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Abstract: The process of reconstruction of attosecond beating by interference of two-photon transi-
tions (RABBITT) reveals the target atom electronic structure when one of the transitions proceeds
from below the ionization threshold. Such an under-threshold RABBITT resonates with the target
bound states and thus maps faithfully the discrete energy levels and the corresponding oscillator
strengths. We demonstrate this sensitivity by considering the Ne atom driven by the combination of
the XUV and IR pulses at the fundamental laser frequency in the 800 and 1000 nm ranges.
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1. Introduction
The process of reconstruction of attosecond beating by the interference of two-photon

transitions (RABBITT) [1,2] has become a widely used tool for attosecond chronoscopy of
atoms [3], molecules [4,5] liquids [6], and solids [7,8]. In RABBITT, XUV driven primary
ionization is augmented by secondary IR photon absorption or emission. The latter IR-
driven processes lead to the same final continuous state whose population depends on the
relative phase of the absorption/emission amplitudes. Experimental access to this phase
difference makes it possible to convert it to the photoemission time delay and to resolve
photoemission on the attosecond time scale.

The RABBITT process is illustrated graphically in Figure 1a. The XUV photon from a
high-order harmonics generation source with the frequency Ω = (2q± 1)ω is absorbed
from the initial atomic bound state Ei. The ionized electron appears in the continuum and
forms the two harmonic peaks in the photoelectron spectrum marked as H2q±1. The subse-
quent IR photon absorption ω or emission −ω leads to formation of the sideband marked
as SB2q . Since the two distinct quantum paths lead to the same final state, the SB population
oscillates as the time delay τ between the XUV and IR pulses varies:

S2q(τ) = A + B cos(2ωτ − C) . (1)

Here, the magnitude A and B parameters depend on the specific experimental conditions.
The RABBITT phase parameter

C = ∆φ2q±1 + ∆φW + ∆φcc (2)

is the sum of the phase difference between the neighboring odd harmonics (∆φ2q±1 =
φ2q+1 − φ2q−1), the analogous difference of the Wigner phases (∆φW), and the difference
of the continuum–continuum (CC) phases (∆φcc). The two latter phase differences orig-
inate from the XUV and IR photon absorption, respectively. They are converted to the
corresponding time delays by the finite difference formula

τW = ∆φW/(2ω) , τcc = ∆φcc/(2ω). (3)
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The atomic time delay τa = τW + τcc is the group delay of the photoelectron wave packet
propagating in the combined field of the ion remainder and the dressing IR field relative to
its free space propagation.

Figure 1. (a) Schematic representation of the conventional RABBITT process; (b) the same for the
uRABBITT process.

The under-threshold RABBITT process, which we term for brevity uRABBITT, is
depicted in Figure 1b. In this process, the (2q− 1)ω photon absorption promotes the target
electron to a discrete excited state below the threshold En < 0. It is the subsequent ω
photon absorption that takes the photoelectron to the continuum where it interferes with
its downward converted counterpart. The distinct feature of the uRABBITT process is that
one of the harmonic peaks H2q−1 is missing in the photoelectron spectrum. The phase
parameter C of the uRABBITT process does not contain the CC component in the IR photon
absorption. Instead, it acquires a resonant phase due to the transition between the initial
bound to the discrete intermediate states. In the case of an isolated resonance, the resonant
phase can be approximated by a simplified expression [9]:

Φr ≈ arg
[
Ω + Ei − En − iΓ

]−1
= arctan(Γ/∆) . (4)

Here, Γ is proportional to the spectral width of the XUV pulse and ∆ ≡ Ω + Ei − En is the
detuning from the resonance. More elaborate expressions for the resonant two-photon
absorption phase are derived in [10,11].

