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Abstract: We present numerical simulations to unravel the dynamics associated with the creation of a
vortex in a Bose–Einstein condensate (BEC), from another nonrotating BEC using two-photon Raman
transition with Gaussian (G) and Laguerre–Gaussian (LG) laser pulses. In particular, we consider
BEC of Rb atoms at their hyperfine ground states confined in a quasi two dimensional harmonic trap.
Optical dipole potentials created by G and LG laser pulses modify the harmonic trap in such a way
that density patterns of the condensates during the Raman transition process depend on the sign of
the generated vortex. We investigate the role played by the Raman coupling parameter manifested
through dimensionless peak Rabi frequency and intercomponent interaction on the dynamics during
the population transfer process and on the final population of the rotating condensate. During the
Raman transition process, the two BECs tend to have larger overlap with each other for stronger
intercomponent interaction strength.

Keywords: Bose–Einstein condensate; Laguerre–Gaussian; Raman transition; cold atoms; light–
matter interaction; particle transfer; density pattern

1. Introduction

Creation of vortex states in atomic Bose–Einstein condensates (BECs) has been the
subject of quite intensive research, with particular focus on superfluid properties [1–3]
and quantum turbulence [4–10]. A number of theoretical and experimental studies have
considered the properties of vortex states in single and multicomponent BECs [11–16],
their stability [17–24] and collective excitations [25–29], thus opening up an avenue of
opportunities to explore and develop quantum state engineering in a macroscopic sys-
tem [21,30,31]. Owing to the highly controllable state-of-the-art BEC experiments, the
presence of a vortex in BECs can be detected and their dynamics can be monitored with
good spatial and temporal resolution [31–36]. Numerous techniques, which mainly rely
upon two distinct physical situations, have been proposed theoretically [37–44] and devel-
oped experimentally [45–48] to generate vortices in BECs. In rotating traps, vortices are the
thermodynamic ground states with quantized angular momentum, but in stationary traps,
the creation of vortices requires other dynamical means. Various methods to create vortices
include the perturbation of the system with a time-dependent boundary. In particular, such
time-dependent boundaries can be created either by moving a blue detuned laser through
the condensate [43,49] or by rotating the trap anisotropy [46]. In the other scheme, the
so-called phase imprinting technique [37,42,45,50–54], one can engineer the macroscopic
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wavefunctions of BECs by coupling the internal atomic levels with either an optical field
or a magnetic field. Remarkably, the topological phase pattern of the coupling field is im-
printed into the condensate wavefunctions. This topological phase, which is independent
of the field strength, is uniquely determined by the spatial structure of the coupling field.

The helical phase front of Laguerre–Gaussian (LG) laser beams has been associated
with its orbital angular momentum (OAM) in the paraxial regime [55]. A photon of such
an LG laser modes has phase profile eilφ, and carries lh̄ unit OAM in the transverse plane,
where φ is the angular coordinate and l is an integer, known as the winding number of the
beam. Such LG modes are known to transfer OAM from an optical field to the Rydberg
atom [56], BECs [57–60], and to create a mechanical rotation of particles [61,62]. It was
shown that a coherent coupling between the ground state of condensate with a rotating
condensate in vortex state, can be achieved by the transfer of OAM of photons to the
condensed atoms through Raman transitions [37]. Quantum dynamics of such vortex
coupler using LG beam was studied, and an off-axis motion of the quantized vortex cores
was interpreted as the collapse and revival of the atoms of the condensate [63]. Besides, a
pair of LG laser modes with unequal phase windings couple internal atomic states of BEC
through Raman transitions, and thus giving rise to spin and orbital angular momentum
coupling in the ground states of a spinor BEC [64,65]. Moreover, it has been shown that
almost all the atoms in the non-rotating BEC can be transferred to the BEC with vortex, by
employing LG beams [66,67].

