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Abstract: Disorder is everywhere in nature and it has a fundamental impact on the behavior of many
quantum systems. The presence of a small amount of disorder, in fact, can dramatically change the
coherence and transport properties of a system. Despite the growing interest in this topic, a complete
understanding of the issue is still missing. An open question, for example, is the description of the
interplay of disorder and interactions, which has been predicted to give rise to exotic states of matter
such as quantum glasses or many-body localization. In this review, we will present an overview of
experimental observations with disordered quantum gases, focused on one-dimensional bosons, and
we will connect them with theoretical predictions.

Keywords: Bose–Einstein condensates; cold gases in optical lattices; quantum phase transitions;
disordered systems

1. Introduction

Ultracold atoms platforms are able to mimic the physics of other quantum many-body
systems [1–3]. Thanks to the high degree of tunability of many important parameters,
they have been used to study the low-temperature quantum phases and the transport
properties of neutral particles with short-range interaction [4,5]. Their strong versatility
allows researchers to use these platforms to investigate the physics of disorder [6–8],
mainly using two different kinds of optical disordered potentials: laser speckles [9–20]
and quasiperiodic lattices [21–34], both allowing for the first observation of Anderson
localization in matter-waves [15,24]. Although the present review is devoted to one-
dimensional (1D) bosons, it is important to mention that the possibility to control the
dimensionality of the systems allowed experimentalists to also study 2D diffusion [35] and
coherence [36], coherent backscattering [37,38], and 3D Anderson localization with both
fermions [39] and bosons [40,41].

Despite many years of investigation and the many efforts that have been undertaken,
both from the experimental and theoretical point of view, a clear and complete charac-
terization of the effect of disorder on transport and coherence of a quantum system is
still missing. An open issue, for example, is the description of the non-trivial interplay
between disorder and interactions, which has been predicted to give rise to exotic states
of matter such as quantum glasses [42,43] or many-body localization [44,45]. In particu-
lar, a transition between a superfluid phase for weakly repulsive bosons and a localized
Bose glass phase for strong repulsion has been predicted both for one-dimensional [42]
and higher-dimensional [43] bosons. However, the first experimental attempts to insert
weak interactions in Anderson-localized disordered systems have clearly shown that the
interaction energy can compete with disorder and induce delocalization by restoring coher-
ence [25,26] or transport [27–30]. The quest for the effect of strong interactions requires to
freeze the radial degrees of freedom, for example, by reducing the dimensionality of the
system. One-dimensional bosons are the prototype disordered systems, with an established
theoretical framework, useful to answer to some of the fundamental questions about the
quantum phases and the transport properties of low-temperature matter.
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In this review, we will focus on the experimental observations obtained with ultracold
quantum gases [21–23,31–34]. In particular, after a brief survey of the theoretical back-
ground of 1D disordered systems, we review the experimental results achieved to detect
and study disordered interacting quantum phases, analyzing their signature on coherence,
transport, and energy excitation properties.

2. Theoretical Background of 1D Disordered Systems

Let us consider a disordered Bose gas in a discrete 1D space, whose space dependence
is described by the site index j. This system is described by a modified Bose–Hubbard
Hamiltonian:

H = −J ∑
j
(b†

j+1bj + b†
j bj+1) +

U
2 ∑

j
nj(nj − 1) + ∑

j
(εj + VHO

j )nj (1)

where bj denotes the boson annihilation operator at site j, while the site occupation quan-
tified by the usual operator nj = b†

j bj. The first two terms on the right-hand side of
Equation (1) represent the usual Bose–Hubbard interactions, corresponding to site-to-site
tunneling with a rate J and the on-site repulsion (U > 0). The third term in Equation (1)
accounts for the presence of both the harmonic trap VHO

j and the disorder potential εj.
The disorder potential εj can be generated in several ways, resulting in a specific

