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Abstract: A Sagnac atom interferometer can be constructed using a Bose–Einstein condensate trapped
in a cylindrically symmetric harmonic potential. Using the Bragg interaction with a set of laser beams,
the atoms can be launched into circular orbits, with two counterpropagating interferometers allowing
many sources of common-mode noise to be excluded. In a perfectly symmetric and harmonic poten-
tial, the interferometer output would depend only on the rotation rate of the apparatus. However,
deviations from the ideal case can lead to spurious phase shifts. These phase shifts have been
theoretically analyzed for anharmonic perturbations up to quartic in the confining potential, as
well as angular deviations of the laser beams, timing deviations of the laser pulses, and motional
excitations of the initial condensate. Analytical and numerical results show the leading effects of
the perturbations to be second order. The scaling of the phase shifts with the number of orbits
and the trap axial frequency ratio are determined. The results indicate that sensitive parameters
should be controlled at the 10−5 level to accommodate a rotation sensing accuracy of 10−9 rad/s.
The leading-order perturbations are suppressed in the case of perfect cylindrical symmetry, even
in the presence of anharmonicity and other errors. An experimental measurement of one of the
perturbation terms is presented.

Keywords: atom interferometry; Bose–Einstein condensation; Sagnac interferometer; magnetic
trapping

1. Introduction

Atom interferometry is useful for many types of precision measurements [1–3], but
one of the most attractive applications is inertial navigation [4,5]. For this purpose, atom
interferometers can be configured to measure accelerations [6,7], rotations [8,9], or both
simultaneously [10,11]. In order to obtain high sensitivity, it is desirable to operate the
interferometer with long measurement times T. This can be a challenge for measurements
with freely falling atoms, since a large fall distance will increase the apparatus size and
complexity. One solution is to support the atoms against gravity using a magnetic field [12].
This unavoidably leads to some confinement as well [13], but we can make use of this
confining potential to help guide the atoms along a desired trajectory.

In Ref. [14], we demonstrated a Sagnac interferometer using atoms confined in a
harmonic potential, where the trap caused the atoms to move in nearly circular orbits so as
to enclose an area. By using two simultaneous counter-propagating interferometers in the
same trap, many spurious phase shifts can be rejected through a differential measurement.
However, if the confining potential is not ideal then it can still impact the final phase
measurement and limit the accuracy of the sensor. In this paper, we analyze the phase
shifts imparted by the potential and present the dependence on various perturbative terms.
We find that it is possible to reach performance levels consistent with precision navigation
requirements, but that doing so will require precise control of the trapping parameters.

The analysis described here is similar to that by West in Ref. [15]. However, in that
work only a single interferometer was considered. By design, many errors cancel in the
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dual-interferometer scheme of [14], making our approach mainly sensitive to higher-
order effects that were not comprehensively addressed in [15]. In addition, our numerical
analysis considers a wider variety of perturbative parameters, including ones that couple
all three dimensions.

The analysis here focuses exclusively on the phase shifts induced by the perturbations.
The interferometer visibility and enclosed area are also impacted by non-idealities. These
are not affected by the differential measurement, so the analysis in [15] is directly applicable.
While the visibility and area are important, we expect the phase to be the most sensitive
parameter, so if perturbations are reduced to the point that phase shifts are negligible, the
visibility and area will also be close to ideal.

In the following, we first present our interferometer scheme and the semiclassical
approach we use for the analysis. We apply the approach analytically to the case of a
harmonic trapping potential with a limited number of perturbations. We then present
numerical results for a broader set of perturbations. Finally, we discuss the implications
for experiments and compare to a measurement of the phase sensitivity for one pair
of parameters.