Although an impressive volume of literature has been devoted to this subject, few
of its vital aspects remain further to be explored. One such aspect constitutes the role
played by the interaction between two BEC components on the population transfer. Indeed,
during the transfer process, atoms of two condensates are present in two different hyperfine
states, one with vorticity and another without vorticity. Thus, not only the atom–laser
coupling, but also the atom–atom interaction between two different components is expected
to influence the population transfer process. Note that the focus of the majority of the
previous studies has been on the complete particle transfer from one quantum state to
another. However, it is expected that by maneuvering atom-light coupling and inter-
component interaction one could achieve a population transfer of any desired value. In this
way it equips us to realize a binary-mixture where one component contains a vortex, and
the other does not, thus emulating the so-called vortex-bright-soliton structure [16,68].
Additionally, it is also desirable to know, through the miscibility parameter [15,69,70], how
atoms in the condensate with a vortex penetrate into atoms of the condensate without
any vortex during the transfer process [15,69,70]. Therefore, motivated by experimental
accessibility [71,72] and theoretical novelty of the problem, we theoretically address these
important aspects of the transfer mechanism in this paper.

We investigate the dynamics of population transfer from a nonrotating BEC to a Raman
coupled rotating BEC by employing LG and Gaussian (G) pulses. In this process, the atoms
in rotating BEC gain angular momentum from the LG laser pulse. We consider pulsed G
and LG beams as the pump and Stokes beams, respectively, to transfer the atoms from one
hyperfine level to another. In particular, we choose the temporal width of the pulses to
be in the same time scale determined by the trap frequency. This consideration provides
us the framework to understand the dynamics during the transfer process. Numerically
integrating the Raman coupled multicomponent Gross-Pitaevskii equations, we point out
the following key points: (i) the sign of the vorticity of the condensate as well as the initial
growth region of the vortex state, captured within the density patterns, depend upon
which laser mode is chosen as pump or Stokes beam and (ii) the repulsive inter-component
atomic interaction and peak Rabi frequency of laser beams determine the number of atoms
transferred to the non-rotating BEC. By calculating the overlap integral between the two
condensates we also quantify how two condensates penetrate into each other during the
transfer process.

We have organized the remainder of this paper as follows. In Section 2 we describe
the theory of transfer mechanism. Section 3 provides a brief description of the numerical
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schemes used. In Section 4 we present results of the complete particle transfer and effects
of the inter-particle interactions and the Raman coupling parameter on the final population
of the rotating BEC. In Section 5, we discuss the implication and possible future extensions
associated with the results presented. Appendix A presents the effects of trap frequencies
and the time-delay between the pulses on the population transfer. Finally, in Appendix B
we briefly outline the Hamiltonian and the derivation of the equations of motions.

2. Theoretical Methods

In our study, we consider BEC of alkali atoms trapped in a quasi two- dimensional
harmonic trap confined in the x− y plane with z axis being the quantization axis. In order
to transfer OAM from the optical beam to the BEC, we consider three electronic levels of
the alkali atoms are coupled by a pair of laser pulses in Λ-type configuration as shown in
Figure 1. Atoms of initially prepared BEC are at the state |1〉, one of the hyperfine levels of
the electronic ground state of atoms. The state |3〉 is an intermediate non-resonant excited
state. The final state is considered to be |2〉, another hyperfine level of the electronic ground
state of the atoms. The atoms are irradiated by two laser pulses propagating collinearly
parallel to the quantization axis [73]. We remark that with the dipole approximation of
the atomic transitions, the changes in the internal spin states of atoms are dictated by
polarizations of two light fields. However, the changes in external orbital motion of the
atoms of BEC around the quantization axis are determined by the difference of the orbital
angular momentum (OAM) of two light fields [57]. Let us consider that the OAM of the
twisted laser pulses for the transition from state |1〉 to state |3〉 is l1 and for |3〉 to |2〉
transition is l2. Then, the electric field vectors involved in this absorption or emission
transitions can be written as (for i = 1 and 2)

Ei(x, y, t) = ε̂iEi(t)(x2 + y2)
|li |
2 e
−( x2+y2

w2
i

)
e−i(kiz−ωit), (1)

where Ei(t), ε̂i, ki and ωi are the corresponding time dependent amplitude profile, polar-
ization vector, wave number and frequency of the i-th pulse, respectively. We consider the
temporal amplitude profiles of both pulses have the same form [74]:

E1(2)(t) = Emaxe−(
t−τ1(2)