spectral distribution. Both theoretically and experimentally, two cases are the most rele-
vant: (a) random distribution of energies εj ∈ [−∆, ∆] and (b) quasiperiodic distribution
εj = ∆ cos(2π jσ) with σ being an irrational number [46]. The latter can be experimentally
generated by superimposing to a main periodic potential an auxiliary lattice one with
incommensurate wavelength (λ2 = λ1/σ). Hence, the three main energy scales charac-
terizing the Hamiltonian, i.e., the tunneling energy J, the quasidisorder strength ∆, and
the interaction energy U, can be controlled by tuning the depth of the main lattice S1, the
depth of the secondary one S2 (being ∆ = σ2S2/2), or the interparticle scattering length
on a Feshbach resonance [47], respectively. The simultaneous presence of disorder and
commensurate potential generates a competition between the three possible quantum
phases, namely the superfluid (SF) phase, the Mott insulator (MI), which occurs at large
interactions for commensurate fillings, and the so-called Bose glass (BG) phase, which is
induced by disorder. Figure 1 shows the zero-temperature (T = 0) phase diagram of 1D
bosons in the quasiperiodic lattice as a function of the ratios ∆/J and U/J, obtained by
numerically solving the Bose–Hubbard problem [48].

! !

0 2 4 6 8 10 0 2 4 6 8 10
0

2

4

  6

  8

10

0

2

4

  6

  8

10

! = U/2

a) b)

Figure 1. Phase diagrams for a quasiperiodic Bose–Hubbard model for densities n = 1 (a) and
n = 0.5 (b). Figure adapted from Reference [48].

We must distinguish between two physically different situations depending on the
average boson occupation number n = N/M, where N is the number of bosons and M is
the length of the 1D system. For incommensurate fillings (n < 1), the system is similar to
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the continuum case [49], with a SF phase replaced by a BG phase by increasing the disorder
strength ∆. On the other hand, for unit filling (n = 1), the ground state is a MI with a gap.
Adding disorder, such a gapped phase persists up to the value ∆ = U/2 (dashed line)
where the excitation spectrum becomes gapless and the system first becomes a SF and then
a BG.

One-dimensional disordered bosonic systems, as described by Equation (1), provide
an ideal platform for testing and developing precise theoretical methods for studying
many-body physics, which yields useful predictions about the position of quantum phase
transitions and the indications on the most appropriate observables for their detection. In
the case of pseudorandom quasiperiodic disorder, phase diagrams have been obtained by
exact numerical results on the Bose–Hubbard model in small systems [50,51]. However,
they suffer a limited accuracy in locating the points of phase transition. More detailed
results have been found by means of quantum Monte Carlo methods [52] and the density-
matrix renormalization group (DMRG) algorithm [48]. These theoretical works represent
the groundwork for the experimental detection of disordered quantum phases, and they
also point out the experimental tools to detect the quantum phase transitions of these
systems. In particular, beside the compressibility, Reference [48] points out to the measure-
ment of coherence of the quantum gas, which is detected by time-of-flight imaging from
the width of the momentum distribution (see for results Section 3.1). Another interesting
tool for detecting phase transition is the observation of excitation spectrum (see Section 3.3).
The excitation spectrum of strongly repulsive 1D bosons in a disordered or quasiperiodic
optical lattice has been computed [53]. The predicted excitation spectrum shows a peculiar
behavior with two excitation peaks, one as expected around the repulsion energy scale U
with width ∼ 2∆ and the other one centered at ∆ with the same width. The prediction of
the presence of an absorption feature in the low-frequency band appears as a consequence
of the formation of a Bose glass at incommensurate filling, thus making the excitation
spectrum measurement an important tool of investigation. Experimentally, it can be easily
assessed by coherent lattice modulation spectroscopy [21,54].

3. Experimental Results

The experimental realization of a 1D bosonic system with ultracold gases is schemati-
cally shown in Figure 2. Starting from a 3D Bose–Einstein condensate (BEC), the atoms
are typically loaded in a strong 2D optical lattice [55]. This traps the atoms to an array
of tightly confining 1D potential tubes, thus generating a set of many quasi-1D systems.
Along the 1D tubes, another optical lattice is employed to produce a set of disordered
quasi-1D systems, which are described by the disordered Bose–Hubbard Hamiltonian
in Equation (1). Here, the disorder is introduced either with a secondary optical lattice,
generating the quasiperiodic disordered lattice [21], or by a second atomic species as system
impurity [31].

