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Abstract: The present paper revisits the determination of the semi-classical limit of the Feshbach
resonances which play a role in electron impact broadening (the so-called “Stark“ broadening) of
isolated spectral lines of ionized atoms. The Gailitis approximation will be used. A few examples of
results will be provided, showing the importance of the role of the Feshbach resonances.
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1. Introduction

Following the developments of the accuracy of observations in astrophysics and
laboratory physics, many needs for atomic data have appeared since the second half of the
20th century, and the needs are always growing. Furthermore, the constant development
of powerful computers also stimulates the calculations of atomic data on a large scale. In
addition, the access to these atomic data via online databases has become essential since
the beginning of the 21st century. In parallel, just after the publication of the fundamental
impact broadening theory [1] , the theory and calculations of collisional line broadening
showed a great expansion in the 1960s and 1970s, and many developments continued in
the decades that followed. In particular, the method developed by S. Sahal-Bréchot [2–6]
was inspired by the developments of the theory of electron-atom and electron-ion collisions
which has also rapidly progressed since the 1960s. However, compared to theoretical results,
experimental results remained few. Therefore, it remained difficult to test the validity of
the method and these new calculations by comparison with experimental results.

This method was designed to meet the needs of users. Hence, an approximate method
was developed for obtaining numerous data, but accurate enough for most of the needs.
Thus, the impact semi-classical perturbation theory for electrons and ions colliding with
neutral and ionized atoms was created and developed for isolated lines (neighboring levels
do not overlap) and began to be exploited in the 1970s [7], and then exploited on a large
scale in the decades that followed. The Stark-B database [8] is intended to implement these
published results, and the references to the corresponding publications as well. This work
is still continuing today [9].

This approximate method denoted by SCP was shown to be enough precise for the
needs: 20 to 30% for the widths, sometimes worse for the shifts: the SCP results agree with
the other theoretical methods [10–12], especially most of the quantum close-coupling ones,
and also with experimental results, [12] for instance. The uncertainty of the semi-classical-
perturbation results is due to the use of the perturbation theory [2,3,6]. However, the use
of a symmetrization procedure of the transition probabilities and inelastic cross-sections
improve the results [2,3,6]. For the widths, the accuracy is about 20 to 35%, sometimes
less at low temperatures, because elastic collisions and, therefore, close collisions are more
important, and the perturbation theory becomes not valid any longer. For the shifts, the
results can be less accurate than for the widths when they are small, due to negative
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interference effects between the upper and lower levels of the studied line. More details
can be found in [6] and are not repeated there.

In parallel, accurate quantum close coupling determinations and calculations of in-
elastic electron–atom and electron–ion cross-sections began to be created and developed
in the 1960s and in the decades that followed. Concerning electron–ion collisions, it was
established in the 1960s that the inelastic cross-sections are not zero at threshold. In addi-
tion, below the threshold of an excited level of an ion of charge Z, the elastic cross-section
of the lower level has an infinite number of resonances. These resonances are due to the
fact that the colliding electron can be trapped on an excited state of the ion of charge Z− 1.
This gives a a temporary ion of charge Z− 1, and the trapped electron can be ejected by
autoionization. These states form Rydberg series which converge towards the excited
state of the ion of charge Z. In order to obtain physical results for the elastic cross-section
below this threshold, an average over the resonances must be performed. The disconti-
nuities of the inelastic cross-sections are compensated by the discontinuities of the elastic
cross-section, and the final result is continuous. This average leads to an increase of the
elastic cross-section under the energy of the threshold of the excited level. The determi-
nation of this increase was the basic result of Gailitis, and the so-called Gailitis formula
followed [13]. This also concerns the inelastic fine structure cross-sections of a given term.
The same result was obtained by means of the quantum defect theory [14], and thus Gailitis
resonances could be included automatically in the quantum close-coupling calculations
of cross-sections and line broadening since the 1970s, Several publications followed, first
based the Schr’́odinger equation and relativistic effects treated by perturbations (R-Matrix
theory), and more recently based on the Dirac equation. This was not the case for the
weak coupling methods of calculations of ion-electron cross-sections (distorted wave or
semi-classical in particular): the increase of the cross-sections due to the Gailitis resonances
needed to be calculated and added independently. Therefore, an approximate Gailitis
formula was successfully developed in the first quarter of the 1970s. using the distorted
wave and also the semi-classical approximation. It was applied to the interpretation of
the visible and UV spectrum of the solar corona [15,16]. This allowed to interpret the
intensity of the green line of Fe XIV and of several EUV lines of the solar corona, in order to
determine in particular the local electron density. In fact, the energy levels of the spectral
lines of the solar corona are far from the thermodynamic equilibrium (the temperature is
very high and the electron density very low). Consequently, for obtaining the intensities of
these optically thin lines and for comparing them to observations, the system of statistical
equilibrium equations combining excitation and de-excitation by electron collisions and
de-excitation by spontaneous emission, the populations of the levels could be obtained.
Then, the intensities of these optically thin lines could be calculated. Thanks to the inclusion
of the Gailitis resonances in the fine structure cross-sections between the levels of the same
given terms, a correct spectroscopic diagnostic was obtained for the first time.

