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Abstract: Calculations are presented for differential, integrated elastic, momentum transfer, viscosity,
inelastic, total cross sections and spin polarization parameters S, T and U for electrons and positrons
scattering from atoms and ions of radon isonuclear series in the energy range from 1 eV–1 MeV.
In addition, we analyze systematically the details of the critical minima in the elastic differential
cross sections along with the positions of the corresponding maximum polarization points in the
Sherman function for the aforesaid scattering systems. Coulomb glory is investigated across the ionic
series. A short range complex optical potential, comprising static, polarization and exchange (for
electron projectile) potentials, is used to describe the scattering from neutral atom. This potential
is supplemented by the Coulomb potential for the same purpose for a charged atom. The Dirac
partial wave analysis, employing the aforesaid potential, is carried out to calculate the aforesaid
scattering observables. A comparison of our results with other theoretical findings shows a reasonable
agreement over the studied energy range.

Keywords: electron and positron scattering; spin asymmetry; critical minima; total polarization;
coulomb glory

1. Introduction

Lepton scattering from atoms and ions is of immense importance in both experimental
and theoretical studies. Electron (e−) scattering from neutral atomic targets is an efficient
tool to glean projectile-target interaction [1], the structure of atoms or molecules and matter
in bulk. The electrons passing through matter are not only scattered, but also produce
ions of different charges. Explicit interpretation of the spectroscopic observations and
theoretical modeling of the formation and time evolution of artificial, terrestrial, space
and astrophysical plasmas require the electron-ion scattering cross section data [2]. On the
other hand, positron-ion scattering is important for understanding the dynamics of the
collisions of positrons with ions, atoms and molecules in interstellar medium [3]. For the
positron (e+) projectile, phaseshifts are very sensitive to the polarization as the repulsive
static potential partially cancels the attractive polarization potential [4]. Therefore, e+-atom
collision can furnish a useful, and sometimes more sensitive test of the techniques used for
studying the lepton scattering processes.

The elastic differential cross section (DCS) data can provide detailed information
on collision dynamics and the optical potential. The total cross section (TCS) as well as
its integrated elastic cross section (IECS) and inelastic cross section (INCS) determine
the mean free path between two elastic collisions. The momentum-transfer cross section
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(MTCS) is used to compute the average momentum transferred by the projectile to the
target on collision. The viscosity cross section (VCS) is needed for expansion of the multiple
scattering formula used as an input to the Monte Carlo simulation of the electron transport
in solids. Regarding collision dynamics, more detailed information can be unfolded by
studying spin asymmetry parameters S, T and U. The S parameter, the so called Sherman
function, associated with leptons spin-polarized perpendicular to the scattering plane,
serves to measure the beam polarization [5]. The angle of rotation of the component of the
polarization vector in polarized projectiles can be obtained by other two parameters T and
U. The determination of critical minima (CM) points in the DCS is useful as a complete
spin polarization of the scattered projectile occurs in the vicinity of these CMs [6,7]. All
aforesaid observables of lepton scattering from neutral atoms, ions, and molecules have
many applications in various pure and applied sciences.

To date, a considerable number of attempts, both experimentally [8–11] and theoreti-
cally [12–17], have been made to study the collisions of electrons with rare-gas atoms. Due
to the inertness and availability, rare-gas atoms are often used as targets in experimental
studies of scattering in a goal to understand lepton-atom interaction and test collision
dynamics. The recent development of rare-gas halide high-power lasers has increased
interest in studies the electrons scattering from inert gases. In physical sciences radon is
used as a tracer because of its short half-life (3.8 days). Despite such applications, studies
on e±–radon scattering, particularly across the isonuclear series, are limited. To date, as
we are aware, there is no experiment on e−/e+–radon scattering available in the literature.
The high cost and radioactivity of radon stand as barrier to a experimental research with it.

On the theoretical side, Kapil and Vats [18] performed relativistic calculations of
the DCS, IECS and MTCS as well as S, T and U for positrons scattering by radon and
radium atoms in the energy range 2–500 eV. The same observables in the same energy
range for electrons scattering from Yb, Rn and Ra were calculated by Neerja et al. [19].
At energies Ei = 20–1000 eV, the TCS for positron scattering from all the rare gases were
reported by Baluja and Jain [12]. IECS, MTCS and VCS for the neutral atomic targets (ZT
= 1–92) were tabulated by Mayol and Salvat [20] for 100 eV to 1 GeV electrons, and by
Dapor and Miotello [21] for 500–4000 eV positrons. Sin Fai Lam [13] predicted DCS, TCS
and S for low energy (Ei ≤ 30 eV) electrons from krypton, xenon and radon atoms. It is
worth mentioning that all of these cross sections were calculated only for neutral atomic
targets. This fact underscores the necessity for the study of lepton-ion scattering from
the perspectives of fundamental and practical importance. Furthermore, this situation
motivates us to undertake the study of scatterings of electrons and positrons from radon
atoms and ions up to charge state q86+.

In this study, we have investigated elastic DCS, IECS, MTCS, VCS, INCS, TCS, S, T
and U for both electrons and positrons scattering from radon isonuclear series including
neutral atoms as well as ions over a wider energy range of 1 eV ≤ Ei ≤ 1 MeV. In DCSs of
the e−-Rn system, we have investigated CM and determined maximum spin polarization
(MSP) points in the vicinity of these CMs. Coulomb glory, the amplification of elastic
backscattering of electrons from positive ions owing to the electrostatic screening of nu-
clear potential by atomic electrons, has been investigated throughout the ionic series of
radon. The aforesaid scattering observables are obtained by solving Dirac relativistic equa-
tion within the framework of partial wave analysis using a modified Coulomb potential
(MCP) [15] in the form

V(r) = Vmc(r) =
zqe2

r
+ Vsr(r). (1)

The first term on the right-hand side of the above equation is the long-range Coulomb
potential due to the Coulomb interaction between primary electron or positron with the
target with the ionic charge q. e is magnitude of the electron charge, and z = −1 for
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electron and +1 for positron. The short-range part, Vsr(r) is given by a local complex optical
potential [22–25] in the form

Vsr(r) = Vop(r) = VR(r)− iWabs(r), (2)

where, VR(r) and iWabs(r) denote, respectively, the real and imaginary parts of the potential.
The real part consists of static, exchange and correlation–polarization potentials. The
electron number density of the target, required for the generation of these components,
is obtained numerically from the multiconfiguration Dirac–Fock wavefunctions [26]. In
case of e±-atom scattering, the long-range part of Equation (1) is absent and, therefore, the
interaction potential becomes pure short ranged optical potential given in Equation (2).
For unscreened nuclear targets, on the other hand, the short-range part of Equation (1)
vanishes, and the scattering reduces to pure Coulomb scattering.

Our results are compared with other calculations available in the literature. The rest of
this paper is organized as follows. Section 2 gives the outline of the theory. In Section 3, we
present potential details and numerics. Results of our theory and comparison with existing
calculations are given in Section 4. In Section 5, we draw our conclusions. Atomic units
(h̄ = me = e = 1) are used throughout unless otherwise indicated.

2. Theory
2.1. Optical Potential

In our MCP approach, the Coulomb potential is complemented by a short-range
complex optical potential given in the following form

Vsr(r) = Vst(r) + Vex(r) + Vcp(r)− iWabs(r). (3)

Here, the real components Vst(r), Vex(r), Vcp(r) are, respectively, the static, the ex-
change and the correlation polarization potentials. Furthermore, the imaginary component
Wabs(r) represents the absorption potential. The static potential Vst(r) arises from the
electrostatic interactions of the projectile with the target electrons and protons. The ex-
change potential Vex(r) is used to handle the non-local rearrangement collisions between
primary and bound electrons arising due to their indistinguishability. For positron scat-
tering, Vex(r) = 0 as there is no exchange probability between the projectile and bound
electrons. The correlation polarization potential Vcp(r) describes the distortion of the target
charge distribution by the projectile electron or positron. The absorption potential Wabs(r)
incorporates the loss of beam intensity to various inelastic channels during the collision.