T )2
, (2)

where τ1(2) is the temporal position of the peak value of electric field E1(2). Maximum
amplitude Emax and pulse duration T are the same for both pulses. The optical absorption-
emission cycle imparts OAM onto the atoms in final state |2〉 and creates a vortex in the
BEC with charge (l1− l2) unit. Because of collinearity of the E1 and E2 pulses, no additional
linear momentum is generated in the final state. In addition to such two-photon transitions
in atomic BEC, these lasers also create extra confining potential, namely optical dipole
potentials for the atoms in the states |1〉 and |2〉 [75]. In practice the value of detuning ∆ is
large, which ensures the negligible populations in state |3〉. This allows us to eliminate the
state |3〉 adiabatically. During the transfer process, atoms are present in both the hyperfine
states, |1〉 and |2〉. Therefore, coherent evolution of the condensates of atoms in these two
states, characterized by wavefunctions Ψ1(x, y, t) and Ψ2(x, y, t) respectively, are governed
by two Raman coupled Gross-Pitaevskii equations (see Appendix B for the derivation)

i
∂Ψ1

∂t
=
[
− 1

2
∇2
⊥ +
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2
+ ∑
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1

]
Ψ1 + V ′(x, y, t)Ψ2e−i(l1−l2)φ, (3)

and,

i
∂Ψ2
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⊥ +
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2
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G2j
∣∣Ψj
∣∣2 + V2(t)r2|l2|e

− 2(r2)
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]
Ψ2 + V ′(x, y, t)Ψ1ei(l1−l2)φ, (4)



Atoms 2021, 9, 14 4 of 19

where r2 = x2 + y2, V ′ =
√
V1V2(r2)(|l1|+|l2|)/2 exp

[
−2r2(1/w2

1 + 1/w2
2)
]
, and V1(2)(t) =

Vmax exp
[
−(t− τ1(2))

2/T2
]

with Vmax = E2
maxd2/h̄2ω∆. E2

max is maximum light intensity
of both pulses and d is the atomic transition dipole moment and w1(2) is the beam waist of
the corresponding laser pulse. Therefore, the effective trap potentials felt by atoms of the
condensates are

Veff,1(2) =
r2

2
+ V1(2)(t)r

2|l1|(|l2|)e
− 2(r2)

w2
1(2) . (5)

We derive Equations (3) and (4) by nondimensionalizing Equations (A11) and (A12)
respectively. For this, we scale the spatial coordinates by oscillator length aosc =

√
h̄/mω,

time by 1/ω and condensate wavefunctions by
√

N/a3
osc. Here, m is the mass of the atoms

and N is the total number of atoms in the system, and ω is the trapping frequencies along
x and y directions of the harmonic trap. We denote N1 and N2 as the number of atoms
in condensates Ψ1 and Ψ2 respectively, and consider the total number, N = N1 + N2,
is conserved during and after the transfer process. We point out that initially N1 = N
and N2 = 0. Note that, the parameter associated with the peak Rabi frequency, Vmax,
contains parameters from the considered atomic transition, laser pulses and the trap of the
condensate. The quasi-2D configuration of the trap is achieved by ensuring large trapping
frequency in z direction, that is, ωz � ω. The intra and inter-component coupling strengths
are Gii = 2N

√
2πλaii/aosc and Gij = Gji = 2N

√
2πλaij/aosc, respectively, and λ = ωz/ω

is the anisotropy parameter. The intra-component and inter-component scattering lengths
are denoted by aii and aij, respectively. Initially, only the condensate Ψ1 is present within
the trap. With two photon Raman transitions, the condensate Ψ2 grows by gaining atoms
from the condensate Ψ1. During this process atoms in Ψ2 gain (l1 − l2) unit orbital angular
momentum, which is manifested as a phase factor ei(l1−l2)φ in the condensate wavefunction
Ψ2. The phase factor e−i(l1−l2)φ in the coupling term of Equation (3) ensures that no angular
momentum is transferred back to the atoms in condensate Ψ1. Transfer of this angular
momentum to the condensate Ψ2 results in generating quantized vortex in the condensate.
A quantized vortex in a BEC is point like topological defect which is manifested in the
phase profile of the condensate wavefunction Ψ2. Around the vortex the phase of the
condensate wavefunction changes by κ × 2π, where κ is an integer, which is referred to as
the winding number or charge of the vortex.