2. Semiclassical Phase Analysis

The atom trajectories used in our interferometer scheme are illustrated in Figure 1.
A Bose condensate is first prepared nominally at rest in the center of an approximately
harmonic trap. We define a coordinate system centered on the trap, with z vertical. An
off-resonant standing wave laser is applied along the y direction, driving the atoms into a
superposition of states moving at momenta p = ±2h̄kŷ, where k is the wave number of the
laser [16]. The two wave packets separate, and after one quarter of an oscillation period
they come to rest on opposite side of the trap. At that time another standing wave is applied
along the x direction, resulting in a total of four wave packets. The momentum kicks along
x cause each packet to move in a nearly circular orbit around the center of the trap. The
packets are sufficiently dilute that they can pass through each other with negligible losses.
After one or more orbits, the x standing wave is applied again, closing each of the two
interferometers. If the quantum state of two packets prior to the recombination pulse is

ψ ≈ 1√
2

[
eiφ+ e2ikx + eiφ− e−2ikx

]
, (1)

then the probability for an atom to be brought to rest by the recombination pulse is
cos2(∆φ/2) for phase difference ∆φ = φ+− φ−; atoms not brought to rest continue moving.
After a short time of flight, the atoms can be imaged and the fraction of the population in
each momentum state can be determined.

RL
y

x

Figure 1. Trajectory of atoms in Sagnac interferometer. A condensate, represented by gray disks,
starts in the center of the harmonic trap at time t = 0. A standing-wave laser oriented along y splits
the condensate into two packets that move in the ±y directions. One quarter period later, the atoms
come to rest on the left (L) and right (R) sides of the trap. Another standing-wave laser oriented
along x then splits the atoms again. The resulting packets have the correct velocity to travel in a
circular orbit around the trap center. After n complete orbits, the x-laser is applied again. This brings
some of the moving atoms back to rest on their respective sides of the trap. The fraction brought to
rest depends on the phase difference between the two interfering packets.
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One contribution to the phase is the Sagnac effect, giving ∆φ = 4mΩA/h̄ where A
is the area enclosed by an orbit, m is the atomic mass, and Ω is the rotation rate of the
apparatus. This phase applies with opposite signs to the two interferometers, so if ∆φR
denotes the phase measured at positive y and ∆φL denotes the phase measured at negative
y, we have Φ ≡ ∆φR − ∆φL = 8mΩA/h̄. This is the signal used for rotation sensing.

Our goal in this paper is to analyze other contributions to this differential phase, so we
assume Ω = 0. The remaining phase for a single interferometer is given in the semiclassical
approximation by a sum of three terms [17]:

∆φ = ∆φdyn + φlaser + φsep. (2)

The first is the dynamical phase acquired by the atoms as they move through the
trap. Each packet acquires a phase (1/h̄)

∫
L dt, for Lagrangian L = mv2/2− V(r) eval-

uated on the classical trajectory of the packet. Here V(r) is the trapping potential. We
therefore express

∆φdyn =
1
h̄

∫ tb

ta
(L+ − L−) dt, (3)

where the x-splitting pulse is applied at time ta and the recombination pulse at time tb. The
± labels refer to the wave packet that initially received a Bragg kick in the ±x direction,
with L± indicating the Lagrangian evaluated along that packet’s trajectory.

The laser phase is set by the location of the atoms relative to the Bragg standing
wave. If the atoms are initially split at position ra and recombined at position rb, then the
interferometer registers a phase shift

φlaser = 2k · (ra − rb). (4)

An additional phase shift will appear if the position of the Bragg standing wave itself
changes between the two pulses, but we omit this effect since the additional shift will be
the same for both interferometers and thus cancel in Φ. If the interferometer is not closed,
such that the final positions of the packets are rb+ and rb−, then we evaluate the phase at
the center position rb → (rb+ + rb−)/2.

The separation phase φsep also arises when the interferometer is not closed, and it
accounts for the fact that if the final packets are not at rest, their phases are themselves
position-dependent. This results in

φsep = − m
2h̄

(vb+ + vb−) · (rb+ − rb−) (5)

where vb± are the final wave packet velocities.
For a single atom in a harmonic potential, the semiclassical approximation is very

accurate since it agrees with the fully quantum results obtained using coherent-state wave
functions. However, interacting atoms in a condensate will occupy a Thomas–Fermi wave
function which can be quite different from a coherent state [18]. In addition, the wave
function can be distorted by anharmonic perturbations. These effects are not accounted
for in the semiclassical approach. We are currently exploring this issue using an approach
based on the Gross–Pitaevskii equation for an interacting condensate [19,20]. Preliminary
results indicate that the semiclassical approximation is still quite accurate as long as the
anharmonic perturbations are small. Use of a realistic wave function might, however, have
more significant impact on the visibility and effective enclosed area.