2.1.1. Static Potential

The electrostatic potential Vst(r) in Equation (3), at a distance r from the nucleus of
the target, is given by

Vst(r) = ze[φn(r) + φe(r)], (4)

where, φn(r) and φe(r) are, respectively, potentials due to nuclear and electronic charge
distributions. Under static-field approximation, the interaction potential is completely
determined by the nuclear and electronic charge distributions. In the present study, we
consider a Fermi nuclear charge distribution [27] and the Dirac–Fock electron density, gen-
erated from relativistic Hartree–Fock wavefunctions by Desclaux [26]. The static potential
can, therefore, be presented as [28]

φn(r) = e
∫

dr′
$n(r′)
|r− r′| and φe(r) = −e

∫
dr′

$e(r′)
|r− r′| . (5)

Here, $n and $e, the number densities of protons and orbital electrons, respectively,
are normalized as
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∫
$(r)4πr2dr =

{
Z− q, for $e
Z, for $n

(6)

with Z− q being the number of dressing electrons of the target and Z, the atomic number
of the target.

2.1.2. Exchange Potential

The exchange potential Vex(r) in Equation (3), a type of semi-classical exchange
potential [29], is obtained from the non-local exchange interaction with the help of a
WKB-like approximation for the wave functions. It is expressed as

Vex(r) =
1
2
[Ei −Vst(r)]−

1
2
{[Ei −Vst(r)]

2 + 4πa0e4$e(r)}1/2. (7)

Here, Ei and a0 are the incident electron energy and the Bohr radius, respectively.

2.1.3. Polarization Potential

The correlation polarization potential Vcp(r) in Equation (3) is a combination of long
range Buckingham potential Vcp,B(r) and a short-range correlation potential Vco(r). This
global type correlation-polarization potential is expressed as [30]

V±cp(r) ≡
{

max{V±co(r), Vcp,B(r)} if r < rc
Vcp,B(r) if r ≥ rc,

(8)

where rc is the outer radius at which the above two contributions intersect for the first time.
The long-range part, independent of the charge of the incoming projectile, has the

following asymptotic form

Vcp,B(r) = −
αde2

2(r2 + d2)2 , (9)

with αd is the dipole polarizability of the target. The phenomenological cut off parameter d
is given by [31]

d4 =
1
2

αda0(Z− q)−1/3b2
p, (10)

where, bp is an adjustable parameter that decreases as the projectile energy increases and is
expressed by the following empirical formula [30]

b2
p = max{(E− 50 eV)/(16 eV), 1}. (11)

At r < rc, the asymptotic expansion completely breaks down, and the interaction
potential for the correlation between the projectile and electron cloud can be described by
the following analytic expression given by Perdew and Zunger [32]

V(−)
co (r) = − e2

a0
(0.0311 ln(rs)− 0.0584 + 0.00133rs ln(rs)

−0.0084rs), for rs < 1 (12)

and

Vco(r) = −
e2

a0
β0

1 + (7/6)β1r
1
2
s + (4/3)β2rs

(1 + β1r
1
2
s + β2rs)2

, for rs ≥ 1 (13)

where, β0 = 0.1423, β1 = 1.0529 and β2 = 0.3334.
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For positron impact scattering, the present study uses the correlation potential of
Jain [33] as given by

V(+)
co (r) = e2

2a0
{−1.82r−1/2

s + [0.051 ln(rs)− 0.115] ln(rs)

+1.167}, for rs < 0.302, (14)

V(+)
co (r) =

e2

2a0

[
−0.92305− 0.09098r−2

s

]
, for 0.302 ≤ rs < 0.56, (15)

and

V(+)
co (r) = e2

2a0

[
− 8.7674

(rs+2.5)3 +
−13.151+0.9552rs

(rs+2.5)2 + 2.8655
(rs+2.5) − 0.6298

]
,

for 0.56 ≤ rs < 8.0. (16)

For 8.0 ≤ rs ≤ ∞ (i.e., at the asymptotic region), the polarization potential is accurately
given by Equation (9). The parameter rs is given by the following equation

rs ≡
1
a0

[
3

4π$e(r)

] 1
3
. (17)

2.1.4. Absorption Potential

The absorption potential Wabs(r) in Equation (3) is a semi-relativistic imaginary poten-
tial proposed by Salvat et al. [34]. This negative imaginary term is included in the optical
potential to account for the loss of incident flux from elastic channel to inelastic channels
above the inelastic threshold. This absorption potential depends on the cross section for
binary collisions between the projectile and target electron. Within the framework of Born–
Lindhard formulation a non-relativistic formulation of the absorption potential for electron
scattering can be obtained under local density approximation (LDA) as by Salvat [30]

Wnr
abs = Aabs

h̄
2
[vnr

L $e(r)σbc(EL, $e, ∆)]. (18)

Here, vnr
L is the non-relativistic velocity with which the projectile interacts as if it were

moving within a homogeneous gas of density $e. This velocity is given by

vnr
L =

√
2EL/me (19)

corresponding to the local kinetic energy

EL(r) =
{

E−Vst(r)−Vex(r) for electron
max{E−Vst(r), 0 } for positron.

(20)

The term σbc(EL, $e, ∆) in Equation (18) represents the non-relativistic Born approxi-
mated cross section for collisions involving energy transfer greater than a certain energy
gap ∆. This energy gap is the threshold energy for the inelastic channel and accounts
for the minimum energy lost by the projectile. The energy gap adopted for the present
computation is given by

∆ =

{
ε1 for electron
I − 6.8 for positron

(21)

with ε1 is the first excitation energy, I is the ionization potential and 6.8 eV is positronium
binding energy.

The relativistic effects are accounted by Salvat [30] in the expression (18) by introducing
the relativistic velocity

vr
L = c

√
EL(EL + 2mec2)

(EL + mec2)2 (22)
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The semi-relativistic form for Wabs is

Wabs =
vnr

L
vr

L
Wnr

abs =

√
2(ErmL + mec2)2

mec2(EL + 2mec2)
× Aabs

h̄
2
[vn

L$e(r)σbc(EL, $e, ∆)], (23)

where, c is the velocity of light in vacuum. The value of the empirical parameter Aabs
depends on the projectile-target combination and can be determined by fitting the available
data. In the present calculations, Aabs = 2 for electron and 1 for positron scattering.

2.2. Dirac Partial Wave Analysis

The relativistic Dirac equation for a projectile moving with a velocity v in a central
field VmC(r) is given as[

cα.p + βm0c2 + VmC(r)
]
ψ(r) = (E + m0c2)ψ(r), (24)

with E + m0c2 being the total energy of the projectile and the operators α and β, the usual
4× 4 Dirac matrices. Solutions of the Dirac equation are the spherical waves and are given
by [35]

ψEκm(r) =
1
r

(
PEκ(r)Ωκ,m(r̂)
iQEκ(r)Ω−κ,m(r̂)

)
, (25)

where PEκ(r) and QEκ(r) are the upper- and lower-component radial functions and Ωκ,m(r̂)
are the spherical spinors. κ = (`− j)(2j + 1) is the relativistic quantum number with j and
` being the total and orbital angular momentum quantum numbers. The radial functions
PEκ(r) and QEκ(r) of Dirac spherical waves are the solutions of the coupled system of
differential equations [35]

dPEκ

dr
= −κ

r
PEκ(r) +

E−V + 2m0c2

c
QEκ(r) (26)

and
dQEκ

dr
= −E−V

c
PEκ(r) +

κ

r
QEκ(r). (27)

The spherical waves in Equation (25) are normalized so that the large-component
radial function PEκ(r) oscillates asymptotically with unit amplitude and takes the following
form

PEκ(r) ∼ sin
(

kr− `
π

2
− η ln 2kr + δκ

)
. (28)

Here, k = p
h̄ =

√
E(E+2mec2)

h̄c is the relativistic wave number of the projectile and

η = qe2me
h̄k is the Sommerfeld parameter. The global phase shift δκ , describing the large r

behavior of the spherical wave solutions, is given by the following equation

δκ = ∆κ + δ̂κ , (29)

with ∆κ being the Dirac-Coulomb phase shift of the potential tail and δ̂κ , the complex inner
phase shift caused by the complex short-range potential. Dirac-Coulomb phase shift ∆κ is
given by [36]