A system of two component BECs can exhibit two phases, miscible or immiscible,
depending on the the strengths of intracomponent and intercomponent interactions. At
zero temperature, two defect free condensates in a homogeneous trap are miscible when
a2

12 ≤ a11a22, and immiscible for a2
12 ≥ a11a22 [76]. However, these conditions are modified

when the condensates are considered in inhomogeneous trap [77]. Effects of finite tem-
perature [70] and topological defects [15] on the miscible-immiscible transition have been
reported. A well known measure to characterize these two phases is the overlap integral
defined as [15,69,70]

Λ =

[ ∫∫
dx dy n1(x, y)n2(x, y)

]2

[ ∫∫
dx dy n2

1(x, y)
][ ∫∫

dx dy n2
2(x, y)

] , (6)

where n1(2)(x, y) =
∣∣∣Ψ1(2)(x, y)

∣∣∣2 are the densities of the condensates. Λ = 0 corresponds
that the two condensates are spatially separated, that is, the system is in immiscible phase.
Whereas, Λ = 1 implies maximal spatial overlap between the condensates, that is, the
system is in complete miscible phase.

To this end, by utilizing two-photon Raman transition, we transfer the atoms from one
initially populated quantum state to another unpopulated state via an intermediate state,
see Figure 1. A pump field links state |1〉 to electronically excited state |3〉, and Stokes field
links state |3〉 to another low energy state |2〉. We perform a one-way controlled particle



Atoms 2021, 9, 14 5 of 19

transfer from one hyperfine state to another, where atoms of the daughter state carries one
unit vortcity, either positive or negative, thus enabling us to create a rotating BEC. In this
context, coherent population transfer is possible if the Stokes field precedes, but temporally
overlaps with, the pump field, and the pulses are applied adiabatically.

Figure 1. Schematic of the electronic states considered, in a Λ configuration. Specifically, the states of
interest are |1〉 and |2〉 which represent the states associated with the two-component Bose–Einstein
Condensate (BEC). These two states are coupled, via |3〉, through detuned Guassian (G) and Laguerre–
Gaussian (LG) laser pulses. In this work two laser pulse sequences are considered: (i) G-LG where
the Gaussian is the pulse (|1〉 → |3〉) beam and the Laguerre–Gaussian is the Stokes (|3〉 → |2〉) beam
and (ii) LG-G where the Laguerre–Gaussian is the pulse (|1〉 → |3〉) beam and the Gaussian is the
Stokes (|3〉 → |2〉) beam.

3. Numerical Methods

We start with a BEC of N atoms at state |1〉, in the absence of laser pulses. Therefore,
we set terms associated with laser pulses in Equation (3) to be zero to obtain the initial
solution. Then, the wavefunction of the initial BEC, Ψ1, is generated by solving Equation (3)
in imaginary time using split-time Crank–Nicolson method [78]. The initial wavefunction
of BEC of the atoms in state |2〉, Ψ2, is considered to be zero. Using these two initial wave
functions, we evolve the system in presence of laser pulses. For this, we solve the coupled
GP equations in Equations (3) and (4) in real time. The phase imprinting in the Ψ2 occurs
dynamically due to the two photon Raman transitions, which is obtained by considering,

Ψ1(x, y, tn+1) = cos
(
V ′dt

2

)
Ψ1(x, y, tn)− ie−i(l1−l2)φ sin

(
V ′dt

2

)
Ψ2(x, y, tn), (7)

and

Ψ2(x, y, tn+1) = cos
(
V ′dt

2

)
Ψ2(x, y, tn)− iei(l1−l2)φ sin

(
V ′dt

2

)
Ψ1(x, y, tn). (8)

Since Ψ2 is zero at the initial time t0, l1− l2 unit vortex is imprinted on Ψ2 at t1 = t0 + δt
and vorticity of Ψ1 remains zero. This transfer of angular momentum continues, as long as
both pulses are present. However, since the process is one-way, it stops when all the atoms
in condensate Ψ1 are transferred to the rotating condensate. For simulations, we choose a
square grid of 300× 300 grid points with a grid spacing δx = δy = 0.05aosc and time step
∆t = 0.0001ω−1. In our study, we consider hyperfine states of 87 Rb with |1,−1〉 as |1〉
and |2,+1〉 as |2〉. The intracomponent scattering lengths a11 and a22 of these two states
are 100.4a0 and 95.44a0 [79] respectively, where a0 is the Bohr radius. The trap frequency
ω = 2π × 30.832 Hz [80] and the anisotropy parameter λ = 40 are the same for both
condensates. For this system the oscillator length aosc = 1.94 µm. Furthermore, the relation
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µ1(2) � h̄ωz holds throughout the time evolution indicating that quasi-2D configuration is
maintained always. Total number of atoms in the system is N = 104. To create a BEC with
a vortex of charge −1 unit, we use G pulse as “pump” of which l1 = 0, and LG Pulse as
“Stokes” with l2 = 1. If we interchange the “pump” and “Stokes” laser pulses, a vortex of
charge +1 unit will be created in the BEC. For simulations, we use the pulses with same
temporal duration of T = 4.9 ms.