A systematic experimental study of the many-body properties of such a system can
be performed by momentum distribution or by excitation energy measurements. The
coherence (Section 3.1) and transport (Section 3.2) properties of the tubes can be studied by
measuring the momentum distribution of the system, achieved through absorption imaging
after a free expansion. These measurements correspond to an average over all the tubes of
the systems, and thus over its different densities. In the case of transport measurements, to
induce a dynamics on the atoms along the tubes, the system is brought out of equilibrium by
a sudden change of the harmonic trap. The excitation spectra of the system are obtained by
modulating the amplitude of the main lattice depth. The amount of energy absorbed by the
system can be extracted by temperature measurements of the 3D BEC, which is recreated
after an adiabatic switch-off of the 1D confinement [33]. Alternatively, the modulation
heating effect can be detected by phase coherence measurements. Phase coherence is
restored by reducing the depths of the trapping lattices to less than five recoil energies [56],
while phase interference is imaged after a time-of-flight. Typically, the amount of heating



Atoms 2021, 9, 112 4 of 14

can be quantified either by the visibility V of the interference peaks [31], which is defined
analogously to the optical case as a function of the atomic density ρ

V =
ρmax − ρmin
ρmax + ρmin

,

or by the width of the central peak [21,22] (see Section 3.3).

Figure 2. Schematic drawing of the typical experimental realization of a 1D disordered bosonic
system. Two strong optical lattices are used to provide a tight confinement and form an array of 1D
potential tubes. The axial quasiperiodic potential is formed by superimposing two incommensurate
optical lattices of wavelengths λ1 and λ2. The harmonic trap results from the intensity gradient of
the Gaussian laser beams.

3.1. Coherence

An overview of the nature of a disordered interacting system has been provided by
measurements of the momentum distribution P(k) in an array of 1D tubes of 39K atoms
in a quasiperiodic lattice. An experimental measurement of the coherence of the system
is shown in Figure 3, where the width Γ of P(k) is plotted as function of the interaction
strength U and the disorder strength ∆. At small ∆ and U, the observation of a narrow
P(k) is a signature of a coherent regime (blue zone). For increasing values of the two
energy scales, the coherent regime is progressively replaced by a more incoherent regime
(green, yellow, and red zones). The observed increase of Γ can be attributed to either the
emergence of an insulating phase or to an increase in the temperature. The latter effect on
Γ has been experimentally excluded by entropy measurements [33]. In fact, the measured
entropy does not show any increase with increasing disorder strength. This suggests that
the increased Γ is due to the emergence of an insulating phase, as predicted for the T = 0
temperature case. Despite the finite T and the inhomogeneity of the experimental tubes,
the diagram behavior resembles that of the T = 0 theoretical predictions for homogeneous
systems, where the existence of a BG phase is predicted [42,43,48,52].



Atoms 2021, 9, 112 5 of 14

1 10
0

5

10

15

20

25

AI

+
BG

SF MI

 U/J

(
k 1
)

0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52

 

Δ
/J  

 

BG

SF

Figure 3. Measured rms width Γ of the momentum distribution P(k) of arrays of quasi-1D samples
of 39K atoms in the U − ∆ diagram. Γ is reported in units of k1, where k1 = 2π/λ1 is the main lattice
wavevector. The dashed line indicates the upper bound for the existence of the MI, according with
T = 0 DMRG calculations. Left panels show the measured momentum distribution (solid black line)
for two points of the diagram in the SF (bottom) and BG (top) regions, compared with the T = 0
DMRG calculations (dashed-dotted blue line). Figure adapted from Reference [33].