∆κ = arg[ζ(E + 2mec2)− i(κ + λ)ch̄k]− (λ− `− 1)π
2

+ arg Γ(λ + iη)− S(ζ, κ)π, (30)



Atoms 2021, 9, 59 7 of 47

where, ζ = qe2

h̄c ≈ qα = q/137, λ =
√

κ2 − ζ2, and S(ζ, κ) = 1 if ζ < 0 and κ < 0, and = 0
otherwise. The phase shift ∆κ can now be used to obtain the direct and spin flip scattering

amplitudes for the scattering of e± from Coulomb potential Vcoul =
zqe2

r as

f (C)(θ) = 1
2ik ∑∞

`=0{(`+ 1)[exp(2i∆−`−1)− 1]

+`[exp(2i∆`)− 1]}P`(cos θ) (31)

and

g(C)(θ) =
1

2ik

∞

∑
`=0
{exp(2i∆`)− exp(2i∆−`−1}P1

` (cos θ). (32)

To calculate the inner phase shifts δ̂κ , the integration of radial equations is started
at r = 0 and extended outwards up to a distance rm beyond the effective range of the
interaction potential. For r > rm the potential takes asymptotic Coulombian form and the
normalized upper-component radial Dirac function can be written as

PEκ(r) = cos δ̂κ f (u)Eκ (r) + sin δ̂κg(u)
Eκ (r). (33)

f u
Eκ(r) and gu

Eκ(r) regular and irregular Dirac–Coulomb functions, respectively. The phase
shifts δ̂κ can now be obtained by matching the outer analytical form to the inner numerical
solution at rm. The continuity of the radial function PEκ(r) and its derivative is required for
this boundary condition. This procedure gives

exp(2iδ̂κ) =
Dout[ f (u)Eκ (rm) + ig(u)

Eκ (rm)]− [( f (u)Eκ )
′
(rm) + i(g(u)

Eκ )
′
(rm)]

[( f (u)Eκ )′(rm)− i(g(u)
Eκ )

′(rm)]− Dout[ f (u)Eκ (rm)− ig(u)
Eκ (rm)]

, (34)

where the primes indicate the derivatives with respect to r and Dout, the logarithmic
derivative of the outgoing numerical radial function at the matching point. The complex
form of the phase shift δ̂κ is due to the complex short-range potential Vsr(r) in Equation (3).
The scattering amplitudes f sr(θ) and gsr(θ), for the short-range potential, are given as

f sr(θ) = 1
2ik ∑∞

`=0{(`+ 1) exp(2i∆−`−1)
[
exp(2iδ̂−`−1)− 1

]
+` exp(2i∆`)

[
exp(2iδ̂`)− 1

]
}P`(cos θ) (35)

and

gsr(θ) = 1
2ik ∑∞

l=0{exp(2i∆`)
[
exp(2iδ̂`)− 1

]
− exp(2i∆−`−1)

[
exp(2iδ̂−`−1)− 1

]
}P1

l (cosθ). (36)

Here, Pl(cos θ) and P1
l (cos θ) are, respectively, the Legendre polynomials and associ-

ated Legendre functions. θ is the scattering angle.
For the scattering of electrons and positrons from neutral atoms, Equation (29) reduces

as δκ = δ̂κ . Therefore, the direct and spin flip scattering amplitudes can be written as

f (θ) = f at(θ) =
1

2ik

∞

∑
l=0

[(l + 1){exp(2iδκ=−l−1)− 1}+ l{exp(2iδκ=l)− 1}]Pl(cos θ) (37)

and

g(θ) = gat(θ) =
1

2ik

∞

∑
l=1

[exp(2iδκ=l)− exp(2iδκ=−l−1)]× P1
l (cos θ). (38)

In the present MCP approach, to describe e±-ion scattering, the scattering amplitudes,
f (θ) and g(θ), are employed as

f (θ) = f sr(θ) + f C(θ), g(θ) = gsr(θ) + gC(θ). (39)
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2.3. Scattering Cross Sections

Once the phase shifts and the scattering amplitudes are determined, the elastic DCS
per unit solid angle for unpolarized e± are obtained by the following equation

dσ

dΩ
= | f (θ)|2 + g(θ)|2. (40)

In case of bare nucleus, the contributions to scattering amplitudes from short-range
potential become zero and, therefore, the DCS per unit solid angle for the elastic scattering
of e± by the bare radon is calculated using

dσ

dΩ
= | f C(θ)|2 + |gC(θ)|2. (41)

The initially unpolarized e± beam becomes polarized after being scattered in the
direction θ. The degree of this spin polarization is given by Sherman function [37]

S(θ) ≡ i
f (θ)g∗(θ)− f ∗(θ)g(θ)
| f (θ)|2 + |g(θ)|2 . (42)

The integrated elastic, momentum transfer, viscosity, total and inelastic cross sections
are defined by the following respective expressions

σel =
∫ dσ

dΩ
dΩ = 2π

∫ π

0
(| f (θ)|2 + |g(θ)|2) sin(θ)dθ, (43)

σm = 2π
∫ π

0
(1− cos θ)

(
dσ

dΩ

)
sin(θ)dθ, (44)

σv = 3π
∫ π

0

[
1− (cos θ)2

]( dσ

dΩ

)
sin(θ)dθ, (45)

σtot =
4π

k
Im f (0) (46)

and
σine = σtot − σel (47)

Here, Imf(0) denotes the imaginary part of the direct scattering amplitude in the
forward direction at θ = 0.

The Coulomb glory effect is estimated by scaling DCS in Equation (40) as [38]

dσ̃

dΩ
=

(
4E
q

)2 dσ

dΩ
(48)

The scaled Rutherford differential cross section (SRCS), independent of energy and
ionic charge, is given as

dσ̃c

dΩ
=

1
sin4 θ/2

. (49)

The value of SRCS is unity at 180◦ and hence the scaled differential cross section
(SDCS), dσ̃

dΩ in Equation (48) represents the ratio of e−-ion DCS and corresponding Ruther-
ford DCS at θ = 180◦.

3. Numerical Analysis

In Figure 1a,b, we present r-dependence real part of the short-range potential Vsr as
well as the Coulomb potential Vc both for electron and positron projectiles. We present
separately the contribution of static potential Vst(r), because it dominates the optical
potential. All of these potentials are plotted as a function of distance r from the nucleus. The
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Bohr radius a0 = h̄2

me2 = 1 a.u., and the location of the nth electronic shell is approximated
as

r = a0
n2

Z
. (50)

It is worth mentioning that, due to the presence of the exchange and the absorption part
in optical potential, there are some dependence on the collision energy, and the potentials
shown in Figure 1 are calculated for 1 keV. The nuclear radius of radon is '1.4× 10−4 a.u.
At r < 10−4 a.u., the nuclear potential accounts for the finite nuclear size and is derived
from the Fermi charge distribution. As in Figure 1a, the electronic potential coincides with
the Coulomb field in the region r . 10−3 a.u., i.e., outside the nucleus, but well inside the
K-shell. The respective potentials for positron scattering are shown in Figure 1b. Due to
opposite charge of the projectile the optical potential for positron scattering has basically a
sign reversal as compared to the electronic potential.
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Figure 1. Potentials (multiplied by r) for electrons (a) and positrons (b) as a function of distance r
from the nucleus. Shown are the real part VR (——, red) and its static part Vst (−−−−, black) of
the short range OPM potential. The Coulomb field Vc = −Z/r is also included (· · · · · · , blue). In (c)
shown is the r dependence of electron charge density.

Figure 1c displays the r-dependence of electronic number density $e for the radon
atom. This figure demonstrates clearly the electronic shell structure as well as the positions
of hump appearing in the density distribution. From Equation (50), one gets r ≈ 0.016,
0.065, 0.147 and 2.344 a.u., respectively, for the K-, L-. M- and N-shells, which agree nicely
with the humps in the corresponding density. Two more humps are present in $e, the
positions of which are, however, underpredicted by the above formula since there are only
18 and 8 electrons in the O and P-shells, respectively.