Therefore, this efficient method was adapted to semi-classical Stark broadening calcu-
lations in the second half of the 1970s [5], and the results were included in the corresponding
numerical code, but without publication of the method.

The purpose of the present paper is to remedy this lack and to revisit the determination
of the semi-classical limit of the Gailitis formula [13] applied to electron impact broadening
of isolated spectral lines of ionized atoms. This is the object of the following sections. Then,
a few examples will be provided, showing the importance of the inclusion of the Feshbach
resonances in the line width.

2. Brief Recall: Stark Broadening Widths of Isolated Lines of Ionized Atoms in the
Impact Approximation

Following the impact and the isolated line approximations, the line profile is lorentzian [1].
The formula giving the line widths and shifts in the impact approximation can be found
in many papers, for example in [1,6,17] for the original formula. Therefore we consider a
dipolar radiative transition between an initial level i, (γi Ji), and a final level f , (γ f J f ). The
γ are the other quantum numbers of the levels: γ = αL, where αL is the term, L is the total
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orbital angular momentum. α contains the configuration and the total spin of the electrons,
which is conserved if we consider allowed transitions in LS coupling. The total width at
half maximum intensity W reads:

W = NP

∫ ∞

0
dv v f (v)

 ∑
γJ 6=γi Ji

σ(γi Ji → γJ, v) + ∑
γ′ J′ 6=γ f J f

σ(γ f J f → γ′ J′, v)

+ σ(γi Ji ↔ γi Ji, v) + σ(γ f J f ↔ γ f J f , v)

− 2
∫ ∞

0
db 2π b (1)

× ∑
Mi M′i M f M′f m

(−1)2J f +M f +M′f
(

Ji 1 J f
−Mi m M f

)(
Ji 1 J f
−M′i m M′f

)

×Re
{
〈γi Ji Mi|T(v, b)|γi Ji M′i〉〈γ f J f M f |T∗(v, b)|γ f J f M′f 〉

} .

Np is the density of the perturbers (electrons in the present paper), v is their velocity,
which is integrated over a Maxwell distribution f (v).

T = 1− S is the transition matrix, S is the scattering matrix, which is symmetric and
unitary [1–3,6].

The σ denote the cross-sections. The first line of Equation (1) is the sum of the inelastic
ones between the initial level i (resp.final level f ) and the perturbing levels γJ (or γ′ J′).

The second line refers to the elastic cross-sections of the initial i and final level f .
The third line is the so-called interference term which is not concerned by the Gaili-

tis resonances.
b is the impact parameter in the semiclassical representation. In the quantum repre-

sentation, a summation over l, orbital quantum number of the incident electron, replaces
the integration over the impact parameter:

m v b = h̄
√

l(l + 1) (2)

and ∫
2πb db = ∑

l

2l + 1
k2 π (3)

The Feshbach resonances enter the elastic cross-sections and the inelastic fine structure
cross-sections between the levels σ(γi Ji → γi J′i , v) and σ(γ f J f → γ f J′f , v).

