicitly in the Supplemental Material.

We view Equation (13), together with similar expressions for δ〈n̂↓(q, ω)〉 and the
pairing fields, as a system of equations that allow us to build the GRPA response function,
defined through the usual relations:

δ〈n̂↑(q, ω)〉 = χGRPA
n̂↑ ,n̂↑ (q, ω) h1(q, ω) + χGRPA

n̂↑ ,n̂↓ (q, ω) h2(q, ω)+

χGRPA
n̂↑ ,∆̂

(q, ω) h3(q, ω) + χGRPA
n̂↑ ,∆̂† (q, ω) h4(q, ω).

(16)

The last step is to combine the elements to form the density–density and spin–spin
response functions as:

χGRPA
n n (K, ω) = χGRPA

n̂↑ ,n̂↑ (K, ω) + χGRPA
n̂↑ ,n̂↓ (K, ω) + χGRPA

n̂↓ ,n̂↑ (K, ω) + χGRPA
n̂↓ ,n̂↓ (K, ω)

χGRPA
s s (K, ω) =

1
4

[
χGRPA

n̂↑ ,n̂↑ (K, ω)− χGRPA
n̂↑ ,n̂↓ (K, ω)− χGRPA

n̂↓ ,n̂↑ (K, ω) + χGRPA
n̂↓ ,n̂↓ (K, ω)

]
,

(17)

Finally, we invoke the fluctuation–dissipation relation:

Snn(q, ω) = lim
η→0+

[
− h̄

πn
=m χnn(q, ω + iη)

]
, (18)

where n is the average density, and is used to connect the density–density dynamical
structure factor Snn(q, ω) with the linear response function χGRPA

nn (q, ω) and similarly for
the spin. Once the dynamical structure factors are computed, Equation (3) can be used to
generate the results to be compared with QMC.

3. Results and Discussion
3.1. Comparison of GRPA and AFQMC

We studied a cold attractive Fermi gas on a 2D square lattice, with lattice site number
Ns = 144 and particle number Np = 144. The system was spin-balanced, with equal
numbers of spin up and spin down particles: N↑ = N↓. The physical potential used
was U = −4.0. In Figure 1, we give our results for the density–density imaginary time
intermediate scattering function Fnn(q, τ) (main sub-panel) and corresponding density–
density dynamical structure factor Snn(q, ω) (inset), for the momenta: q = (0, 1) (a),
q = (0, 6) (b), q = (4, 6) (c), q = (1, 1) (d), in units of 2π

L . Blue indicates AFQMC data, and
orange indicates GRPA data. In Figure 2, we give our results for the spin–spin imaginary
time intermediate scattering function Fss(q, τ) (main sub-panel), and corresponding spin–
spin dynamical structure factor Sss(q, ω) (inset), for the same momenta, as in Figure 1.
Green indicates AFQMC data and red indicates GRPA data. We remind the reader that the
AFQMC results in the insets are approximate, due to the analytic continuation step required
to obtain the real-time correlations. Results for AFQMC and GRPA are plotted together.

For the density in Figure 1, in the insets we are pleased to note the close agreement of
AFQMC and GRPA for the position of the Goldstone collective mode. Additionally, we
draw the reader’s attention to the AFQMC results in the insets, which seem to indicate
the presences of another collective mode, perhaps the Higgs, which should exist in a
supersolid [26–30]. Indeed, evidence of a second collective mode has been found in other
studies of the supersolid phase [31–36]. GRPA appears to detect something in roughly
the same region as this other unknown mode, but the agreement is significantly poorer
than for the Goldstone mode. For the spin, in Figure 2, the agreement between AFQMC
and GRPA about the position of the mode appears to be slightly poorer than in Figure 1.
GRPA systematically overestimates the energy of the mode. This can be understood by
considering that the spin excitations are gapped, since we need to break a pair to excite
a spin density wave, and it is well known that BCS theory, which GRPA is based on,
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overestimates the pairing gap. In the main sub-panels, in both Figures 1 and 2, we note
GRPA appears to closely reproduce the results of AFQMC, but with an approximately
constant shift in the value of the imaginary time intermediate scattering functions. This
difference depends on which momenta is used.
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Figure 1. The density–density imaginary time intermediate scattering function Fnn(q, τ) (main
sub-panel), and corresponding density–density dynamical structure factor Snn(q, ω) (inset), for the
momenta: q = (0, 1) (a), q = (0, 6) (b), q = (4, 6) (c), q = (1, 1) (d), in units of 2π