Figure 2 demonstrates the sensitivity of different constituents of the real part of Vsr
used in the present study to predict DCS and S(θ) both for electrons and positrons scattering
from 222Rn atoms. For a sample case the energy dependence of the DCS and of the S(θ) are
given at the scattering angle θ = 90◦, proceeding from Vst to Vopt by successively including
Vex, Vcp and Wabs. It is evident from this figure that the static potential Vst is the dominant
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contributor to both DCS and S(θ) over the entire energy range. The remaining components
(i.e., the exchange Vex, the polarization Vcp and the absorption Wabs) have very small
contribution except at lower energies. For electron impact scattering, in Figure 2a,b, the
inclusion of the Vex leads to a considerable modification of the structures both in DCS and
S(θ). Furthermore, this influence of Vex remains important up to 100 eV for the DCS and
50 eV for the S(θ). Due to the absence of Vex, the DCS and S(θ) for positron scattering, in
Figure 2c,d, show monotonous behavior. This behavior indicates that the atomic electrons
just screen the nuclear field in the case of positron impact, while they act as individual
scattering centers for electron scattering.
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Figure 2. Energy dependence of (a,c) the DCS and (b,d) the Sherman function S(θ) for electron
(a,b) and positron (c,d) impact on 222Rn at a scattering angle of 90◦. Shown are the results (· · · · · · ,
black) from Vst; (· · · · · · , blue) from Vst + Vex; (− − −−, green) from VR = Vst + Vex + Vcp and
VR = Vst + Vcp, respectively, for electron and positron projectiles; and (——, red) from Vopt =

Vst + Vex + Vcp − iWabs for electron scattering and Vopt = Vst + Vcp − iWabs for positron scattering,
respectively.

The polarization potential Vcp contributes significantly only at energies below 10 eV
and its contribution decreases rapidly at higher energies. At this lower energies, the Vcp
counteracts Vex by reducing the excursions in the DCS and in S. However, for positron
scattering, the Vcp induces some minor modulations into the monotonous DCS and S(θ) at
Ei = 10–100 eV. The absorption potential Wabs diminishes the contribution of Vst starting
from the ionization threshold (∼10 eV) and continues up to 5 keV for the DCS, but up to
100 eV for the S(θ). It is worth mentioning that the magnitudes of both the DCS and S(θ)
are several fold lower for positron projectile signifying that the positron scattering is rather
weaker as compared to its electron counterpart.

In Figure 3, we present DCS and Sherman function for 50–5000 eV electrons impact
on 222Rn to demonstrate the effect of different contributions to the Vsr. One can notice,
from Figure 3a at 50 eV, a significant difference between the DCS results from Vst and Vopt,
particularly in the forward hemisphere. This is due to the greater influence of the other
potential constituents on the cross section at lower energies than so at higher energies. The
absorption potential remains important at energies up to about 500 eV, decreasing the DCS
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by up to a factor of 2. Even at 5 keV, its influence is still visible. Comparison is also made
with the result for a pure Coulomb field Vc, for which the DCS diverges at zero angle. It
is seen that the Vsr results gradually approach the Coulombic behavior with increasing
energy. This happens due to the deeper penetration of the projectile at higher energies
and thereby making the effect of the screening of the nucleus by the surrounding electrons
lesser and lesser.
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Figure 3. Angular dependence of (a,c,e) the DCS and (b,d,f) the Sherman function for electrons at
50 eV (a,b), 500 eV (c,d) and 5000 eV (e,f) colliding with 222Rn. Shown are the results from Vst (· · ·,
black) and Vopt (——, red). Included also are the results for the Coulomb field Vc (· · ·, blue).

As concerns the Sherman function with its three resonance structures at the DCS
minima, the sign of the excursion is conserved at the first two structures, but reversed at
the third one when other contributions are added to Vst. With increasing energy, oscillatory
behavior of the Sherman function from the Coulomb field gradually matches the respective
behavior induced by the full Vsr potential. Figure 4 displays the respective results for
positron impact. The correlation-polarization potential induces oscillations both in the DCS
and in S(θ) at small energies. The influence of the absorption potential is even stronger than
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for electrons, particularly for the spin asymmetry. Furthermore, the Coulombic behavior is
not yet approached at 5 keV.

Figure 5 displays energy dependence of the DCS and the Sherman function for
e±-222Rn scattering comparing the predictions of the Vst and Vsr with those of the Coulomb
field Vc. For electron impact scattering, as seen in Figure 5a, the differences between the
DCS results predicted by Vsr and those by Vc gradually decrease with increasing energy,
and almost vanish at energies beyond 10 keV. In the case of S(θ), in Figure 5b, the os-
cillatory behavior induced by these two potentials gradually matches with increasing
incident energies. Same features are observed for the positron impact scattering as evident
in Figure 5c,d. However, the differences between the DCS results predicted by these two
potentials persist in more higher energies (50 keV) indicating that the influence of the
absorption potential is even stronger than for electrons.
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Figure 4. Same as Figure 3, but for the positron impact scattering.
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Figure 5. Energy dependence of (a,c) the DCS and (b,d) the Sherman function S(θ) for electron (a,b)
and positron (c,d) impact scattering from 222Rn at a scattering angle of 90◦. Shown are the results
from Vst (· · · · · · , black), Vopt (——-, red) and Vc (· · · · · · , blue).

4. Results and Discussion
4.1. Electron Scattering from Neutral Radon

The DCS for electrons elastically scattered from neutral radon calculated using our
modified Coulomb potential over a wide range of energies 10 eV ≤ Ei ≤ 10 keV are
presented in Figures 6–9. As seen in these figures, the number of minima in the present
DCS distributions varies with energy from 1 at Ei = 10 eV to 3 at 20 ≤ Ei ≤ 200 eV and
to 4 at 300 ≤ Ei ≤ 700 eV. The DCS again reveals 3 minima at 900 ≤ Ei ≤ 1000 eV and
2 at 1500 ≤ Ei ≤ 5000 eV. With a further increase in the collision energy to Ei ≥ 6000 eV,
the number of minima reduces to 1. These minima in the cross sections, the so-called
Ramsauer–Townsend (R-T) structures [39], are due to diffraction effects arising from the
quantum-mechanical nature of matter. The R-T structures disappear when the collision
becomes so energetic that the lepton-atom interactions occur inside the K-shell. These
structures are, therefore, of great interest to study collision dynamics.
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Figure 6. Angular dependence of the differential cross section of electrons scattering from 222Rn
at impact energies Ei = 10, 20, 30, 40, 50 and 60 eV. Shown are the results from our MCP (——),
Neerja et al. [19] (· · · · · · ) and Sin Fai Lam [13] (−−−).
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Figure 7. Angular dependence of the differential cross section of electrons scattering from 222Rn at
Ei = 70, 80, 90, 100, 150 and 200 eV. Included are the results from Neerja et al. [19] (· · · · · · ) at 100 and
200 eV.
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Figure 8. Angular dependence of the differential cross section of electrons scattering from 222Rn at
Ei = 300, 400, 500, 600, 700 and 900 eV.
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Figure 9. Angular dependence of the differential cross section of electrons scattering from 222Rn at
1 ≤ Ei ≤ 10 keV.

As there is no experimental data for this scattering system, we compare our DCS
results with the optical model calculations of Neerja et al. [19] available at 10–200 eV and
semi-relativistic calculations of Sin Fai Lam [13] at 20–30 eV. For Ei ≥ 300 eV, we have found
neither any experimental nor other theoretical results to compare with. We anticipate that
the present results might be useful for applications and comparisons for future experimental
as well as theoretical studies. The comparison, where possible, revealed that the three
methods exhibit oscillations at about the same scattering angles but with little differences in
the magnitude. These differences signify the sensitivity of the theoretical models involving
different interaction potentials. It is worth mentioning that Neerja et al. [19] used optical
potential but without the long-range Coulomb potential. The poor agreement of our results
with those of [19], at 10 eV in Figure 6a, may be due to the onset of the inelastic threshold
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that interplay between the real and imaginary components of the optical potential due to
dispersion.