3. Harmonic Oscillator Potential

For a harmonic trap, the classical trajectories can be expressed analytically, which
allows an analytic calculation of the final differential phase Φ. We consider a potential of
the form

V(r) =
1
2

m
(

ω2
1r2

1 + ω2
2r2

2 + ω2
3r2

3

)
. (6)

Here the ri are the principal coordinates of the trap, in which the potential has this
diagonal form. The ωi are the corresponding oscillation frequencies. The principal coor-
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dinates do not in general conform to the coordinates by which the Bragg laser beams are
defined as in the previous section. We work in the principal coordinates and take the Bragg
wave vectors as

kx = k ∑
i

κxi êi ky = k ∑
i

κyi êi (7)

for principal basis vectors êi and unit vector components κi.
If at time ta an atom has position ra and velocity va, its subsequent trajectory is

given by

ri(t) = rai cos ωi(t− ta) +
vai
ωi

sin ωi(t− ta) (8)

and
vi(t) = −ωirai sin ωi(t− ta) + vai cos ωi(t− ta). (9)

Since the Lagrangian is separable in the principal coordinates, the dynamical phase
can be calculated for each coordinate independently, and can be evaluated as

φ
dyn
i (t) =

m
4h̄ωi

{(
v2

ai −ω2
i r2

ai

)
sin 2ωi(t− ta) + 2ωivairai

[
cos 2ωi(t− ta)− 1

]}
. (10)

To apply this result, we must express the trajectory in our interferometer. We suppose
the initial condensate has position r0 and velocity v0. The y Bragg laser is applied at
time zero, and the atoms are allowed to propagate for time t1. The wave packets then
have coordinates

rsi = r0i cos ωit1 +
1

ωi
(v0i + svBκyi) sin ωit1, (11)

where vB ≡ 2h̄k/m is the velocity kick from the Bragg beam. We take s = ±1 for atoms
kicked in the ±y directions. To help keep the notation clear, we label s = +1 with R
and s = −1 with L. The starting velocities for the actual interferometers also include the
x-Bragg kicks, leading to trajectories

rs±i = rsi cos ωi(t− t1) +
1

ωi
(vsi ± vBκxi) sin ωI(t− t1). (12)

Here we use the + and − symbols to label the sign of the kicks received from the x
beams. The atoms orbit for a time t2, so the total duration of the motion is t1 + t2.

We use these trajectories to evaluate the phase. We set Φdyn
i as the dynamical differen-

tial phase Φdyn
i = (φ

dyn
R+i − φ

dyn
R−i)− (φ

dyn
L+i − φ

dyn
L−i) and find

Φdyn
i =

4kvB
ωi

κxiκyi
[

sin ωi(2t2 + t1)− sin ωit1
]
. (13)

The separation phase of Equation (5) can be evaluated in terms of the final positions
and velocities. We obtain

Φsep
i = −4kvB

ωi
κxiκyi

[
sin ωi(2t2 + t1)− sin ωit1

]
, (14)

so this term exactly cancels the dynamical phase here. The net differential phase is therefore
given by Φlaser, which is evaluated to be

Φ = −4kvB ∑
i

κxiκyi

ωi

[
sin ωi(t1 + t2)− sin ωit1

]
(15)

The ideal case consists of a cylindrically symmetric trap with ω1 = ω2 ≡ ω in the
horizontal directions, and ω3 = ωz ≡ ζω perhaps different in the vertical direction. The
Bragg beams should have κx1 = κy2 = 1, with the other κ components equal to zero. We
then obtain Φ = 0 and there is no phase shift from the trap potential. To allow for small
deviations from the ideal case, we consider a nearly-symmetric potential of the form

V =
1
2

mω2
[
(1 + ∆)x2 + (1− ∆)y2 + 2γxy + ζ2z2

]
, (16)
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with |∆| and |γ| small compared to one. This can be diagonalized to give principal
horizontal frequencies

ω1,2 = ω
√

1± Γ ≈ ω

(
1± Γ

2

)
, (17)

where Γ =
√

∆2 + γ2. We take ω1 to use the plus sign and ω2 to use the minus sign. The
principal directions can then be expressed