Comparing the experimental diagram with the theory in Figure 1, we see that for
increasing interaction along the ∆ = 0 line, Γ increases due to the progressive formation
of an incoherent MI. For increasing disorder along the U = 0 line, the system forms an
Anderson insulator for ∆ > 2J [57]. For weak disorder and interaction, the system is in a SF
regime, surrounded by a re-entrant insulating regime extending from small to large U. In
the weakly interacting regime, a crossover from the incoherent disorder-induced insulator
toward more coherent regimes is observed when the interaction energy nU & ∆ − 2J
(see dashed-dotted line in Figure 3). In the strongly interacting regime, disorder and
interactions cooperate to localize the system and a second crossover towards less coherent
regimes occurs. The interaction induced MI, which for a homogeneous system with n = 1
is expected to survive in the disordered potentials only for moderate disorder ∆ < U/2,
is expected to exist in the experimental inhomogeneous one only below the dashed black
line shown in Figure 3. In this region, as an effect of the inhomogeneous density of the
experimental system, for ∆ < 2J, the MI coexists with a SF fraction, which is localized by
the disorder in a BG phase for ∆ > 2J.

For a complete comparison of the experimental phase diagram with theoretical pre-
dictions, it would be necessary to include both finite temperature and inhomogeneity
of the experimental system into numerical simulations. This would result in costly nu-
merical calculations. If only system inhomogeneity is included, zero-temperature DMRG
calculations (left panels in Figure 3) find a diagram with a general behavior close to the
experimental one but with a SF Γ much smaller than that observed in the experiments [33].
To include the finite temperature of the experimental system, two different DMRG schemes
have been developed: (i) a direct simulation of the thermal density matrix in the form
of a matrix-product purification and (ii) a less costly phenomenological method based
on DMRG ground-state data that are extended to finite temperatures by introducing an
effective thermal correlation length [34]. These simulations have shown that, while in the
weakly interacting regime thermal effects can be rather strong, they are significantly less
relevant in the strongly interacting one. There, the scaling of the correlation length with
T shows a weak dependence below a crossover temperature, indicating that the strongly
correlated quantum phases predicted by the T = 0 theory can persist at finite temperatures.

3.2. Transport

The insulating nature of the incoherent region has been confirmed by transport measure-
ments. The mobility can be measured by observing the system evolution after an impulse
has been applied to it. In Figure 4a,b, the results from the first experiments with 87Rb atoms
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are shown. The clean case (∆ = 0) is compared with two different disordered configurations:
atomic impurities (Figure 4a) and quasiperiodic potential (Figure 4b). When a variable im-
pulse is applied to the system, the velocity acquired by the atoms can be fitted with a linear
function whose slope defines the mobility coefficient. In the absence of disorder, the mobil-
ity coefficient decreases with the increasing in the potential lattice depth S1 and reaches
zero mobility when entering in the MI region. When disorder is present, the behavior is
analogous, suggesting the system is entering in an insulating regime. Nevertheless, while
with impurities the transition to the zero-mobility was shifted towards smaller values of S1,
in the case of the quasiperiodic potential (with constant S2), no shift of the critical depth is
measured. Such different behavior could be due to the fact that increasing S1 towards the
insulating regime, the disorder ∆/J is decreasing, thus pushing the critical interaction to
enter the BG regime to larger values of U/J, where the BG phase coexists with the MI one.
This problem has been bypassed in 39K experiments by using Feshbach resonances to tune
the interaction independently from the value of S1 [58,59].
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Figure 4. (a,b) Mobility coefficient of 87Rb after impulse excitation versus lattice depth S1 without disorder (black circles)
compared with different disorder configurations: (a) atomic impurities ( fimp = 0.5, red squares) and (b) an incommensurate
lattice (S2 = 3, green diamonds). The lattice depths are defined in units of recoil energies, Si = Vi/Eri with i = 1, 2. Figure
adapted from Reference [31]. (c,d) Transport after trap excitation of an array of quasi-1D samples of weakly interacting 39K
atoms: (c) critical momentum pc for weak interaction (U/J = 1.26) as a function of the disorder strength and (d) critical
∆c/J at the fluid–insulator transition in the disorder-interaction plane, extracted by several piecewise fits of pc as a function
of ∆ for different values of fixed U (solid line in panel (c)). In the inset of panel c, the time evolution of δp, from which pc

has been extracted (stars), is shown for three values of ∆: ∆ = 0 (red circles), ∆ = 3.6J (purple triangles), and ∆ = 10J (blue
squared). Figure adapted from Reference [32].