In Figures 10–12, we present our MCP results of the Sherman function S for e−-222Rn
scattering at incident energies 10 ≤ Ei ≤ 1000 eV. One can see in these figures that the
minima in S(θ) are strongly related to the minima in the DCS distributions. However,
the structures in S(θ) are much more pronounced than those in the DCS. This is expected
because the spin asymmetry is more sensitive to the choice of potentials and methods of
calculations. It is also evident that, at low energies (Ei ≤ 100 eV), the magnitudes of | S |
are higher at forward scattering angles than at backward angles. This is due to the effect of
the exchange potential that deepens the minima, but is less important at backward angles.
In contrast, at higher energies (≥150 eV), the magnitude of | S | gets larger with increasing
scattering angle. This is the effect of the stronger nuclear field on the spin polarization at
the smaller projectile-nucleus distance.
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Figure 10. Angle dependent Sherman function S for elastic scattering of 10, 20, 30, 40, 50 and 60 eV
electrons from neutral radon atoms: — curves, present calculations (MCP); · · · · · · curves, ref. [19]
and −−− curves, Ref. [13].
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Figure 11. Same as Figure 10, but at impact energies of 70, 80, 90, 100, 150 and 200 eV.

Because of the absence of any experimental data we compare our S results again
with the calculations of Neerja et al. [19], available at 10, 50, 100 and 200 eV, and of Sin
Fai Lam [13], available at 20 and 30 eV. Similar to the DCS comparison, one can observe
that these three calculations of Sherman function agree closely with one another with
the deviations as follows: (i) a tiny differences in magnitude of | S | at the minima or
maxima positions, (ii) at 10 eV, present method predicts a minimum at 110◦, while that
from [19] is observed at 100◦, (iii) at 50 eV, the third extremum predicted by the present
method and that of Neerja et al. [19] are opposite in sign. All of these differences might be
attributed due to the different components of optical potentials used in these two methods
as already mentioned earlier. More data and calculations might be helpful to shed light on
the presence of these discrepancies.
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Figure 12. Same as Figure 10, but at impact energies of 300, 400, 500, 700, 900 and 1000 eV.

Figure 13 displays the energy dependence of the DCS and Sherman function of the
elastic e−-222Rn scattering over the energy range 1 eV ≤ Ei ≤ 1 MeV at two forward
scattering angles (θ = 30◦ and 90◦) and one backward angle (θ = 150◦). This figure
(panels a, c and e) clearly demonstrates that strong R-T structures are present in the DCSs
at all scattering angles for kinetic energies Ei < 3 keV. It is also revealed that the R-T
structures gradually fade out as Ei approaches towards the M-subshells binding energies
(3–4.6 keV [40]). Beyond 3 keV, the DCS declines monotonously with Ei. This is expected
because the pure Coulomb field of the nucleus dominates in this energy regime.
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Figure 13. Energy dependence of the DCS and the Sherman function for elastic scattering of electrons
from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.

The energy variation of the corresponding Sherman function (panels b, d and f in
Figure 13) shows that the magnitude of | S | increases with the increase of scattering angles
θ. The appearance of the structure continues up to more energies at lower scattering angles
than at higher one. However, the position of the highest extremum is shifted to higher
energies with increasing the scattering angles. All of these features might be explained
as the fact that the exchange potential, which significantly affects the minima, has less
influence in the backward direction. For high energies, on the other hand, due to the
smaller projectile-nucleus distance, the stronger nuclear field has a significant effect on the
spin polarization implying that the magnitude of | S | increases with increasing scattering
angle.
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Figure 14 depicts the energy variation of additional polarization parameters U(θ)
and T(θ) at few selected angles (θ = 30◦, 90◦ and 150◦). The complete dependence of the
scattering process on the spin variables can be obtained from these parameters, where

U =
2Im f (θ)g∗(θ)

| f (θ) |2 + | g(θ) |2 (51)

and

T =
| f (θ) |2 − | g(θ) |2
| f (θ) |2 + | g(θ) |2 (52)
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Figure 14. Energy dependence of the spin polarization parameters U and T for elastic scattering of
electrons from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.
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As no experimental data and other theoretical studies of U and T parameters are
available in the literature, we display only our present results providing further impetus
for experimental data for anticipated applications. The spin asymmetry parameters S(θ),
U(θ) and T(θ) arise from the interference effect of the direct and spin-flip amplitudes and
they are sensitive to both the spin-dependent and correlation interactions. The values
of U and T depend on S by the conservation relation: S2 + U2 + T2 = 1, and are useful
indicators of the total polarization, S(θ) = ±1.

In Figure 15a, we display the energy dependence of the angular distribution of the
DCS minima obtained for electrons elastically scattered from neutral radon atoms. As seen
in this figure, the low-angle minima, corresponding to curves 1 and 2, are not found in
the DCSs below 11 eV, but maintain their appearance up to 1200 eV. The angular positions
of these minima vary from 28◦ at 75 eV to 83◦ at 300 eV. The intermediate-angle minima
(curve 3), on the other hand, are present at all energies below 2000 eV with the angular
positions varying between 88◦ and 120◦. The high-angle minima (curve 4) in the DCS are
seen to appear for collision energies 10.8 ≤ Ei ≤ 2500 eV.
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Figure 15. Energy dependence of the angular positions (a) and the DCS values (b) of the deep minima
for electrons elastically scattered from neutral radon atoms. Furthermore, are presented the angular
dependence of the DCS and S(θ) for some incident energies in the vicinity of the critical minimum at
(Ec=20.5 eV, θc = 95.5◦) (c,d) and (Ec=1882 eV, θc = 137.5◦) (e,f).
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There are some deep minima which remain conspicuous among the minimal DCS
values. Furthermore, these deepest minima can be traced by plotting the energy dependent
angular distribution of the DCS minima, shown in Figure 15a. The present study predict
a total of 18 deep minima in the DCS, those are depicted in Figure 15b. There are 6 such
deep minima from each of the low-angle (curves 1 and 2), intermediate-angle (curve 3)
and high-angle (curve 4) regions. The low-angle minima are visible at 22.8, 39.2, 100, 284.0,
300 and 502.75 eV; the intermediate-angle minimum are at 2.5, 20.5, 38.6, 180, 381.0 and
1004.5 eV; and the high-angle minimum are at 24.8, 80, 199.0, 289.5, 608.0 and 1882.0 eV. For
these energy-dependent DCS deep minima to be a critical minimum (CM), there are three
important criteria: (i) the magnitude of the spin-flip amplitude must be larger than that of
the direct amplitude, i.e., | g(θ) |>| f (θ) |, (ii) the DCS at a CM attains a local minimum,
and (iii) in the vicinity of a CM, the scattered electrons acquires total polarization (S = ±1).

In view of criterion (i), among the 18 deep minima, shown in Figure 15b, 14 deep
minima qualify to be CM. The remaining 4 minima, located at 80, 100, 180 and 300 eV,
are not CM as | g(θ) |<| f (θ) | for them. The energy and angular positions of the
14 CMs, denoted, respectively, by the critical energies Ec and the critical angles θc, are
listed in Table 1. The positions of these CMs in terms of impact energy as well as scattering
angle are clearly shown in 3D-plot of the DCS in Figure 16. The highest critical energy
(Ec = 1882.0 eV) occurs at θc = 137.5◦ whereas the highest critical angle (θc = 155.0◦)
shows up at Ec=199.0 eV.

Figure 16. A three dimensional plot of the present DCS for electrons elastically scattered from neutral
radon atoms.
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Table 1. The positions of the DCS CM predicted by the present theory for electrons elastically
scattered from neutral radon atoms.