In fact, if the fine structure splitting is small compared to the ion–electron interaction
potential, and if LS coupling is valid, the line width of each fine structure component is
equal of the width of the multiplet [18]. Indeed, if the fine structure splitting ∆EFS is small
when compared to the interaction potential, the atomic spin can be decoupled during the
collision process. This arises from the Heisenberg uncertainty principle. In other words,
if the spin has no time to precess, the fine structure interaction can be ignored during
the collision. This was checked in [12]: the relative difference between the widths of the
fine structure components of C IV (3s-3p) and P XIII (3s-3p) increases from 0.5% for C IV
to 12% for P XIII (in units of wavelengths), but is smaller in units of angular frequency
(see below in Section 5.1). This is due to the difference between the wavelengths of the
two components, which is more important than the differences between the cross-sections
averaged over the Maxwell distribution .

In addition, we will assume LS coupling. Departures from LS coupling become
important for very highly ionized atoms, and for heavy elements. For these elements, the
atomic structure structure data is generally not sufficiently complete or not very accurate
for performing accurate semi-classical calculations of Stark widths. More simple but
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approximate methods can sometimes be used. For instance, a number of examples are
implemented in the Stark-B database [8].

Therefore, we will neglect departures from LS coupling in the following, and fine struc-
ture will not be taken into account. We will consider the Feshbach resonances modifying
the elastic cross-sections σ(αiLi ↔ αiLi, v) and σ(α f L f ↔ α f L f , v).

3. The Gailitis Formula for the Feshbach Resonances which Increase the Elastic
Cross-Section σ(kαL ↔ kαL)

Then, inspired by the obtained results for the case of the lines of the solar corona,
we will obtain a Gailitis approximate formula for the average of the Feshbach resonances
which increase the elastic cross-section σ(kαL↔ kαL). Atomic units are used throughout
the following. We use a quantum formalism.

S is the collisional scattering matrix. T = 1− S is the transition matrix.
The energy of the incident electron is k2/2.
Concerning angular momenta, upper cases refer to the ion, and lower cases to the

colliding electron. Thus, the quantum numbers S, L, M refer to the atom, and s, l, m refer
to the incident electron.

αL is an atomic level. L denotes the angular momentum quantum number of the ion,
and α denotes the other quantum numbers. EαL is its energy.

We use the quantum coupled representation in this subsection.
The total energy ET and the total angular momentum LT of the system ion+electron

are conserved during the collision.
LT = l + L
ET = k2

2 + EαL ,
and, due to the spherical symmetry of the problem, the matrix elements of S and T do not
depend of its projections MT .

Using [15,16], the contribution of the mean effect of Feshbach resonances to the elastic
cross-section σ(kαL↔ kαL) is given by their Gailitis approximate formula in the so-called
“coupled representation“. It reads:

∆σ(k αL↔ k αL) =
π

k2
1

2L + 1 ∑
lLT

(
2LT + 1

)
(∆T)2, (4)

with

(∆T)2 = ∑
α1l1L1

∣∣T(k α l L LT ; k1 α1 l1 L1 LT)∣∣2 ∣∣T( k1 α1 l1 L1 LT ; k α l L LT)∣∣2
∑

α2l2L2

|T( k1 α1 l1 L1 LT ; k2 α2 l2 L2 LT)|2
, (5)

where index 1 refers for closed shells and index 2 for open shells, and we denote the matrix
elements

〈
kαlLLT

∣∣T∣∣k1α1l1L1LT〉 as T
(
k α l L LT ; k1 α1 l1 L1 LT), and so on in the following.

The elements of the T-matrix are calculated for energies just above the new threshold
and extrapolated under this new threshold. This is the fundamental result which signifies
that the averaged capture cross-section which enhances the elastic cross-section is equal to
the extrapolation of the excitation cross-section under the threshold. This is valid because
the distances between the resonances are large compared to their widths, and thus the
series do not overlap and interferences can be neglected, [13,14,19].