Figure 4c,d shows momentum dependent transport measurements in the weakly
interacting regime. The experimental protocol consists of tracking the time evolution of the
momentum δp acquired by the system for different values of the disorder strength ∆ and the
interaction energy U, tuned via Feshbach resonance. Typical datasets of such measurements
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are plotted in the inset of Figure 4c, where ∆ is different for each dataset, while U is kept
constant. Here, we can observe that the system explores a sharp transition from a weakly
dissipative regime (at small δp), well fitted with a damped oscillation function (solid lines),
to a strongly unstable one (at large δp). The critical momentum pc separating the two
regimes has been identified as the momentum value, where the experimental data deviate
from the fitting curve used in the first regime (stars in the inset of Figure 4c). The measured
critical momentum pc at each ∆, similarly to the previously described mobility coefficient,
linearly decreases until it reaches a plateau value, corresponding to the insulating regime
of the system. With a piecewise fit of pc, one can extract the critical disorder strength ∆c
to enter in the insulating regime at fixed interaction energy U (Figure 4c). Repeating the
measurements for different interactions, it has been observed that the critical disorder to
enter the insulating regime increases with U/J (Figure 4d), at least for weak interaction. By
employing the vanishing of pc for the observed instability the fluid–insulator transition
driven by disorder has been located, across the interaction-disorder plane in the weakly
interacting regime. In fact, while the experiments with 87Rb atoms are limited to the
strongly interacting regime, the momentum-dependent measurements with 39K samples
allow researchers to investigate the weakly interacting one.

In order to confirm the insulating nature of the observed incoherent regimes in the full
diagram of Figure 3, the momentum δp acquired by the 39K system after a fixed time from
its excitation has been measured (Figure 5). This effective mobility is shown in Figure 5a
for the clean case and for two fixed values of the disorder strength. With no disorder and
small U the system is conductive, while the mobility decreases when approaching the MI
region. With finite disorder, instead, the system is insulating for both very weak and strong
interactions, while a finite mobility can be recovered for moderate values of U. These
results indicate that the incoherent regimes at both weak and strong U are also insulating,
thus confirming the re-entrant behavior of the insulating regime observed in the coherence
diagram. An additional measurement performed at a higher temperature indicates that,
as expected by theory [44], the mobility for intermediate disorder strength is essentially
T-independent in the explored range kBT = (3.1–4.5)J (Figure 5b).
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Figure 5. Effective mobility as a function of disorder and interactions. (a) Momentum δp acquired
by the system after a fixed evolving time t = 0.9 ms in the tilted potential for three different disorder
strengths, ∆ = 0 (black triangles), ∆ = 6.2J (blue squares), and ∆ = 8.8J (orange circles). (b) The
∆ = 6.2J measurements are acquired for two temperatures of the SF component, kBT = 3.1(4)J (full
blue) and kBT = 4.5(7)J (empty magenta). Figure adapted from Reference [33].

3.3. Excitation Spectra

To probe the nature of the insulating phases, it is necessary to investigate the excita-
tion properties of the system. This can be undertaken by performing lattice modulation
spectroscopy, i.e., by measuring the energy absorbed by the system after a sinusoidal
amplitude modulation of the main lattice at fixed frequency ν. While the MI is known to
be gapped, the BG phase is predicted to be a gapless insulator. First experiments with 87Rb
observed the broadening of the typical MI spectrum (Figure 6), with both quasiperiodic
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potentials [21,31] and localized impurity atoms [31]. Despite showing signatures of BG
formation, they do not permit to distinguish a specific signature of the BG spectrum due
to the strong interaction (U > 50J) and the strong disorder (∆ > 50J) regime. Moreover,
noise correlation spectroscopy allowed experimentalists to monitor the destruction of the
MI ordered structure in the presence of an additional secondary lattice potential (Figure
6g), but not to highlight a specific feature due to the BG phase.
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Figure 6. Excitation spectra (a–f) and noise correlations spectroscopy (g) of arrays of quasi-1D samples of 87Rb atoms.
(a–c) Spectra in a quasiperiodic potential for a depth S1 = 25 of the main lattice and increasing depths of the secondary
lattice: (a) S2 = 0 , (b) S2 = 0.2 , and (c) S2 = 0.5. Here, the spectra have been quantified by measuring the Gaussian
width of the central peak of the momentum distribution of atoms released from the lattices with reduced intensity (S1 = 5,
S2 = 0). Figure adapted from Reference [22]. (d–f) Visibility of excitation gap for different disorder configurations: (d)
in the absence of disorder for S1 = 9 and S1 = 14 (open and filled black circles), (e) for S1 = 14 with atomic impurity
fractions fimp = 0.1 (open purple squares) and fimp = 0.5 (filled red squares), and (f) for S1 = 14, with no impurities and
an incommensurate lattice of depth S2 = 1 (orange triangles). Here, the spectra have been quantified by measuring the
interference peak visibility in the momentum distribution of atoms released from the lattice with reduced intensity (S1 = 4,
S2 = 0) [60]. Figure adapted from Reference [31]. (g) Noise correlation spectroscopy in a quasiperiodic potential: the ratio
between the height of the k2 and k1 correlation peaks as a function of S2. Figure adapted from Reference [23]. The lattice
depths are defined in units of recoil energies, Si = Vi/Eri with i = 1, 2.