Ec θc | f (θ) | | g(θ) |
|(eV)| (deg.) (cm) (cm)

2.5 120.5 1.92 × 10−9 3.90 × 10−9

20.5 95.5 3.73 × 10−10 1.46 × 10−9

22.8 49.5 1.66 × 10−10 2.06 × 10−9

24.8 136.5 1.89 × 10−10 9.11 × 10−10

38.6 90.0 2.04 × 10−10 1.10 × 10−9

39.2 39.5 2.59 × 10−10 8.38 × 10−10

199.0 155.0 7.92 × 10−11 1.90 × 10−10

284.0 82.0 6.46 × 10−11 3.76 × 10−10

289.5 149.0 1.42 × 10−11 1.73 × 10−10

381.0 119.5 8.37 × 10−11 3.05 × 10−10

502.75 71.0 1.30 × 10−11 3.35 × 10−10

608.0 153.5 6.49 × 10−11 9.92 × 10−11

1004.5 101.0 1.44 × 10−11 3.05 × 10−10

1882.0 137.5 3.45 × 10−11 1.94 × 10−10

In Figure 15c–f, also we consider our predicted CMs for criteria by presenting angular
variations of DCS and Sherman function for some incident energies in the vicinity of two
CMs at (Ec = 20.5 eV; θc = 95.5◦) and (1882.0 eV, 137.5◦). As evident in Figure 15c, the
DCS attains its lowest value exactly at Ec = 20.5 eV. A slight increase in energy to 21.5 eV or
decrease to 19.5 eV, the DCS gets higher value. Similar result is also observed in Figure 15e,
where the DCS value is lowest at Ec = 1882.0 eV than the values at 1892.0 and 1872.0 eV
in the proximity. Again, from Figure 15d, it follows that, in the vicinity of the CM at
(Ec = 20.5 eV; θc = 95.5◦), the maximum spin polarization (MSP) varies from −0.990 at
(Ei = 21 eV; θ = 92.0◦) to +0.999 at (Ei = 20.15 eV; θ = 98.5◦). A similar behavior is also
observed in Figure 15f for the CM at (Ec = 1882.0 eV; θc = 137.5◦). Here, the MSP attains
to +0.989 and −0.982 at (Ec = 1937.0 eV; θc = 136.0◦) and (Ec = 1777.0 eV; θc = 139.5◦),
respectively, from positive and negative excursion. In the vicinity of each of 14 CMs, we
have calculated MSP points at which the polarization reaches extremal values of both
signs. A total of 28 such points are found and are listed in Table 2 with their energy Ed and
angular θd positions. One can see in Table 2 that a large polarization is achieved at all of
these points that can be considered as total polarization points [41]. Figure 17 displays a
3D plot of the positions of these MSP points. All these results demonstrate the efficacy of
the present theory in determining the CM positions precisely.

Table 2 also presents the energy widths ∆E, the difference between Ec and Ed, and the
angular widths ∆θ, the difference between θc and θd, for each MSP point. The evaluation
of these energy and angular widths are important to know the sharpness of the DCS
and corresponding S distribution at a CM. For an example, if we consider the high-angle
CM at (Ec = 608.0 eV, θc = 153.5◦), the corresponding MSP = +0.98937 at Ed = 612.7
eV with +∆E = | 608.0− 612.7 | = 4.7 eV and +∆θ = | 153.5− 153.0 | = 0.0◦,
while MSP= −0.91133 at Ed = 610.7 eV with −∆E = | 608.0− 610.7 | = 2.7 eV and
−∆θ = | 153.5− 153.0 | = 0.5◦. Therefore, the widths of the DCS valley are 4.7 + 2.7 =
7.4 eV along the energy axis and 0.0◦ + 0.5◦ = 0.5◦ along the angular axis. These widths
indicate that the angular DCS distribution at the CM and the corresponding S distribution
near the MSP points are both very sharp.
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Table 2. Maximum spin polarization (MSP) with their positions (Ed, θd) and deviations in energy ∆E
and angle ∆θ from the respective CM positions for e−-222Rn elastic scattering.

MSP Ed (eV) θd (deg) ±∆E (eV) ±∆θ (deg)

+0.99912 2.90 116.5 0.40 4.0
-0.83577 4.95 124.0 2.45 3.5
+0.99897 20.15 98.5 0.35 3.0
-0.98950 21.00 92.0 0.50 3.5
+0.99888 24.10 47.5 1.30 2.0
-0.99728 21.70 52.0 1.10 2.5
+0.99172 23.70 134.5 1.10 2.0
-0.99993 25.60 137.5 0.80 1.0
+0.99863 40.60 87.0 2.00 3.0
-0.97013 34.00 92.0 4.60 2.0
+0.99630 36.70 41.0 2.50 1.5
-0.99872 40.70 38.5 1.50 1.0
+0.97862 192.00 156.0 7.00 1.0
-0.99858 201.50 154.5 2.50 0.5
+0.91586 266.00 82.5 18.00 0.5
-0.99647 299.00 82.0 15.00 0.0
+0.99018 291.50 148.0 2.00 1.0
-0.96734 276.20 150.0 13.30 1.0
+0.99993 360.00 121.0 21.00 1.5
-0.99981 401.00 118.0 20.00 1.5
+0.97688 486.00 70.5 16.75 0.5
-0.93089 517.50 71.5 14.75 0.5
+0.98937 612.70 153.5 4.70 0.0
-0.91133 610.70 153.0 2.70 0.5
+0.99497 1002.00 99.5 2.50 1.5
-0.95727 1004.00 102.5 0.50 1.5
+0.98881 1937.0 136.0 55.00 1.5
-0.98166 1777.0 139.5 105.0 2.0

Figure 17. A 3D-plot of the present Sherman function for electrons elastically scattered from neutral
radon atoms.
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In Figure 18, we resent our results of the integrated elastic (IECS), momentum-transfer
(MTCS), viscosity (VCS), inelastic (INCS) and total (TCS) cross sections for 1 eV≤ Ei ≤ 100 keV
electrons scattering from neutral radon atoms. We are not aware of any experimental data
of these observables available in the literature. Therefore, we compare our results of IECS,
MTCS, INCS and TCS with theoretical predictions of Neerja et al. [19] available at Ei =
2.0–500.00 eV and IECS, MTCS and VCS of Mayol and Salvat [20] at Ei = 100 eV–100 keV.
The comparison shows that our results agree well with those of Mayol and Salvat [20].
At Ei < 100 eV, our results disagree significantly with those of Neerja et al. [19] specially
in the vicinity of minima positions. In this energy domain, the present theory predicts
deep minima whereas the predictions from [19] show very shallow minima. One can see
that, beyond 5 eV (the first excitation energy of radon),the TCS is greater than IECS. This
expected because of the absorption of some particles into the inelastic channels.
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Figure 18. Energy dependence of the (a) integrated elastic, (b) momentum-transfer, (c) viscosity,
(d) inelastic and (e) total cross sections for electron impact scattering from neutral radon atoms.
Presented are the theoretical calculations — for the present results, − − − for Neerja et al. [19],
.... for Neerja et al. [19] and ◦ ◦ ◦ for Mayol and Salvat. SEP and SEPa, respectively, denote the
static-exchange-polarization potentials and SEP with absorption potential.
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4.2. Positron Scattering from Neutral Radon

Figures 19–22 present angular dependent DCS for the elastic scattering of positrons
from neutral radon at impact energies 10 eV ≤ Ei ≤ 10 keV. As evident in these figures,
unlike electron DCSs the positron counterparts show relatively fewer number of maxima
and minima. Two significant minima are seen at Ei = 10 eV and only one at 10 < Ei ≤ 30 eV.
After that few very shallow minima are obtained within the energy domain of 40 eV≤ Ei ≤
150 eV confined to lower scattering angles. At 200 eV and beyond, the DCS values decrease
monotonously with increasing incident energies.
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Figure 19. Differential cross sections for 10, 20, 30, 40, 50 and 60 eV positrons elastically scattered
from neutral radon atoms as a function of scattering angle.
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Figure 20. Same as Figure 19, but at impact energies of (a) 70 and 80 eV, (b) 90 and 100 eV, (c) 150
and 200 eV, (d) 300 and 400 eV, (e) 500 eV, and (f) 1000 eV. In addition, the calculations of Dapor and
Miotello [21] at 500 and 1000 eV are presented.
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Figure 21. Same as Figure 19, but at impact energies of 1500, 2000, 2500, 3000, 3500 and 4000 eV. ◦ ◦ ◦
curves are the calculations of Dapor and Miotello [21].