The uRABBITT process has been demonstrated experimentally in He [12] and in
Ne [13,14]. The work by Villeneuve et al. [13] can be viewed as the angular resolved version
of a previous study in helium. The Ne case is illustrated graphically in Figure 2 for the
IR laser wavelength near 800 nm (a) and 1024 nm (b). In Figure 2a, the harmonic H15 is
matched with the corresponding peak of the photoelectron spectrum while the harmonic
H13 falls below the threshold where it overlaps with the 3d discrete level. Absorption of an
XUV photon from the harmonic H13 leads to the population of the excited 3d and 4s states
with comparable oscillator strengths [15]. However, the IR absorption from 3d is much
stronger than that from 4s, and the latter state can be ignored in the uRABBITT process (see
Section 2.3 for more details). Similarly, in Figure 2b, the harmonic peak H17 falls below
the threshold where it overlaps with the discrete 4d level. The uRABBITT sideband SB18
appears just above the threshold.
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Figure 2. (a) Photoelectron spectrum of Ne at ω = 1.55 eV (800 nm) is overlapped with the spectrum
of the driving XUV pulse. The primary harmonic peak H15 and the scaled sideband SB14 are shaded
in blue and orange, respectively. The submerged harmonic peak H13 overlaps with the dicrete 3d
energy level. The arrows indicate the detuning ∆ and FWHM; (b) same for ω = 1.21 eV (1024 nm)
where the submerged harmonic peak H17 overlaps with the 4d bound state and SB18 emerges above
the threshold.

The RABBITT–uRABBITT phase transition in Ne at 800 nm was studied theoreti-
cally [9]. A strong uRABBITT phase variation was demonstrated when SB14 trespassed the
3d energy level. A rather large XUV spectral width employed in [9] did not allow for an
accurate uRABBITT phase determination in the 1000 nm wavelength range when SB18 was
expected to overlap with a group of narrowly spaced target states. In the present work,
the XUV spectral resolution is significantly improved and the Ne bound state mapping is
reported both in the 800 and 1000 nm spectral ranges. We demonstrate that, in both cases,
the resonant uRABBITT phase maps faithfully the target atom electronic structure, thus
allowing access to the bound state energies and the corresponding oscillator strengths.

2. Theoretical Model
2.1. Lowest Order Perturbation Theory

The simplest interpretation of the parameters entering Equation (1) is provided by the
lowest order perturbation theory (LOPT):

A = |Ma|2 + |Me|2 , B = 2Re[MaM∗
e ] , C = arg[MaM∗

e ] = 2ωτa . (5)

Here, we introduce the complex amplitudes of the XUV absorption, augmented by absorp-
tionMa or emissionMe of an IR photon. These two-photon ionization amplitudes are
written in the LOPT as

Ma/e ∝

{
∑

Enl<0
+
∫

d3k

}[
〈k|d(ω)|nl〉〈nl|d(Ω)|i〉

Ω + Ei − Enl − iγ
+
〈k|d(ω)|κ〉〈κ|r|i〉

Ω + Ei − κ2/2− iγ

]
Here, 〈i|, nl or 〈κ| and 〈k are the initial, intermediate and final states, respectively, d(Ω)
and d(ω) are the dipole operators of the XUV and IR photon absorption. The XUV photon
energy is Ω = (2q ± 1)ω and iγ denotes the pole bypass in the complex energy plane.
For a realistic XUV pulse, the infinitesimal γ should be substututed with a finite Γ that is
proportional to the corresponding FWHM [9].

For the conventional RABBITT, the sum over discrete intermediate states nl is ne-
glected in Equation (6) as the relevant energy denominators are large. For uRABBITT,
the contribution of the discrete sum is essential. We isolate this part of the absorption
amplitude into the resonant term

MaR ∝ ∑
nl

Anl

[
Ω + Ei − Enl − iΓ

]−1
, An =

[
fnl(Ω)σnl(ω)

]1/2
. (6)
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Here, fnl(Ω) ∝ |〈nl|d(Ω)|i〉|2 is the dipole oscillator strength and σnl(ω) ∝ |〈k|d(Ω)|nl〉|2
is the partial photo-ionization cross-section. Accordingly, the resonance affected uRABBITT
parameters become

Cr = arg{[Ma +Mar]M∗
e } = arg{[Mar/Ma + 1]}+ C

Br = 2Re{[Ma +Mar]M∗
e } = 2Re{MarM∗

e }+ B (7)

The resonance-free B and C parameters can be extended continuously across the threshold
from the non-resonant sideband SB2q+1. The unknown analytically amplitudesMa/e can
be found by fitting the numerical TDSE results with Equation (7).