4. The Semiclassical Limit of the Galitis Formula for the Elastic Cross-Section
Entering the Stark Width

Within the semiclassical approximation, the colliding electron is treated classically,
and moves on a trajectory characterized by an impact parameter b = l/k. Then, the orbital
moment l of the electron and its projections m are conserved. Its kinetic energy k2/2 is also
conserved. The atomic orbital moment L and its projections M being not conserved, this
approximation is valid at high l values and at high energies. Then, the S and T matrices
are diagonal in l and their elements do not depend on m.
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Therefore, for obtaining the semiclassical limit of the Gailitis quantum formula, we
must use the decoupled representation.

The decoupling formula is given by∣∣∣l L LT MT
〉
= ∑

m M
ClLLT

mMMT |l m〉|L M〉, (6)

where ClLLT

mMMT =
〈
l Lm M

∣∣LT MT〉 is a Clebsch–Gordan coefficient in Wigner’s notation.
The calculations which only use standard angular algebra are detailed in [20,21] and

shown in [16] for the case of the O V coronal lines. In the present paper, we only give the
result for the case of the elastic cross-section. See also [15] for the case of the green line.

For the elastic cross-section σ(kαL → kαL) the semi-classical limit of the Gailitis
formula reads:

∆σ(k, αL→ k, αL) = ∑
α1L1

σ(k1, αL→ α1L1)
A(α1L1 → αL)

∑
α2L2<α1L1

A(α1L1 → α2L2)
(7)

where A(α1L1 → αL), and A(α1L1 → α2L2) denote the spontaneous transition emission

probabilities. k2
1

2 is the incident electron energy just above the α1L1 threshold. The levels
α2L2 are connected to α1L1 by permitted transitions.

The result of Equation (7) has to enter Equation (1). For sake of simplicity, we also
neglect fine structure in Equation (1).

For that, the contribution of the Feshbach resonances has to be added to the contribu-
tion of the elastic collisions to the line width (second line of Equation (1)).

First, we consider the elastic cross-section of the initial level i (αiLi). The energy of the
colliding incident electron is E = mv2/2.

For obtaining the contribution of the resonances to the cross-section σ(αiLi ↔ αiLi, E),
we have to perform a summation over the i′(α′i L

′
i) levels which are above the i(αiLi) level,

since only excitation can create Feshbach resonances.
The Feshbach resonances play a role for energies E below the threshold of the transition

(αiLi → α′i L
′
i) and are equal to zero above. Under the threshold, and using Equation (7),

their contribution is equal to:

∑
α′i L
′
i

σ
(
αi, Li → α′i L

′
i, E

(
αi, Li → α′i L

′
i
)) A(α′i L

′
i → αi, Li)

∑
αL<α′i L

′
i

A(α′i L
′
i → αL)

(8)

where E
(
αi, Li → α′i L

′
i
)

is the difference of energy between the two levels, just above the
threshold of the level alpha′i L

′
i .

The same reasoning can be applied to the final level f : the Feshbach play a role for
energies E below the threshold of the transition (in excitation) (α f L f → α′f L′f ) and are
equal to zero above. Under the threshold, and using Equation (8), their contribution is
equal to:

∑
α′f L′f

σ
(

α f , L f → α′f L′f , E
(

α f , L f → α′f L′f
)) A(α′f L′f → α f , L f )

∑
αL<α′f L′f

A(α′f L′f → αL)
(9)

where E
(

α f , L f → α′f L′f
)

is the difference of energy between the two levels, just above the

threshold of the level alpha′f L′f .

• N.B. In addition, if results of the Gailitis resonances between J-levels would be needed,
Equations (5), (7) and (8), must be modified. For that, an additional step, again using
standard angular algebra calculations, has to be conducted. We only give the result
there: the α and the L and L′ which enter Equation (8) must be simply replaced by the
γ, J and J′.
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5. Examples of Results

The relative importance of the contribution of the Feshbach resonances to the total
Stark impact width is exemplified on the example of Ne VIII in [6].