4. Results and Discussion
4.1. Creation of Vortex in the BEC

In G-LG pulse sequence, we employ G pulse as pump and LG pulse as Stokes, for
which l1 = 0 and l2 = 1 respectively. For this arrangement, we consider τ1 = 1.4 and
τ2 = 1.0 in the units of 1/ω. During the Raman transitions of atoms from state |1〉 to |2〉
an amount of −1 unit OAM is transferred to the atoms in state |2〉. Here, we describe the
transfer process. First, a photon from the G laser pulse which has zero OAM is absorbed by
the atom in |1〉. As a result, the atom is excited to an intermediate excited state |3〉. Then, a
photon with +1 unit OAM is emitted by the atom at the state |3〉 onto the LG beam. After
this emission process the atom comes back to another ground state |2〉. The conservation
of the total angular momentum of the system, that is, the total angular momentum of atom
plus light pulses, ensures that atom at the state |2〉 gains −1 unit OAM. Thus, −1 unit
vorticity is created in the condensate Ψ2. Similarly, +1 unit vorticity can be created in the
condensate Ψ2 through LG-G pulse sequence, where we use LG pulse as pump and G
pulse as Stokes of which l1 = 1 and l2 = 0 respectively.

4.2. Density Evolution of the Condensates

We have discussed that the sign of the vorticity in condensate Ψ2 depends on the laser
modes chosen as pump and Stokes beam. Here, we point out how the sign of the vorticity
can be inferred from the changes of density patterns of the condensates during the transfer
process. Furthermore, these density patterns serve as promising candidates to elucidate
the residual excitations created during the light–matter interaction, since these excitations
leave their foot-prints on the density profiles creating additional humps and dips [81,82].
Figure 2(a1–a6,b1–b6) illustrate the density profiles of the condensates during the Raman
transitions, when the vortex of charge −1 unit is generated in the condensate Ψ2. Whereas,
Figure 2(c1–c6,d1–d6) illustrate the density profiles when +1 unit vortex is created. In the
lower-left corner of each density profile we mention the fraction of atoms in the condensate
with respect total number of atoms in the system.

From the comparison between the Figure 2(a1–a6,b1–b6,c1–c6,d1–d6), it is evident that
density patterns of the condensates during the creation of −1 unit vortex are different
from the case of creation of +1 unit vortex. During the initial growth of the condensate
Ψ2, the atoms occupy the central region of the trap when the vortex of charge −1 unit is
created, whereas the atoms occupy the peripheral region of the trap when the +1 unit
vortex created. At t = 0, the laser pulses are absent and the condensate Ψ1 is populated by
all the atoms in the system, hence, the condensate Ψ2 is empty. It is important to mention
that for the coherent population transfer, we apply the Stokes beam first. Therefore, in the
early stage of the dynamics population of condensate Ψ2 remains zero. Once the pump
beam is applied, condensate Ψ2 starts growing at the expense of atoms being transferred
from the condensate Ψ1. At the same time, a vortex of either −1 or +1 unit is imprinted on
condensate Ψ2 depending on the angular momenta of the pump and Stokes beams. For the
case of LG-G pulse sequence, which is illustrated in Figure 2(c1–c6,d1–d6), we observe that
11% of atoms has been transferred in the first 10.84 ms, but 68% of atoms are transferred
in the next 1.96 ms. In contrast to this, we observe that fewer numbers of atoms are
transferred to condensate Ψ2 at the same time instants when compared to the G-LG pulse
sequence, which is also evident from Figure 2(b1–b6). In both the cases, the generated
vortex appears with core, that is, zero density region at the center of condensate Ψ2, which
is visible in the density profiles of Ψ2 shown in Figure 2(b1–b6,d1–d6). It is worth noting
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that density depleted region at the center of the trap is also observed in the density profiles
of condensate Ψ1 during the creation of −1 unit vortex in Ψ2 (Figure 2(a1–a6)). However,
such a hole is absent in the condensate Ψ1, when +1 unit vortex is created. To understand
the nature of the density depleted regions, we study the phase profiles of the condensates.
We confirm the presence of phase discontinuity at the center of condensate Ψ2 for both
the cases. It is mentioned earlier that the phase of the condensate wavefunction changes
by κ × 2π around a quantized vortex, where κ is the winding-number or charge of the
vortex. We compute the winding number κ to be −1 when we use G as pulse and LG as
Stokes beam, whereas κ = +1 when we consider LG-G pulse sequence. On the other hand,
the phase profile of the condensate Ψ1 does not possess phase discontinuity during the
transfer process for both cases. Thus, the hole in condensate Ψ1 which is generated during
the application of G-LG pulse sequence, is not a vortex.