Experiments with 39K permit to explore the excitation spectrum in the full range of
interaction and disorder diagram and to find regions where it is possible to distinguish
the gapless spectrum of the BG from the gapped one of the MI. In these experiments, the
absorbed energy has been quantified by measuring the temperature of the BEC after the
adiabatic switch-off of the 1D confinement. Depending on the amount of acquired energy,
the time-of-flight atomic distribution can be fitted either by a two-component function
(a Thomas–Fermi profile plus a Gaussian distribution) or by a Gaussian function. In the
former case, the heating is related to the BEC fraction; in the latter, it is related to the width
σ of the Gaussian distribution. Let us start from the strongly interacting regime, where,
in the presence of moderate disorder, the BG phase should coexist with the MI (Figure
7). In the clean case, the spectrum is characterized by the double peak shape typical of
the trapped MI, with a first peak centered at hν = U due to excitation between sites in the
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MI domains with the same filling. In addition, a second peak is centered at hν = 2U due
to excitation between sites in the MI domains with different occupations. Adding a finite
disorder, the spectrum shows a clear change. First, there is a broadening of the MI peaks, as
already observed with 87Rb experiments at strong disorder. Second, at low frequencies, it
appears an extra peak filling the Mott gap, centered around hν = ∆, which can be ascribed
to the regions with incommensurate filling, i.e., to the BG phase.
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Figure 7. Excitation spectra of arrays of quasi-1D samples of 39K atoms with strong interactions. (a–c) Experimental spectra
for U = 26J and ∆ = 0 (a), ∆ = 6.5J (b), and ∆ = 9.5J (c). The spectra have been quantified by measuring the relative
variation of the BEC fraction with respect to the unexcited value (ν = 0). The blue arrows are at hν = ∆, the dashed-dotted
line in (a) is at hν = U, and the continuous lines are fits with multiple Gaussians. Figure adapted from Reference [33].

The agreement between BG theory and experiment is best understood once the MI
background is subtracted from the experimental data. Figure 8 shows a zoom of the
excitation spectra around the disorder strength energy ∆ after the Gaussian background of
the MI peak has been subtracted, and the resulting peak response has been normalized to
unity. We can see that the experimental spectra of the BG are reasonably well reproduced
by theory calculations, where a fermionized-boson model has been used [53,61].
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Figure 8. Excitation spectrum of the strongly interacting BG. The experimental data (black circles)
for the low-frequency part of the spectra in Figure 7 are compared with theory (red solid line) for
two disorder strengths: (a) ∆ = 6.5J and (b) ∆ = 9.5J. The grey region shows the effect of a 20%
uncertainty on ∆. The red arrows are at hν = ∆. Figure adapted from Supplemental Materials of
Reference [33].