Other examples are given in Tables 1–4. The data are taken from calculations [12,22–24]
performed with the SCP numerical code. See also the STARK-B database [8].

Table 1. Results of the SCP code for CII 3d − 4 f , λ = 4267 Å, electron collisions. Angular frequency units, density
Np = 1018 cm−3, temperatures T in Kelvin.

T 0.50 × 104 0.1 × 105 0.50 × 105

Full width at half maximum 0.225 × 1013 0.178 × 1013 0.122 × 1013

Inelastic collision contribution from the upper level 0.124 × 1013 0.106 × 1013 0.841 × 1012

Inelastic collision contribution from the lower level 0.176 × 1012 0.137 × 1012 0.114 × 1012

Feshbach resonances contribution from the upper level 0.835 × 109 0.481 × 109 0.718 × 108

Feshbach resonances contribution from the lower level 0.108 × 1011 0.733 × 1010 0.161 × 109

Elastic collisions contribution (without resonances) 0.829 × 1012 0.581 × 1012 0.261 × 1012

Table 2. Results of the SCP code for CIV 2s − 2p, λ = 1549 Å, electron collisions. Angular frequency units, density
Np = 1018 cm−3, temperatures T in Kelvin.

T 0.10 × 106 0.2 × 106 0.40 × 106

Full width at half maximum 0.396 × 1012 0.291 × 1012 0.221 × 1012

Inelastic collision contribution from the upper level 0.465 × 1011 0.382 × 1011 0.346 × 1011

Inelastic collision contribution from the lower level 0.547 × 1011 0.663 × 1011 0.668 × 1011

Feshbach resonances contribution from the upper level 0.299 × 1011 0.184 × 1011 0.944 × 1010

Feshbach resonances contribution from the lower level 0.823 × 1011 0367 × 1011 0.149 × 1011

Elastic collisions contribution (without resonances) 0.183 × 1012 0.131 × 1012 0.951 × 1011

Table 3. Results of the SCP code for CIV 3s − 3p, λ = 5805 Å, electron collisions. Angular frequency units, density
Np = 1017 cm−3, temperatures T in Kelvin.

T 0.50 × 104 0.1 × 105 0.30 × 105

Full width at half maximum 0.106 × 1013 0.70 × 1012 0.417 × 1012

Inelastic collision contribution from the upper level 0.133 × 1012 0.15 × 1012 0.132 × 1012

Inelastic collision contribution from the lower level 0.20 × 1010 0.17 × 1011 0.615 × 1011

Feshbach resonances contribution from the upper level 0.187 × 1012 0.922 × 1011 0.27 × 1011

Feshbach resonances contribution from the lower level 0.347 × 1012 0.226 × 1012 0.805 × 1011

Elastic collisions contribution (without resonances) 0.395 × 1012 0.214 × 1012 0.116 × 1012

Table 4. Results of the SCP code for Ar XV 2s2 1S0 − 2s3p 1P0
1 , λ = 24.7 Å, electron collisions. Angular frequency units,

density Np = 1020 cm−3, temperatures T in Kelvin.

T 0.50 × 106 0.1 × 107 0.2 × 107

Full width at half maximum 0.14 × 1014 0.101 × 1014 0.727 × 1013

Inelastic collision contribution from the upper level 0.663 × 1012 0.573 × 1012 0.488 × 1012

Inelastic collision contribution from the lower level 0.199E + 12 0.287 × 1012 0.304 × 1012

Feshbach resonances contribution from the upper level 0.173 × 1012 0.779 × 1011 0.332 × 1011

Feshbach resonances contribution from the lower level 0.582 × 1012 0.284 × 1012 0.126 × 1012

Elastic collisions contribution (without resonances) 0.132 × 1014 0.920 × 1013 0.648 × 1013
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As expected, the relative importance of the Feshbach resonances decreases when
the temperature increases. These results also show that the relative contribution of the
resonances is variable. In fact, it depends on the position of the perturbing levels and of
their importance in the calculations. Therefore, it is difficult to predict their importance
in advance. In addition, the experimental results are scarce. There are some results for C
IV 2s-2p [24,25], but the difference between the experimental, quantum and semi-classical
results are not conclusive. There are also results for C IV 3s-3p [12], and the difference
between the SCP and experimental results are 10%–20%.