Figure 2. (Color online) Shows the time evolution of density profiles of the condensates of (a1–a6), (c1–c6) atoms in |1〉 and
(b1–b6), (d1–d6) those in |2〉, when −1 unit [(b1–b6)] and +1 [(d1–d6)] unit vortex is created in the condensate Ψ2. In the
course of time, the condensate Ψ2 gets populated. The fraction of atoms in the condensate with respect to total number of
atoms N = 104, is mentioned at the bottom left corner of each figure. Atoms are kick-started to be transferred from the
condensate Ψ1 to the condensate Ψ2 in the central region of the trap for −1 unit vortex transfer, but in the peripheral region
of the trap for +1 unit vortex transfer. Almost 100% atoms get transferred to state |2〉 for both the cases.

Focusing our discussion on G-LG pulse sequence, we ascribe the presence of hole in
condensate Ψ1 to the distortion of harmonic trap potential by the optical dipole potential.
In this case, the optical dipole potential is induced by the G laser pulse for the condensate Ψ1
and by the LG laser pulse for the condensate Ψ2. Note that, at t = 0 ms the laser pulses are
absent and the minimum of the harmonic oscillator occurs at the center of the trap. Hence,
we obtain a pancake-shaped density profile of the condensate Ψ1, which has maximum
density at the trap center to minimize trap potential energy. Then, during the application
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of laser pulse, the G-pulse gradually creates a rotationally symmetric “hump” at the center
of the trap, which increases the potential energy at the trap center. Therefore, the minimum
of the effective trap potential Veff,1 gets shifted radially away from the center, resulting in a
rotationally symmetric annular region as the new minimum of the potential. It is important
to mention that the density profile of a condensate in a binary mixture depends on the
effective trap potential in conjunction with the number of atoms in the condensate, intra
and intercomponent scattering length. Therefore, the atoms of the condensate Ψ1 move
away from center of the trap and settle at the annular region to minimize the trap potential
energy. This creates a hole at the center of the density profile of the condensate Ψ1. Since
the optical dipole potential induced by LG pulse has parabolic form around the center of
the trap, the position of the minimum of the effective potential Veff,2 does not change over
time. However, the steepness of this effective potential changes with time. It increases up
to time t = τ1 and then gradually decreases back to its initial value which is determined by
the considered harmonic potential. Therefore, the atoms in the condensate Ψ2 are always
pushed towards the center of the trap to minimize trap potential energy. As a result, during
the growth of Ψ2, the central region of the trap is occupied by the transferred atoms first,
and then rest of the region is occupied.

For LG-G pulse sequence, laser modes of pump and Stokes beam are interchanged.
Now the optical dipole potential is induced by the LG laser pulse for the condensate Ψ1 and
by the G laser pulse for the condensate Ψ2. Therefore, with the increase of the steepness of
the parabolic potential, which is generated by the LG pulse, the atoms in the condensate
Ψ1 are pushed towards the central region of the trap. The atoms that are transferred to
condensate Ψ2 experience the “hump” in the trap potential at the center, which is created
by the G pulse. Thus, the atoms in condensate Ψ2 are pushed towards an annular minimum
region of the effective trap potential. This results in larger core of the vortex in condensate
Ψ2 during the transfer process, which is to be contrasted with the previous case.