2.2. Non-Perturbative Treatment
Accurate non-perturbative treatment of the RABBITT process requires a numerical

solution of the time-dependent Schrödinger equation (TDSE). We seek this solution in the
single-active electron (SAE) approximation using the TDSE computer code [16]. The tar-
get atom is described by a localized Hartree–Fock potential (LHF) [17]. The TDSE SAE
approach to RABBITT has been tested successfully on He [18], Li [19], Ne [20], and heavier
noble gas atoms [21]. The TDSE is driven by a superposition of an XUV attosecond pulse
train (APT) and the IR pulse in several fixed increments of the IR/XUV delay τ.

The APT is modeled with the vector potential

Ax(t) =
20

∑
n=−20

(−1)n An exp
(
−2 ln 2

(t− nT/2)2

τ2
x

)
cos

[
ωx(t− nT/2)

]
, (8)

where

An = A0 exp

(
−2 ln 2

(nT/2)2

τ2
T

)
.

Here, A0 is the vector potential peak value and T = 2π/ω is the period of the IR field. The
XUV central frequency is ωx and the time constants τx, τT are chosen to span a sufficient
number of harmonics in the range of photon frequencies of interest for a given atom.

The vector potential of the IR pulse is represented by the cosine squared envelope

A(t) = A0 cos2
(

π(t− τ)

2τIR

)
cos[ω(t− τ)] . (9)

In the present work, the APT is centered at ωx = 15ω and its spectral width is reduced to
Γ = 0.1 eV by increasing the number of pulselets to N = 41 in comparison with N = 21
in [9]. Typical XUV and IR field intensities were of the order of ∼ 1010 W/cm2. In this low
intensities regime, our numerical results depend weakly on variation of the pulses intensity.
The photoelectron spectrum is obtained by projecting the time-dependent wave function at
the end of the time evolution on the basis of Volkov states. Numerical details are given in the
preceding publications [20,21]. The present set of calculations required approximately 80K
CPU-hours of the Gadi supercomputer hosted at the National Computational Infrastructure
(NCI Australia) and ranked 44th in the Top-500 supercomputer list [22].

2.3. Target Electronic Structure
We use the software package ATOM [23] to peform the calculations of the quantities

Enl , fnl , and σnl entering Equation (6). These results are presented in Table 1 and displayed
graphically in Figure 3. In the table, we also list the binding energies returned by our
TDSE code that utilizes the LHF potential. Except for the ground state energy, the binding
energies Enl are close between the LHF and non-local HF calculations.

Figure 3a shows that the oscillator strengths are close between the ns and nd bound
states at comparable photon energies. However, Figure 3b displays very clearly that the
subsequent ionization process nl + ω → E(l ± 1) favors very strongly the nd intermediate
states and the ns states can be safely ignored in uRABBITT. We see from the same Figure 3b
that the photoionization cross-sections σnd depend rather weakly on n, and it is the oscillator
strength factor f 1/2

nd that determines largely the resonant amplitude (6) in Ne.
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Figure 3. (a) Oscillator strengths of the 2p → nd and 2p → ns transitions in Ne from the ATOM

calculation; (b) partial photoionization cross-sections for the nl → E(l ± 1) transitions.

Table 1. Binding energies Enl and oscillator strengths fnl of Ne in atomic units. The TDSE calculations
with the LHF potential are compared with the ATOM calculations with the non-local HF potential.
The experimental binding energies are from [24].

nl Binding Energy Enl , au fnl , au

Expt. Theory
NIST TDSE ATOM

2p 0.792 0.788 0.850
3s 0.181 0.171 0.175 0.1505
4s 0.066 0.067 0.068 0.0265
3d 0.056 0.055 0.056 0.0203
4d 0.031 0.031 0.031 0.0109
5d 0.020 0.020 0.020 0.0061

3. Numerical Results
3.1. Photolelectron Spectra

First, we illustrate the effect of the XUV spectral width on the RABBITT photoelectron
spectra. For this purpose, we analyze the RABBITT traces which are composed of the stacks
of the angular integrated photoelectron spectra obtained at various time delay τ between
the XUV and IR pulses. The RABBITT traces of the Ne atom at the IR frequencies of
ω = 1.21, 1.22, and 1.23 eV are shown in Figure 4 (from left to right). These traces illustrate
the passage of the harmonic peak H17 over the 4d bound state as is exhibited in Figure 2b.
The RABBITT trace in Figure 4b shows clearly the double hump structure resulting from
the overlap of H17 both with the 4d and 5d bound states. The overlap with the single bound
state 4d or 5d occurs at the photon energies ω = 1.21 and 1.23 eV, respectively. These cases
produce well-resolved single peak structures in Figure 4a,c. The bottom row of panels in
Figure 4d–f is analogous to the top row except that the XUV spectral width is halved by
increasing the number of the pulselets in the APT to N = 41. The 4d and 5d bound states
are clearly resolved at all the photon energies.