ê1 =
1√

2Γ(Γ− ∆)

[
γ

Γ− ∆

]
and ê2 =

1√
2Γ(Γ + ∆)

[ −γ
Γ + ∆

]
. (18)

We also allow the Bragg beams to deviate slightly from their nominal alignments, with

kx = k
(

x̂ + ψ′x ŷ + ψ′′x ẑ
)

(19)

ky = k
(
−ψ′y x̂ + ŷ + ψ′′y ẑ

)
(20)

for |ψ′j|, |ψ′′j | � 1. Finally, we allow for timing errors, defining

δ1 = ωt1 −
π

2
and δ2 = ωt2 − 2πn (21)

for an interferometer with n orbits.
We then expand the total phase Φ to second order in the small parameters. We obtain

Φ ≈ 4πkvB
ω

γ

[
nδ1 +

(
n +

1
4

)
δ2

]
− 4kvB

ζω
ψ′′x ψ′′y

[
sin 2πζ

(
n +

1
4

)
− sin

πζ

2

]
(22)

Note that the radius of the orbit which the atoms undergo is R = vB/ω, so the
prefactors scale as kR, which is very large for orbits of mm or cm size. We see that the
critical parameters are the timing, the xy term in the potential, and the vertical alignment
of the Bragg beams. There is no first-order dependence on small parameters.

4. Anharmonic Potential

More generally, the trapping potential will not be perfectly harmonic, so it is important
to understand the impact of small anharmonic terms. Anharmonic perturbations make
analytical calculations complicated [21], so here we use a numerical approach. We consider
a trapping potential of the form

V(x, y, z) =
1
2

mω2
(

x2 + y2 + ζ2z2
)
+

1
2

mv2
B ∑

λµν

cλµνxλyµzν

Rλ+µ+ν
, (23)

with the cλµν coefficients dimensionless and small compared to 1. We include corrections
from second to fourth order, 2 ≤ λ + µ + ν ≤ 4, noting that first-order terms can always be
eliminated by offsetting the location of the trap minimum.

Other perturbative parameters are the initial position r0/R, the initial velocity v0/vB,
the Bragg alignment errors ψ′i , ψ′′i from Equations (19) and (20), and the timing errors
δ1, δ2. Because the perturbations can change the effective oscillation frequency, we here
determine numerically the nominal values for t1 and t2. For t1, we set t1o as the time
when the separation between the right and left wave packets is maximized. We then set
t1 = t1o + δ1/ω. For t2, we set t2o as the time at which the distance between the two
interfering wave packets is a minimum, after making n orbits around the trap. Specifically,
we minimize the quantity

δr2 = |rR+ − rR−|2 + |rL+ − rL−|2 (24)
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where the positions are labeled as in Equation (12). We then set t2 = t2o + δ2/ω. This
procedure mimics the way the timing would be determined experimentally. In total, we
include forty-three perturbation parameters in the analysis, all of which are dimensionless.

The classical trajectories themselves are determined using the MATLAB ode45 solver,
with tolerance parameters of 10−8. The solver is simultaneously used to integrate the
dynamic phase terms of Equation (3). The initial and final points of the trajectories are used
to determine φlaser and φsep via Equations (4) and (5). From these, the total differential phase
Φ is calculated. We then vary the expansion parameters to determine their sensitivity. We
numerically calculate both the first derivatives ∂Φ/∂ηi and second derivatives ∂2Φ/∂ηi∂ηj

for expansion parameters {ηi}. We use an increment step ∆η = 10−4 and we estimate the
derivative values to have a numerical accuracy of 10−4 or better.

We first consider the case of a spherically symmetric potential with ζ = 1 in Equation (23).
We observe no first-order dependence on the expansion parameters, but we observe thirty
significant second-order terms, displayed in Table 1. Although these are numerical results,
we find they reduce to simple fractions when appropriate factors of π are included. We de-
termined the n dependence by fitting the results to low-order polynomials, again obtaining
simple integer coefficients. The terms listed in the table are all those with magnitudes larger
than 10−4 at n = 1. The dependence on δ1, δ2 and c110 = 2γ agrees with the analytic results
from Equation (22). We observe dependencies on (c110, c200) and (c110, c020), corresponding
to γ and ∆ in Equation (16), which are not present in Equation (22); this arises due to the
difference in how δ1 and δ2 are treated. Of the forty-three parameters considered, we find
that sixteen contribute to second-order terms.