4.3. Root-Mean-Square Radius of the Condensates

The growth rate of condensate Ψ2 can be inferred from the rate of change of rms
radii of the condensates. In Figure 3 we illustrate the evolution of the rrms of both con-
densates during the transfer process for the cases when G-LG and LG-G pulse sequences
are considered. From the comparison between the considered cases, we can infer that the
growth rate of the condensate Ψ2 is faster in the case of LG-G pulse sequence than the
case of G-LG pulse sequence. Note that, for the chosen pulses, the strength of the Raman
interaction term V ′ is always maximum, at the boundary of the trap. However, atoms in the
condensate try to occupy the minimum of the trap potential to minimize the trap potential
energy. In particular, the effective trap potential Veff,2 of condensate Ψ2 has a minimum

at the center of trap for G-LG pulse sequence, but at a distance r = w0

√
ln
(
4V2(t)/w2

0
)
/2

from the center, for LG-G pulse sequence. Therefore, in the later case, the minimum of the
effective trap potential is closer to the trap boundary where the Raman coupling V ′ term
is maximum.

This suggests that the growth rate of the condensate Ψ2 depends on the distance be-
tween the position of the minimum of effective trap potential and the position of maximum
Raman coupling. After the transfer process, the rms radius of Ψ2 oscillates around a mean
value. The frequency of such residual radial oscillations, as can be seen from Figure 3,
is approximately ω′ = ω/3 for both pulse sequences. The amplitude of oscillation is much
smaller than the mean radius of condensate. Most importantly, such a small amplitude of
oscillation indicates that negligible amount residual excitations have been activated during
the population transfer. However, detail analysis of such excitations is out of the scope of
this work.
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Figure 3. (Color online) Shows the time evolution root mean square radius rrms of BEC Ψ1 and Ψ2

for different pulse sequences(see legends). The BECs are confined harmonic trapping potential with
frequency ω = 2π× 30.832 Hz and the intra-and interspecies interactions are taken as a11 = 100.04a0,
a22 = 95.44a0, and a12 = 100a0 respectively. The dynamics is triggered by employing LG[G]-G[LG]
pulse sequence, where LG[G] is the pump beam and G[LG] is the stokes beam.

4.4. Effects of Intercomponent Interaction

We now discuss the effects of intercomponent interaction between the two condensates,
during the transfer process and the final population of the condensate Ψ2. We consider the
LG-G pulse sequence as the representative example.

The scattering length a12, which quantifies interactions between the atoms of the
two different components, plays an important role in determining spatial wavefunctions
and the energy of the condensates. Indeed, for certain temporal duration of pulses and
intercomponent scattering length, the strength of the atom-light interaction Vmax have to be
monitored to get the desired population of atoms in the state |2〉. In the Figure 4, we present
the number of atoms in condensate Ψ2 at the end of the transfer process as a function
of a12 and Vmax. We vary peak Rabi frequency Vmax from 1 to 100 and intercomponent
atomic scattering length a12 from 70a0 to 110a0. Peak Rabi frequency can be controlled
either by changing peak light intensity of the pulse or by changing the detuning. Whereas,
the scattering length can be varied through the magnetic Feshbach resonance [83]. We
observe complete population transfer from condensate Ψ1 to condensate Ψ2 when Vmax is
greater than 100 (not shown in the diagram). Intercomponent interactions merely affect
the transfer process. In this region, atom–light interaction is strong enough to affect
any density distribution determined by a12. However, this situation does not hold for
intermediate values of Vmax, predominantly between 100 and 10. In this region, stronger is
the intercomponent interaction, larger is the number of atoms transferred to condensate
Ψ2. For small values of Vmax, larger values of a12 suppresses the transfer process, which is
evident from Figure 4. It is important to mention that in this limit, we observe the growth
of condensate Ψ2 is different for different values of intercomponent atomic scattering
length. That is, depending on the strength of the atom-light interaction, a12 affects the
population transfer in different manner. For example, for Vmax = 1, the final population
of Ψ2 is suppressed for larger a12, whereas, for Vmax = 10, strong interaction increases the
population in Ψ2 (see Figure 5a,b).
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Figure 4. (Color online) Illustrates the number of atoms transferred to the condensate Ψ2 as a
function of intercomponent scattering length a12 and the light–matter interaction parameter Vmax.
The colorbar shows the fraction of atoms in condensate Ψ2 with respect to the total number of atoms
N = 104 in the system at the end of the transfer process. The population transfer from Ψ1 to Ψ2