We have not found any experimental measurements for positron impact on radon
targets. The present DCS results for positron impact scattering are, therefore, compared
with the only calculations of Dapor and Miotello [21] available for Ei = 500–4000 eV. The
comparison shows that the two calculations agree very well with each other except a slight
differences in magnitude at 500 eV for higher scattering angles.
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Figure 22. Same as Figure 19, but at impact energies of 5, 6, 7, 8, 9 and 10 keV.

In Figure 23, we display energy dependence of the DCS and of the corresponding
Sherman function for positron scattering from neutral radon atoms at three scattering angles
30◦, 90◦ and 150◦. As seen in this figure, minor structures appear in the DCS distributions
at lower scattering angles, and they fade with the increase of energy. The present DCSs
are again compared with those of Dapor and Miotello [21]. Similar to the case of electron
scattering, the Sherman function increases with increasing scattering angles. However, the
positron spin polarization is considerably smaller than that of its electron counterpart. This
might be due to the Coulomb-dominated behavior of the positron potential [42].
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Figure 23. Energy dependence of the DCS and the Sherman function for positrons elastically scattered
from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.

Energy dependence of the spin polarization parameters U and T for positrons elas-
tically scattered from neutral radon atoms are depicted in Figure 24 at θ = 30◦, 90◦ and
150◦. It is observed in this figure that, as expected, the variation of U and T with energy are
opposite to each other. Starting from zero, the magnitude of | U(θ) | increases very slowly
up to Ei = 10 keV, and beyond that it increases rapidly and reaches its maximum value. The
maximum value of | U(θ) | is obtained at θ = 90◦. Below and beyond this scattering angle,
the | U(θ) | values decrease. The parameter T, on the other hand, starts at its maximum
and slowly decreases with energies. Beyond Ei = 10 keV, the values of | T(θ) | sharply fall
to its minimum, which is the lowest at θ = 90◦. We are not aware of any experimental or
any other theoretical studies regarding these parameter for e± − Rn scattering. We expect
that the present study will encourage both experimental and theoretical groups to pay their
attention to this scattering system.
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Figure 24. Energy dependence of the spin polarization parameters U and T for positrons elastically
scattered from neutral radon atoms at scattering angles (a,b): 30◦, (c,d): 90◦ and (e,f): 150◦.

For e+-222Rn scattering, the present results of IECS, MTCS, VCS, INCS and TCS
calculated for 1 eV ≤ Ei ≤ 1 MeV are presented in Figure 25. It is noticeable that all these
results are considerably different in values and shape from their electron counterparts. The
magnitude of these cross sections is two to three times smaller than those due to electron
scattering. Regarding the shape, on the other hand, some structures are clearly visible in
IECS, MTCS and VCS curves for electron scattering, whereas they are very shallow in the
case of positron scattering. These variations certainly support the fact that the e+-222Rn
interaction is rather weaker as compared to its electron counterpart. It is worth mentioning
that the interaction potentials involved in these two projectiles are drastically different.
In the case of positron projectile, the static potential (Vst) is repulsive and the exchange
potential (Vex) is absent as opposed to the electron projectile. Moreover, the polarization
potential of the short range parts also different for both the projectiles.
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Figure 25. Energy dependence of the (a) integrated elastic, (b) momentum-transfer, (c) viscosity,
(d) inelastic and (e) total cross sections for positron impact scattering from neutral radon atoms.
Presented are the theoretical calculations — for the present results, −−− for Baluja and Jain [12]
and ◦ ◦ ◦ for Dapor and Miotello [21].

Because of the absence of any experimental data of the above scattering observables
we compare our IECS, INCS and TCS results with the theoretical calculations of Baluja and
Jain [12] available for 20 eV ≤ Ei ≤ 1 keV and our IECS, MTCS and VCS results with those
of Dapor and Miotello [21] available for 0.5 keV ≤ Ei ≤ 4 keV. The comparison shows
that the present results produce a nice agreement with those of Dapor and Miotello [21].
However, a noticeable disagreement is seen between our results and those of Baluja and
Jain [12], especially in the case of IECS. This difference again might be due to the different
procedures of calculations used by these two methods.
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4.3. e± Scattering from Radon Ions

In Figures 26 and 27, the energy dependent DCS and the corresponding Sherman
function for e−-Rnq+ scattering are displayed, where q = 1, 10, 30, 50, 70 and 86 indicates
the ionic states, at a fixed scattering angle of 90◦. To the best of our knowledge, there are
neither any experimental nor any other theoretical studies on theses scattering systems
available in the literature.
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Figure 26. Energy dependent DCS and corresponding Sherman function for the elastic scattering of
electrons from (a,b): Rn+, (c,d): Rn10+ and (e,f): Rn30+ at fixed scattering angle θ = 90◦.
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Figure 27. Energy dependent DCS and corresponding Sherman function for the elastic scattering of
electrons from (a,b): Rn50+, (c,d): Rn70+ and (e,f): Rn86+ at fixed scattering angle θ = 90◦.

As seen in Figures 26 and 27, the DCS values, at a particular energy, increase with
increasing ionic charge of the target. This is expected according to the Rutherford scat-
tering formula. The number of structures in DCSs increases with increasing ionic charge.
However, increasing charge state weakens the interference pattern. This might be due
to the decreasing contributions of short range potential of the bound electrons. Sharp
structures in DCS are observed at low energies. This could be explained as the interference
effect between the scattered waves due to the short range and Coulombic forces. At such
low energies, velocity of the incident electron is comparable to the velocities of the bound
electrons of the ion. Furthermore, the short range potential becomes important due to the
enhanced electron-electron correlations. The structures in the Sherman function are related
to those in the DCSs, but they are more pronounced in Sherman function distributions.

Figures 28 and 29 display the DCS and the corresponding Sherman function results
for positron projectiles elastically scattered from various ionic states of radon. It is seen



Atoms 2021, 9, 59 37 of 47

that the variation of the cross section and the corresponding Sherman function with the
ionic charge is similar to their electron counterpart. However, the spin asymmetry for
positrons is extremely small signifying that the positron scattering is rather weaker than
the electron scattering.
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Figure 28. Energy dependent DCS and corresponding Sherman function for positrons elastically
scattered from (a,b): Rn+, (c,d): Rn10+ and (e,f): Rn30+ at fixed scattering angle θ = 90◦.
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Figure 29. Energy dependent DCS and corresponding Sherman function for positrons elastically
scattered from (a,b): Rn50+, (c,d): Rn70+ and (e,f): Rn86+ at fixed scattering angle θ = 90◦.

Figure 30 displays the energy variation of the IECS, MTCS and VCS of electrons
elastically scattered from different charge states of radon ions. As seen in this figure, for
ions with lower q (< 30), the IECS increases with increasing the charge. This is expected
because of the screening effect of the surrounding electron cloud. The interaction potential
energy of the projectile electron with bound electron cloud is opposite in sign to that of
the nucleus charge. Furthermore, the screening effect of the surrounding electron cloud is,
therefore, strong for the ions of lower charge. The cross section increases as the increase
of q diminishes the screening effect. It is also evident that, for (q ≥ 30), the IECS is
almost independent of q and varies in conformity with the Rutherford scattering formula
corresponding to the nuclear charge Z. For ions with higher q, the cross section is almost
solely determined by the nuclear charge of the ion. From Figure 28, one can see the similar
trend in the energy dependent MTCS and VCS with the ion charge q.
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Figure 30. Energy dependence of the IECS, MTCS and VCS for the elastic scattering of electrons
from (a) Rn+, (b) Rn10+, (c) Rn30+, (d) Rn50+, (e) Rn70+ and (f) Rn86+.

Figure 31 presents the Coulomb glory at three different ionic states (q = 40, 55 and 70)
of radon. This Coulomb glory arises due to the electrostatic screening of nuclear potential
by atomic electrons. Because of the presence of Coulomb glory the scaled differential cross
section (SDCS) becomes maximum at θ = 180◦. An important feature of the Coulomb
glory is that for a particular ion charge, there is a critical energy at which the SDCS gets its
maximum value. In the vicinity of that critical energy the cross sections become smaller. As
seen in Figure 31a, for q = 40, the maximum SDCS is observed at Ei = 850 eV. Furthermore,
SDCS gets lower values both for increasing energy to 1200 eV or decreasing to 300 eV.
Similar results are also observed for the ionicities q = 55, in Figure 31b, and for q = 70, in
Figure 31c. The maximum SDCSs, for later two ionicities, are observed at Ei = 450 and
225 eV, respectively.
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Figure 31. Angular variation of the scaled differential cross section for e−-Rnq+ scattering at different
energies for the ionicities q = (a) 40, (b) 55 and (c) 70. Furthermore, are present the scaled Rutherford
cross sections for the same scattering systems.