Table 1. Sensitivity of the differential phase Φ to small parameters ηi. The phase is normalized by
kR for Bragg laser wave number k and nominal orbit radius R. The integer number of orbits is n.
Here we show the thirty significant terms observed for a spherically symmetric trap with ζ = 1. The
entries below the horizontal line in the second column depend on ζ, as seen in Table 2.

η1 η2
1

kR
∂2Φ

∂η1∂η2
η1 η2

1
kR

∂2Φ

∂η1∂η2

δ1 c110 2πn c400 c310 −9π2

8
n2

δ2 c110
π

2
(1 + 4n) c400 c130 −9π2

8
n(1 + 3n)

c200 c110 −π2n2 c220 c310
3π2

8
n2

c020 c110 π2n2 c220 c130
3π2

8
n2

δ1 c310 −3π

2
n c040 c310 −9π2

8
n2

δ1 c130
3π

2
n c040 c130

9π2

8
n2

δ2 c310
3π

2
n c011 c101

π2

4
n(1 + 2n)

δ2 c130
3π

8
(1 + 4n) c011 c301 −3π2

16
n(1 + 2n)

c200 c310
3π2

4
n2 c011 c121

π2

16
n(1 + 2n)

c200 c130 −3π2

4
n2 c101 c211

3π2

8
n2

c110 c400 −3π2

2
n(1 + 3n) c101 c031

3π2

16
n(1 + 2n)

c110 c220
π2

2
n2 c301 c211

3π2

32
n2

c110 c040
3π2

2
n2 c301 c031 −9π2

64
n(1 + 2n)

c020 c310 −3π2

4
n2 c211 c121

3π2

32
n2

c020 c130
3π2

4
n2 c031 c121

3π2

64
n(1 + 2n)
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We also consider the case of a cylindrically symmetric trap, with ζ 6= 1. Most of the
terms reported in Table 1 are unchanged, so Table 2 reports only those which are different.
Terms in the first column and above the line in the second column do not appear in Table 1.
Terms below the line are those from from Table 1 that are observed to depend on ζ. Here
we map out the dependence on both n and ζ by calculating a range of values and guessing
appropriate fitting functions; again we find simple numerical coefficients. An example of
this analysis is described in Figure 2. We find that the term involving ψ′′x and ψ′′y agrees
with the analytic result of (22). Note that although the terms in the table exhibit poles in
ζ, the divergences are all canceled by zeros of the fi(n) functions. We confirmed that the
limits for ζ → 1 agree with the values in Table 1. As before, the table includes all terms
with magnitudes larger than 10−4 at n = 1. Here we find an additional seven parameters
contributing to the phase.

Table 2. Phase sensitivity for a cylindrically symmetric trap with ωz = ζω. Terms below the
horizontal line in the second column are those that that differ from their values in the spherically
symmetric case of Table 1. Other terms from Table 1 apply without change. Terms in the first
column and above the line are those that appear only in the cylindrical case. The dependence on
ζ and on the number of orbits n are determined numerically. The n-dependence is parametrized
by the functions f1(n) = sin 2πζ(n + 1/4)− sin πζ/2, f2(n) = cos 2πζ(n + 1/4)− cos πζ/2, and
f3(n) = 1− cos(2πζn).

η1 η2
1

kR
∂2Φ

∂η1∂η2
η1 η2

1
kR

∂2Φ

∂η1∂η2

ψ′′x ψ′′y −4 f1(n)
ζ

ψ′′y c121
2 f1(n)(3− ζ2)

ζ(1− ζ2)(9− ζ2)

ψ′′x c011
2 f1(n)

ζ(1− ζ2)
c011 c101 − f1(n)

ζ(1− ζ2)2

ψ′′y c101
2 f1(n)

ζ(1− ζ2)
c011 c301

6 f1(n)
ζ(1− ζ2)2(9− ζ2)

z0
R

c111
2 f2(n)
4− ζ2

c011 c121 − f1(n)(2− ζ2)