We now analyze the spectral properties of the system across the phase diagram. In
Figure 9, the behavior of the excitation spectrum moving from weak to strong interaction
at a given finite disorder is shown. In the case of weak interaction, the excitation spectra
at ∆ = 8.9J are shown for three increasing values of U (Figure 9a–c). For vanishing U,
a weak excitation peak centered at ∆ has been observed, consistent with the presence of
an Anderson insulator. The experimental excitation spectrum is well reproduced by a
non-interacting bosonic model (Figure 9a). Increasing U, the system response progressively
enhances and broadens (Figure 9b), ending up with an excitation spectrum that is undis-
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tinguishable from that of a clean SF (Figure 9c). This behavior is thus consistent with the
system crossing the BG–SF transition.

In the case of strong interaction, the excitation spectra at the ∆ = 6.5J are shown
for three increasing values of U (Figure 9d–f). The peak centered at ∆ is the signature of
the strongly correlated BG. Such “∆-peak” can be observed only in a limited region of ∆
and U values. When U is comparable with ∆, the MI and BG peaks overlap, the former
being typically larger and covering the latter (Figure 9d). When U is much larger than ∆,
the fraction of sites with incommensurate density that can form a BG becomes negligible
and, again, only the MI peaks are clearly detectable (Figure 9f). Furthermore, for very
large disorder strengths (∆ > 20J), the spectrum becomes very broad and is only weakly
affected by interaction, indicating that the system behavior is dominated by disorder, and
any feature is observable.
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Figure 9. Excitation spectra of 39K atoms from weak to strong interactions. (a–c) Excitation spectra for fixed disorder,
∆ = 8.9J, and small increasing interactions: U = 0.35J (a), U = 1.4J (b), or U = 2.1J (c). The spectra have been quantified by
measuring the relative increase of σ with respect to the unexcited value (ν = 0). (d–f) Excitation spectra for fixed disorder,
∆ = 6.5J, and large increasing interactions: U = 20J (d), U = 26J (e), or U = 58J (f). The arrows mark ∆/J. The spectra
have been quantified by measuring the relative variation of the BEC fraction with respect to the unexcited value (ν = 0).
Figure adapted from Reference [33].

The measurements of the excitation spectra, together with those of coherence (Figure 3)
and transport (Figure 5), confirm an opposite nature of the two regimes of weak and strong
U, respectively, bosonic and fermionic, and an opposite role of the interactions. In the
low-U bosonic case, small repulsive interactions compete with disorder and screen the
disorder-induced localization, favoring the coupling of single-particle states and gradually
restoring coherence between particles and superfluidity. In the large-U fermionic case,
instead, strong interactions induce fermonization of the bosonic sample, thus favoring, in
the presence of disorder, Anderson localization.

4. Outlook and Perspectives

In this brief review, we discuss the experiments with 1D bosons where the effect of
disorder has been investigated in the disorder-interaction plane. The topic of quantum
matter in the presence of disorder is very complex, in particular, when dealing with
experimental systems being inhomogeneous and at finite temperature. The coexistence of
fractions with different densities, in fact, transforms the theoretical sharp quantum phase
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transitions into broad crossovers. A way to overcome this limit in future experiments could
be to use a flat-top beam shaper providing homogeneous trapped systems [62–66]. This
should also allow, in the strongly interacting regime, for a better discrimination of the BG
and the MI phases. Concerning the problem of the finite temperature, it would be very
important to reduce the actual temperature of the atomic 1D systems. The main source of
heating is typically the phase noise affecting the 2D strong radial lattices and the main axial
one. Recent theoretical calculations suggest to use a shallow quasiperiodic potential to
reduce the lattice heating effect without losing information about the underlying quantum
phases [67]. Another possibility could be to apply a phase stabilization on the lattices [68].

An intriguing direction of investigation would be the direct study of the effect of
temperature on 1D disordered phases. A possible experimental implementation consists of
using a second BEC insensitive to the lattices as a thermal bath [69,70]. This would ensure
both the thermal equilibrium in the 1D system and to have an independent measure of its
temperature.

Another interesting question related to disordered systems is whether the existence of
the finite temperature insulating phase in the weakly interacting regime could be related to
the hot topic of many-body localization [71]. Different experiments with ultracold atoms
recently investigated the many-body localization phenomenon, mainly for fermions [72–75],
and only later for a disordered Bose–Hubbard system [76–78], but its existence is still under
debate [79].
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