Figure 31 also revealed that, for a particular ion charge, the width of the maximum
increases with increasing energy, the ratio of ion DCS to Rutherford DCS decreases with
the increase of ion charge. One can also observed that, with the increase of ion charge, the
strongest Coulomb glory shifts toward low incident energy. This is expected because the
strength of the potential of the electronic cloud at the origin is stronger for lower degree
of ionicities than higher ones. It means that ion-target of high ion charge can cause low
energy electron to get backscattered and vice versa. This causes strongest Coulomb glory
to be observed at low incident energy for higher ion charge and at comparatively high
incident energy for low ion charge.

4.4. Comparison of the Electron and Positron Impact Results

In Figure 32, we compare the energy dependent DCS and the corresponding Sherman
function results at 90◦ for the scattering of electrons and positrons from neutral radon
atoms. The basic features of the DCS in the energy region above some tens of eV up to a few
keV are oscillations originated due to the diffraction of the projectile beam by the atomic
target electrons. The structures disappear when the collision becomes energetic enough
so that the beam has passed even the innermost K-shell electrons before the scattering
events take place. As seen in Figure 32a, for electron impact scattering, three DCS minima
appear within Ei = 30 eV to 3 keV, and beyond that the DCS decreases monotonously with
increasing energy. For positron impact scattering, on the other hand, the number of DCS
minima reduces to 2 and confined to low energies: the first minimum is at 2 eV and the
second one at 20 eV. The reduced number of DCS minima for positron projectile is due to the
absence of exchange potential, and low energy structure is the influence of the correlation
polarization potential. One can also see from Figure 32a that the values of positron DCS at
all energies are smaller than those of electron DCS. This feature supports the fact that the
target electrons do not serve as scattering centers for the positrons. Instead, they screen the
central field, thereby lowering the DCS as compared to its electron counterpart.
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Figure 32b displays the Sherman function results comparing between the electron and
positron impact scattering. For the case of electron scattering, pronounced structures are
observed in the Sherman function, the positions of which strongly correlate to those in the
DCS. For positron projectile, on the other hand, no structure appears up to 100 keV, and the
value of spin asymmetry is extremely low. This fact can be related to the repulsive potential
which prevents the positron to penetrate the nucleus in contrast to its electron counterpart.
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Figure 32. Comparison of (a) the differential cross section and (b) the corresponding Sherman
function for the collisions of electrons and positrons from neutral radon targets at the scattering angle
of 90◦.

In Figure 33, we compare our spin polarization parameters U and T results, respec-
tively, in Figure 33a,b, between electron and positron impact scatterings at fixed angle
θ = 90◦. It is revealed that, for electron scattering, multiple structures appear in both U and
T up to several hundred keV. However, the structures are more stronger at lower energy
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and become less pronounced with increasing energy. For positron scattering, on the other
hand, no structures are observed in U and T. Starting from zero the U parameter increases
very slowly with energy up to 300 keV and then increases rapidly. The same feature is also
observed in the case of T parameter but with opposite sign.
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Figure 33. Comparison of (a) the differential cross section and (b) the corresponding Sherman
function for the collisions of electrons and positrons from Rn50+ ion targets at the scattering angle
of 90◦.

Figure 34 compares the DCS and the Sherman functions of the electron and positron
impact scattering from Rn50+ ion targets. There is no significant difference between electron
and positron DCSs except a shallow minimum observed at 200 eV in electron DCS. In
electron impact Sherman function shows multiple structures with higher excursion with
increasing energy, whereas the Sherman function, for positron impact scattering, is almost
zero all through the displayed energy domain.
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Figure 34. Comparison of (a) the differential cross section and (b) the corresponding Sherman
function for the collisions of electrons and positrons from Rn50+ ion targets at the scattering angle
of 90◦.

In Figure 35, we depict energy variation of the IECS, MTCS, VCS, INCS and TCS
results for electron scattering from neutral radon atoms in comparison with those for
positron impact scattering. The comparison shows, at higher energy region (well above
1 keV), no significant difference in the above mentioned observables between the two
collision systems. However, at lower energy region (Ei < 1 keV), the cross sections produce
a remarkable change with changing the projectile. The R-T structures, for electron projectile,
are stronger both in number and intensity than those for positron counterpart. This result
indicates that the exchange, the polarization and the absorption potentials almost vanish at
energies beyond 1 keV. Furthermore, the static part, opposite in sign for the two projectiles,
is the sole contributor to the scattering and the potentials, with the same magnitude but
opposite in sign, make the same contribution to the scattering.
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Figure 35. Comparison of IECS, MTCS, VCS, INCS and TCS results for the collisions of electrons
and positrons from neutral radon at the scattering angle of 90◦.

5. Conclusions

In this paper, we report on the calculations of DCS, IECS, MTCS, VCS, INCS, TCS
and spin asymmetry parameters S, U and T for both the electrons and positrons impact
scattering from radon isonuclear series over a wide collision energy 1 eV ≤ Ei ≤ 1 MeV.
The aforesaid scattering observables have been calculated within Dirac relativistic partial
wave analysis employing a modified Coulomb potential. For the first time, the present
study furnishes the detailed analysis of the CM in the DCS distributions and the total
spin-polarization in the elastic scattering of electrons from neutral radon atoms. We also
present SDCS and RDCS, and demonstrate the Coulomb glory effects. We have not found
any experimental results, available in the literature, of these scattering observables for
these scattering systems. However, a comparison of our evaluated cross sections shows a
reasonable agreement with the available theoretical results.
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As expected, in the low energy DCSs, the present study observes interference struc-
tures for electron scattering and structureless behavior in the case of positron scattering,
whereas high energy DCSs for these two projectiles are similar in pattern. This indicates
that the exchange potential, present in e−-atom interaction, is responsible for the produc-
tion of maxima-minima. The same effect causes greater number of maxima- minima in the
angular distributions of DCS and S , at different energies, for the former scattering system
than the latter. Furthermore, this effect is negligible at high energies, thereby leading to
the almost parallel behavior of the DCS for both the projectiles. This study also reveals
the effect of the short-range potential , originating from the screening bound electrons, on
the cross section up to to charge state Rn30+. Beyond this charge state, the cross section
is almost independent of the charge state, due to the dominance of nuclear potential and
diminution of screening effect. The energy dependence of the IECS, MTCS, VCS, INCS
and TCS shows a non-monotonous pattern of the minimum-maximum type up to the
collision energy of 1 keV. At all energies and for both the aforesaid projectiles, the DCS
maximum occurs at the scattering angle θ = 0 and it gradually falls off with the increase
of the scattering angle in region of small angles. This arises due to the property of the
Legendre polynomial factor in the expression for f (θ) in the Equation (30).

For the present electron impact scattering, we obtain 18 deep DCS minima including
14 CMs, where the DCS attains its smallest value. In the proximity of these CMs, we
determine 28 MSP points where the spin polarization varies from +0.92 to +1.00 and from
−0.84 to −1.00, respectively, in positive and negative excursions. All of these MSP points
can be termed as the total polarization points. These results demonstrate the efficacy of the
present modified Coulomb potential in determining accurately the deepest DCS valley and
CM positions. Pronounced Coulomb glory effect, an amplification of elastic backscattering
due to the attractive screened Coulomb potential, is observed in the angular distribution of
elastically scattered electrons. Because of the strength of the potential of electronic cloud
to scatter electron through θ = 180◦, the strongest Coulomb glory effect is seen to shift
towards lower charge state. All of these analyses for e±-Rn scattering systems still await
verification by future experimental as well as theoretical studies.
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