ζ(1− ζ2)2(9− ζ2)
vz0
vB

c111
2 f1(n)

ζ(4− ζ2)
c101 c211

6 f3(n)
(1− ζ2)2(9− ζ2)

c201 c111 − 6 f2(n)
ζ2(4− ζ2)2

c101 c031 − 6 f1(n)
ζ(1− ζ2)2(9− ζ2)

c021 c111
2 f2(n)

ζ2(4− ζ2)
c301 c211

12 f3(n)
(1− ζ2)2(9− ζ2)2

ψ′′x c211 − 12 f2(n)
(1− ζ2)(9− ζ2)

c301 c031
36 f1(n)

ζ(1− ζ2)2(9− ζ2)2

ψ′′x c031
12 f1(n)

ζ(1− ζ2)(9− ζ2)
c211 c121

6 f3(n)(3− ζ2)

(1− ζ2)2(9− ζ2)2

ψ′′y c301 − 12 f1(n)
ζ(1− ζ2)(9− ζ2)

c031 c121 − 6 f1(n)(3− ζ2)

ζ(1− ζ2)2(9− ζ2)2

The total of twenty-three parameters that contribute in second order fall into two inde-
pendent groups, with no phase terms (η1, η2) drawing from both groups. The terms above
the line in Table 1 depend on ten parameters {δ1, δ2, c200, c020, c110, c400, c310, c220, c130, c040}
that characterize the horizontal motion only. The remaining thirteen parameters involve
coupling to the vertical motion. Of this second group, six contribute when ζ = 1, but only
three, vz0, c111 and c201, contribute when ζ = 2. None contribute when ζ = 4 or a larger
integer. Reducing the number of sensitive parameters is useful since it makes the rotation
sensor more robust.

It is interesting to consider which perturbation terms would be present in a trap that
maintained perfect cylindrical symmetry. This symmetry requires c200 = c020, c201 = c021,
c202 = c022, and c400 = c040 = c220/2; other potential terms involving x and y must be zero.
In this case, the only surviving second-order term is the (ψ′′x , ψ′′y ) dependence from Table 2,
which can itself be eliminated if ζ is close to an integer. Using these symmetry constraints
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to reduce the parameter space, we also explored the third-order dependence of Φ. Table 3
lists the twelve largest terms observed, in the case ζ = 1. Here the largest omitted term has
a magnitude (at n = 1) that is nine times smaller than the smallest term included. From the
results, it is evident that the horizontal quartic anharmonicity c400 is particularly important
at this order.

Table 3. Third-order sensitivities in the case of a trap with perfect cylindrical symmetry, for n orbits
with ζ = 1.

η1 η2 η3
1

kR
∂3Φ

∂η1∂η2∂η3
η1 η2 η3

1
kR

∂3Φ

∂η1∂η2∂η3

ψ′x c400 c400 −11π2

4
n2 δ2 δ2 ψ′x 4

ψ′y c400 c400 −π2

4
n(27− 11n) δ2 δ2 ψ′y −4

δ1 ψ′x c400 −2πn x0
R

vy0

vB
c400 πn

δ1 ψ′y c400 −11πn y0
R

vx0
vB

c400 πn

δ1 δ2 ψ′x 4 δ2 ψ′x c400 πn
δ1 δ2 ψ′y −4 δ2 ψ′y c400

π

8
(9− 8n)

−2

0

2

4

6

8

0 1 2 3 4 5
(a)

−10

−5

0

5

10

0 1 2 3 4
(b)

−20
−10

0
10
20

−1
0
1

0 1 2 3 4
(c)

C

n

C

ζ

A
(ζ
)