L . Blue indicates
AFQMC data and orange indicates GRPA data.
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Figure 2. The spin–spin imaginary time intermediate scattering function Fss(q, τ) (main sub-panel),
and corresponding spin–spin dynamical structure factor Sss(q, ω) (inset), for the momenta: q = (0, 1)
(a), q = (0, 6) (b), q = (4, 6) (c), q = (1, 1) (d), in units of 2π

L . Green indicates AFQMC data and red
indicates GRPA data.
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The momentum dependent disagreement between AFQMC and GRPA in the inter-
mediate scattering functions raises the possibility of using the AFQMC results to find a
renormalized, effective potential Ue f f for GRPA, that would minimize the disagreement
between AFQMC and GRPA for a given momentum. We consider this possibility in the
following section.

3.2. Optimizing GRPA Using a Renormalized Effect Potential

Our idea was to find that value of Ue f f used in GRPA that minimized the disagreement
with the AFQMC imaginary time results, for a given momentum. To accomplish this, we
used a χ2 test to find the value of Ue f f that minimized this test. In other words, we sought
to find the value of Ue f f that minimized the expression:

χ2(Ue f f ) =
N

∑
i=0

[
FGRPA

nn (q, τi; Ue f f )− FAFQMC
nn (q, τi)

]2

, (19)

where N is the number of imaginary time instants used, the physical potential is U = −4.0,
and the methodology used is indicated with a superscript.

Our results are given in Figure 3. We performed this calculation for the same momenta
used to generate Figure 1. This yielded a set of effective potential values for each momenta
that were then used in a second round of GRPA calculations. We present these results and
our interpretations in the next section.

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Ueff

10 3

10 2

10 1

100

2 nn
(U

ef
f)

q = (0, 1)
q = (0, 6)
q = (4, 6)
q = (1, 1)

Figure 3. X2
nn(Ue f f ), the chi-squared factor comparing the AFQMC and GRPA results for the density–

density intermediate scattering function, expressed as a function of the effective potential Ue f f .
Results are given for the momenta used in Figure 1.

3.3. Accuracy of GRPA for Static and Dynamic Properties

We now present a comparison between the real-time and imaginary-time results using
the physical potential and the effective potential. The particle and lattice site numbers were
the same as those used to generate Figures 1 and 2. In Figure 4, we give results for the
momenta value q = (0, 2). In the top two sub-panels, we give results for Fnn(q, τ) and
Snn(q, ω), computed with AFQMC and GRPA, where the physical potential U = −4.0
was used in both methodologies. In the bottom two sub-panels, we give results for the
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same functions, but computed with AFQMC using the physical potential U = −4.0, and
with GRPA using the effective potential Ue f f = −2.261. In Figure 5, we followed the same
procedure for the momenta value q = (3, 3), using an effective potential Ue f f = −2.695.
We note that by minimizing the disagreement between the imaginary time correlation
functions FQMC

nn (q, τ) and FGRPA
nn (q, τ) using an effective potential, we appear to obtain

poorer results for the real-time correlation functions SQMC
nn (q, ω) and SGRPA

nn (q, ω). In
Figures 4a,c and 5a,c, blue indicates AFQMC data and orange indicates GRPA data. In
Figures 4b,d and 5b,d, black indicates AFQMC data, and violet indicates GRPA data.

0.0 0.4 0.8 1.2 1.6 2.0
0.06
0.12
0.18
0.24
0.30
0.36

F n
n(

q,
)

(a)  q = (0, 2), U = 4.0
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(b)  q = (0, 2), U = 4.0
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Figure 4. For momenta q = (0, 2), in units of 2π
L : The density–density, imaginary-time intermediate

scattering function Fnn(q, τ) for the physical potential U = −4.0 (a). The density–density dynamical
structure factor Snn(q, ω) for the physical potential U = −4.0 (b). The density–density, imaginary-
time intermediate scattering function Fnn(q, τ) for the renormalized, effective potential Ue f f =