5.1. Case between J-Levels: Example of the Two Fine Structure Components of P XIII 3s-3p

Tables 5 and 6 which concern the two fine structure components of P XIII 3s-3p show
that the impact of taking into account the fine structure is negligible:

Table 5. Results of the SCP code for P XIII 3s 1/2− 3p 1/2, λ = 1741.3 Å, electron collisions. Angular frequency units,
density Np = 1018 cm−3, temperatures T in Kelvin.

T 0.10 × 106 0.5 106 0.2 107

Full width at half maximum 0.511 × 1012 0.243 × 1012 0.140 × 1012

Inelastic collision contribution from the upper level 0.716 × 1011 0.462 × 1011 0.318 × 1011

Inelastic collision contribution from the lower level 0.436 × 1011 0.462 × 1011 0.337 × 1011

Feshbach resonances contribution from the upper level 0.200 × 1011 0.368 × 1010 0.768 × 109

Feshbach resonances contribution from the lower level 0.624 × 1011 0.840 × 1010 0.127 × 1010

Elastic collisions contribution (without resonances) 0.313 × 1012 0.139 × 1012 0.725 × 1011

Table 6. Results of the SCP code for P XIII 3s 1/2− 3p 3/2, λ = 1645.8 Å, electron collisions. Angular frequency units,
density Np = 1018 cm−3, temperatures T in Kelvin.

T 0.10 × 106 0.5 × 106 0.2 × 107

Full width at half maximum 0.511 × 1012 0.244 × 1012 0.141 × 1012

Inelastic collision contribution from the upper level 0.727 × 1011 0.468 × 1011 0.321 × 1011

Inelastic collision contribution from the lower level 0.436 × 1011 0.462 × 1011 0.337 × 1011

Feshbach resonances contribution from the upper level 0.191 × 1011 0.364 × 1010 0.774 × 109

Feshbach resonances contribution from the lower level 0.624 × 1011 0.840 × 1010 0.127 × 1010

Elastic collisions contribution (without resonances) 0.314 × 1012 0.139 × 1012 0.727 × 1011

6. Conclusions

This approximate expression of the Feshbach resonances is consistent with the ac-
curacy of the semiclassical perturbation theory of Stark broadening of spectral lines of
ionized atoms. As shown on the above provided examples, their order of magnitude is
especially important at low temperatures, but not always. Their semi-classical expression
has been implemented in the SCP computer code for many years. Numerous results of
calculations are published and a number are implemented in the Stark-B database. These
efforts will be pursued for obtaining new results of calculations needed in modeling and
spectroscopic diagnostics.
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18. Sahal-Bréchot, S.; Dimitrijević, M.S.; Ben, Nessib, N. Comparison and comments on electron and ion impact profiles of spectral
lines. Open Astron. 2011, 20, 523–530. [CrossRef]

19. Bely, O. Line broadening theory for positive ions. Phys. Rev. A 1969, 185, 79–82. [CrossRef]
20. Malinovsky-Arduini, M. Analyse d’un Spectre X-UV de la Couronne Solaire: Détermination des Abondances et Interprétation

des Intensités Mesurées, étude Critique des Méthodes Théoriques de Physique Atomique Utilisées Pour Cette Interprétation
(in French, English Translation: Solar Corona X-UV Spectrum Analysis: Abundances Determinations and Measured Intensities
Interpretation, Critical Study of the Methods Used for this Interpretation). Ph.D. Thesis, Paris 7 University, Paris, France, 1975.

21. Catalogue Sudoc. Available online: http://www.sudoc.fr/042075696 (accessed on 16 September 2020).
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