10
5 ∆

ζ

Figure 2. Analysis of numerical results, for the example term C = (1/kR)∂2Φ/∂η1∂η2 with η1 = ψ′′y
and η2 = c301. (a) Variation of C with orbit number n. The open points show results for ζ = 0.35,
and the filled points for ζ = 1.7. From the analytical results, we anticipate that the phase will vary
sinusoidally with 2πζn, and we also know that Φ = 0 at n = 0. We therefore fit the points to a
function A[sin(2πζ(n + n0))− sin(2πζn0)], with the results shown as curves. While the amplitude
A depends on ζ, we obtain n0 = 1/4 in all cases. (b) Variation of C with ζ, for n = 1. This illustrates
that the result is a smooth function over the range considered. (c) Points in the upper plot show
the variation with ζ of the amplitude A = C/[sin(2πζ(n + 1/4))− sin(πζ/2)]. The graph exhibits
obvious poles at ζ = 0, ζ = 1, and ζ = 3. We incorporate these polls into a rational fit function
A0/[(ζ)(1− ζ2)(9− ζ2)] and find good agreement for constant A0 = −12. The curves show this fit.
In the lower plot, ∆ is the fit residual A + 12/[(ζ)(1− ζ2)(9− ζ2)]. At larger ζ, the residuals grow
but the coefficient C is very small.

5. Implications for Experiments

Phase shifts arising from imperfections in the trapping potential will limit the accuracy
of the interferometer’s performance as a rotation sensor. If we interpret a second-order
perturbation from the potential as a rotation error δΩ, then we evaluate the corresponding
Sagnac phase as

8πnR2m
h̄

δΩ = kRCijηiηj, (25)

where Cij = (1/kR)∂2Φ/∂ηi∂ηj is an entry from Table 1 or Table 2. Using R = 2h̄k/mω,
we have

δΩ =
Cij

16πn
ωηiηj. (26)
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The largest coefficients C have magnitudes that are comparable to 16πn2, so we
conclude that the effective rotation error is approximately δΩ ≈ nωηiηj. This indicates the
level of trap imperfections that can be tolerated for a given rotation accuracy. For instance,
achieving an accuracy δΩ of order 10−9 rad/s in a trap with ω = 2π × 2 Hz and n = 1
would require the {ηi} to be of order 10−5. This result also indicates that the sensitivity to
trap imperfections generally increases with n and ω, so it is better to use a single orbit in a
weaker trap, as opposed to multiple orbits in a tighter trap to achieve the same Sagnac area.

It is experimentally feasible to implement a magnetic trap that is stable to a part in
105 or better [22,23], but it would be challenging to design a trap with imperfections that
are zero to this level of accuracy. One approach would be to accept a static phase offset
that can be measured and subtracted out to obtain a pure rotation signal, but the stability
tolerance required for a parameter ηi grows more stringent the larger its partner parameter
ηj is. Alternatively, if all relevant trap parameters can be adjusted experimentally, the
interferometer itself can be used to set the parameters to zero. The second-order phase
error is

Φ ≈ (η− η0)
† M(η− η0) (27)

where here η is a vector of experimental parameters and η0 contains the (initially unknown)
parameter values for which the interferometer configuration is ideal. The matrix M is
composed of second derivatives ∂2Φ/∂ηi∂ηj, which can either be calculated as in the
previous sections or measured experimentally by varying the parameters in pairs and
observing the phase response. In a similar way, the gradient vector ∇Φ = {∂Φ/∂ηi} can
be measured experimentally at an initial value of η = 0. Since ∇Φ ≈ 2M(η− η0), we can
obtain an estimate for η0 as

η0 ≈ −
1
2

M−1∇Φ. (28)

The parameters can then be set to this η0 and the process can be iterated to converge
on the desired parameter set where ∇Φ = 0. To this end, it is useful that the parameters
fall into independent groups, since this means each group can be optimized independently.

We have experimentally demonstrated the required measurement procedure using
the apparatus of Ref. [14]. Here we focus on two parameters, the timing error δ2 and the
xy potential term c110 = 2γ. Experimental control of δ2 = ωt2 − 2π is straightforward via
timing. To control γ, we make use of a feature of the time-orbiting potential trap. Our trap
uses a rotating bias field with components

B = B0 cos(Ω1t) cos
(

Ω2t +
β

2

)
x̂ + B0 cos(Ω1t) cos

(
Ω2t− β

2

)
ŷ + Bz sin(Ω1t)ẑ, (29)

where Ω1 = 2π × 10 kHz, Ω2 = Ω1/10, and β is an experimentally adjustable phase. In
combination with an oscillating gradient field and gravity, this produces a time-averaged
potential [14,24]

V =
1
2

mω2
(

x2 + y2 +
2
7

βxy + ζ2z2
)

, (30)

where the β phase provides the desired control of the xy term. Comparing to Equation (22),
we see γ = β/7. The experiment used 87Rb atoms in a trap with ω = 2π× 9.26(3) Hz. The
Bragg wave number was k = 2π/(780.233 nm).