3.2. RABBITT Phase and Magnitude Parameters
The sideband intensities are integrated over the energy window 2qω± FWHM/2 and

their time dependence is fitted with Equation (1). The resulting phase C parameters and the
magnitude B parameters are plotted in the top and bottom rows of Figure 5, respectively.
The left panels 5a,c correspond to the 800 wavelength range (ω = 1.53− 1.65 eV). The right
panels 5b,d span the photon energies in the 1000 wavelength range (ω = 1.19− 1.26 eV).
The top horizontal axis marks the crossing of the submerged harmonic peak with a discrete
energy level: (2q− 1)ωnd + Ei = End where (2q− 1) = 13 for 800 nm and 17 for 1000 nm,
respectively. In Figure 5, the TDSE results with both FWHM=0.2 and 0.1 eV are plotted.
The smaller XUV spectral width allows for a much more narrowly spaced photon energy
points to be resolved.
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Figure 4. From left to right: RABBITT traces of the Ne atom at the photon frequencies ω = 1.21 (a,d),
1.22 (b,e), and 1.23 eV (c,f). The number of the pulselets N = 21 in the top row (a–c) corresponds to
the spectral width FWHM = 0.2 eV. In the bottom row (d–f), N = 41 and FWHM = 0.1 eV. The thin
blue lines mark the center of the SB18.

Figure 5. Top: the RABBITT phase C parameter as the function of the fundamental laser frequency in
the 800 nm (a) and 1000 nm (b) wavelength ranges. The top horizontal axis marks the crossing of
the harmonic peaks H13 (a) and H17 (b) with the discrete nd energy levels. Bottom: the RABBITT
magnitude B parameter for the 800 nm (c) and 1000 nm (d) spectral ranges. Comparison with the
analytic expressions (6) and (7) is made. The thin dotted line marks the non-resonant RABBITT C
parameters which remain flat over the marked photon energy range.
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The RABBIT phase C and magnitude B parameters are fitted with the analytic expres-
sions (6) and (7). In the latter expression, the non-resonant terms are determined from the
conventional SB16 for 800 nm and SB20 for 1000 nm. These terms remain flat over the
considered photon energy range. Comparison of the TDSE and LOPT results is fair for
both sets of parameters.

4. Conclusions
In the present work, we utilized the under-threshold RABBITT process to map the

target electronic structure of the Ne atom. For this purpose, we run an extensive set of
numerical TDSE simulations over the two spectral ranges near the central wavelengths
of 800 and 1000 nm with a fine increment ∆ω = 5 meV. We made a comparison of our
numerical results with predictions of the analytic LOPT expressions utilizing accurate
bound state energies and oscillator strengths. These expressions predict a rapid variation
of the RABBITT phase C and the magnitude B parameters when the submerged harmonic
peak H2q−1 overlaps with one of the nd bound states. The companion ns bound state
series is found to be very weak in the Ne atom. This is confirmed by the propensity of
the f final state continuum which is not accessible from the ns internediate state [13].
Our numerical results agree rather well with the analytic formulas, thus validating our
approach. This means that the uRABBITT process can indeed be used for mapping the
target atom electronic structure once the submerged harmonic peak sweeps across the
series of the bound states. The uRABBITT technique can be used in various atomic targets
and thus prove itself to be a useful and novel spectroscopic tool.

While the present work analyzed the angular integrated photoelectron spectra, the an-
gular dependence of the RABBITT phase can also be studied with a clear transition to
the uRABBITT regime. In particular, in our previous work [9], an f -angular character
of the final photoelectron continuum was demonstrated in line with the experimental
findings [13]. This significantly broadens the scope of the uRABBITT spectroscopy.
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