−2.261 (c). The density–density dynamical structure factor Snn(q, ω) for the renormalized, effective
potential Ue f f = −2.261 (d). In the left sub-panels, blue indicates AFQMC data and orange indicates
GRPA data. In the right sub-panels, black indicates AFQMC data and violet indicates GRPA data.
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Figure 5. Cont.
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Figure 5. For momenta q = (3, 3), in units of 2π
L : The density–density, imaginary-time intermediate

scattering function Fnn(q, τ) for the physical potential U = −4.0 (a). The density–density dynamical
structure factor Snn(q, ω) for the physical potential U = −4.0 (b). The density–density, imaginary
time intermediate scattering function Fnn(q, τ) for the renormalized, effective potential Ue f f =

−2.695 (c). The density–density dynamical structure factor Snn(q, ω) for the renormalized, effective
potential Ue f f = −2.695 (d). In the left sub-panels, blue indicates AFQMC data and orange indicates
GRPA data. In the right sub-panels, black indicates AFQMC data and violet indicates GRPA data.

We interpret these results using some relations from the theory of correlation functions.
We start with:

G(r, τ) =
1

2π

∫
F(q, τ) eiq·r dq, (20)

where F(q, τ) is the imaginary time, intermediate scattering function. G(r, τ) is the
imaginary-time van Hove function, defined as:

G(r, τ) =
〈
Ψ0 |eτĤ n̂r e−τĤ n̂0|Ψ0

〉
, (21)

where n̂r is the space density operator at position r and imaginary time τ = 0 and n̂0 is the
space density operator at position r = 0 and imaginary time τ = 0. The van Hove function
is the spacial dynamical density autocorrelation function, as the intermediate scattering
function is the momentum dynamical density autocorrelation function. Importantly, the
van Hove function satisfies the relation [37]:

G(r, 0) = δ(r) + ρ g(r), (22)

where g(r) is the radial distribution function, and ρ =
Np
Ns

is the number density of
the system.

Using Equations (20) and (22), we see that Figures 4a and 5a indicate that when we
use the physical potential U = −4.0 in GRPA, there is a disagreement between AFQMC
and GRPA in the static correlation functions, in this case Gnn(r, 0) which through (22), is
proportional to gnn(r), the density–density radial distribution function. When we use
an effective potential Ue f f that minimizes the disagreement between FQMC

nn (q, τ) and
FGRPA

nn (q, τ), we obtain better agreement for the static properties of the system but poorer
agreement for the dynamical properties. Consequently, when one is only interested in
finding static properties, it appears that an effective potential Ue f f , obtained through some
optimization procedure using a comparison with exact results, should be employed. When
dynamical properties are needed, the physical potential U should be used.

We comment that an alternative method for finding an effective value of the interaction
would be to find an effective potential that minimized the difference between the pairing
gap calculated with AFQMC (∆ = 0.73t) [16] and the value calculated with GRPA. At
the BCS level, we found that Ue f f = −2.75 accomplishes this. This value is in reasonable
agreement with the values we infer from Figure 3, in particular for the cases with momenta
q = (0, 6) and q = (4, 6).
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4. Conclusions and Future Directions

We studied a 2D, attractive, cold Fermi gas, modeled with a Hubbard Hamiltonian.
We compared the AFQMC and GRPA results for the imaginary time density and spin
correlation functions. With the physical potential used in AFQMC, GRPA gave good results
for the peak of the Goldstone mode collective excitation but gave poorer results for the
static properties of the system. We outlined a procedure for systematically improving the
results of GRPA for the static properties of our system using an effective potential. Though
this procedure may improve the quality of the results for the static properties, it usually
leads to poorer results for the dynamical properties. Our results indicate that for GRPA
the physical potential should be used to obtain the dynamical correlations. If the static
properties are desired, an effective potential can be used in GRPA to obtain better results
for the static correlations.

Going forward, we plan to implement a more sophisticated mean-field scheme for
approximating the states and generating the response functions for cold Fermi gases. One
promising approach is to replace the BCS Hamiltonian in Equation (7) with a Hartree-Fock-
Bogoliubov (HFB) Hamiltonian. The implementation of this methodology is considerably
more involved because of the greater complexity of the HFB formalism. We are also
interested in comparing AFQMC and GRPA results for cold Fermi gases in the dilute regime,
where Np < Ns, and in the spin-imbalanced regime, where N↑ 6= N↓. Computational
experiments and theoretical studies will allow us to assess the stability of the supersolid
phase outside of the narrow half-filling, spin balanced regime.
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