The interferometer was operated as in Ref. [14], with no imposed rotation. For set
values of t2 and β, the output differential phase Φ was determined by taking several
measurements of the two interferometer signals SR and SL, with Ss = N0s/Ns defined as
the fraction of atoms returned to rest in interferometer s. As seen in Figure 3a insets, the
data fall on ellipses when SL is plotted against SR. The location of a point on the ellipse is
determined by the common mode phase of the two interferometers, which is noisy in our
experiment. The ellipticity e depends on the differential phase as e = [2/(| sec Φ| − 1)]1/2,
so the phase can be extracted by fitting the data to an ellipse.
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Figure 3. Experimental measurement of phase sensitivity. (a) Variation of differential phase Φ with
interferometer time t2. Results are for a trap with magnetic field phase β = 22 mrad. The line is a
linear fit from which the slope ∂Φ/∂t2 is determined. Insets show plots of SL vs. SR at the indicated
values of t2. The curves are elliptical fits from which the phase values are determined. (b) Slopes
from (a) plotted vs. β. The line is again a linear fit with slope ∂2Φ/∂t2∂β = 3.0(4)× 105 s−1.

Using this technique, we measured the dependence of Φ on t2, and found a linear
variation as seen in Figure 3a. We fit these data to determine the slope ∂Φ/∂t2, and
repeated the measurements over a range of bias field phases β. Figure 3b shows that ∂Φ/∂t2
itself varies linearly with β, so from the slope in Figure 3b we determine ∂2Φ/∂t2∂β =
3.0(4)× 105 rad/s. This corresponds to

∂2Φ
∂δ2∂γ

=
7
ω

∂2Φ
∂t2∂β

= 3.6(5)× 104. (31)

In comparison, Equation (22) predicts for n = 1 that ∂2Φ/∂δ2∂γ = 5πkvB/ω =
2.5× 104. The measurement and calculation differ by 2.2σ, which is ambiguous in terms of
agreement. We are currently developing a new apparatus that will substantially improve
the measurement precision and allow a more definitive test of the model.

If δ2 and γ were the only trap imperfections to consider, then it would be possible to
establish the experimental settings where both parameters were zero, as the point where
∂Φ/∂δ2 = ∂Φ/∂γ = 0. However, Table 1 indicates that δ2 and c110 are also coupled to δ1
and the horizontal quartic anharmonicities. Since these variables have not been considered,
we cannot expect that ∂Φ/∂c110 = 0 when δ2 = 0 here.

We do have some information about the trap anharmonicity. As described in Ref. [25],
the potential can be characterized using the observed packet trajectories. Using R = 0.2 mm,
we find c201 ≈ c021 = 0.10(3), c003 = 0.09(1), c400 ≈ c040 ≈ c220/2 = −0.006(1), c202 ≈
c022 = 0.12(04) and c004 = 0.09(3). Although these terms are not very small, the numerical
model predicts that they do not significantly change the expected value of ∂2Φ/∂δ2∂γ
determined above.

6. Conclusions

The methods presented here are generally useful for characterizing the performance
of a trapped atom interferometer. The results for our Sagnac interferometer scheme show
which experimental imperfections are most critical, and they provide guidance for how
well they must be controlled in order to reach a desired level of rotation sensitivity. It is
promising that the system is primarily sensitive to parameters that break the cylindrical
symmetry, since these parameters will be naturally small in an experimental design which
is nominally symmetric. Nonetheless, the parameters will need to be be controlled very
precisely to reach state-of-the-art performance levels.

It may also be possible to develop operational protocols which help reduce the sensi-
tivity to imperfections. For instance, the interferometer can instead be operated by splitting
first along x and then along y. This would alter many of the trap phase terms but not the
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Sagnac phase, so comparing the two results could reduce the sensitivity to perturbations.
We hope to explore this and other schemes in future work.
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