is carried-out using LG(pump)-G(stokes) pulse sequence. The system is confined in a harmonic
trapping potential with frequency ω = 2π × 30.832 Hz and the intraspecies scattering lengths are
a11 = 100.04a0 and a22 = 95.44a0.
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Figure 5. (Color online) Shows the time evolution of the population in the condensate Ψ2 for a fixed Rabi frequency, with
(a) Vmax = 1 and (b) Vmax = 10, and different interspecies scattering lengths a12 [see legends]. The dynamics is triggered by
employing LG(pump)-G(stokes) pulse sequence. The BEC Ψ2 is confined in a harmonic trapping potential with frequency
ω = 2π × 30.832 Hz. The total number of atoms in the system is N = 104 and the intraspecies scattering lengths are given
by a11 = 100.04a0 and a22 = 95.44a0. For Vmax = 1, larger a12 suppresses the population transfer processes, but favors the
same for Vmax = 10.

In order to gain further intuition regarding the combined effect of the atom-light cou-
pling and inter-component interaction we resort to the density evolution. Figure 6 presents
few representative snapshots of the density profiles for Vmax = 1 and a12 = 80a0. Note
that this particular parameter set corresponds to 45% particle transfer to Ψ2 (see Figure 5),
therefore, enabling the creation of binary mixture of almost equal particles. This, in par-
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ticular, is better comprehended from the density profiles depicted in Figure 6. Preparing
the initial state characterized by all the atoms residing at the state |1〉 (Figure 6(a1,b1)), the
light–matter interaction is initiated by employing LG-and G beams as pump and stokes
beam, respectively. Note that the large vortex core of Ψ2 during the early stage of pop-
ulation transfer is caused by the presence of the Gaussian potential barrier at its center
(see Figure 6(b2)). However, the same vortex core gradually shrinks as more number of
particles are transferred and the Gaussian barrier gradually diminishes (see Figure 6(b3,b4)).
Finally, the BEC at |2〉 possess 45% of the total number of particles. A close inspection of
Figure 6(a4–a6,b4–b6) reveals that a breathing motion characterized by expansion and con-
traction of the density profiles has been triggered in both Ψ1 and Ψ2. Another observation
is that Ψ2, after the population transfer, exhibits larger vortex core when compared to the
case of complete particle transfer, see Figure 2(d6) and Figure 6(b6).
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Figure 6. (Color online) Shows the time evolution (see the legends) of the density profiles of the BEC Ψ1 at (a1–a6) |1〉 and
those of BEC Ψ2 at (b1–b6) |2〉. The population transfer from Ψ1 to Ψ2 is triggered by utilizing a LG(pump)–G(stokes) pulse
sequence and setting the light–matter interaction parameter Vmax = 1 and the interspecies scattering length a12 = 80a0,
while all other parameters are the same as before. The fraction of atoms the condensate with respect to the total number of
atoms N = 104, is mentioned at the bottom left corner of each figure.

In addition, we observe the peak Rabi frequency plays an important role in determin-
ing the miscibility between the two components during light–matter interaction. This is in
contrast to the case when the light field is absent, that is, miscibility of two condensates
is determined by the intra and intercomponent interactions. To illustrate this, we have
considered Rabi frequencies, Vmax = 1 and Vmax = 10, for which both the condensates Ψ1
and Ψ2 have finite number of atoms N1 and N2, even after the light–matter interaction. For
these two cases, we show the variation of the miscibility parameter Λ with time in Figure 7.
Note that just after the initiation of the transfer process, condensate Ψ2 grows within the
condensate Ψ1, resulting in gradual increase of Λ. However, when a sufficient number of
atoms have been transferred to condensate Ψ2 and both the pulses have significant tempo-
ral overlap, mutual repulsion between the condensates and the optical dipole potential tend
to push the two condensates away from each other. This results in decrease of Λ. Again, the
overlap between the condensates and hence Λ increases as pulses gradually die down. It is
important to notice that during the light–matter interaction we obtain larger values of Λ
for larger values of a12. This indicates, the stronger the intercomponent repulsion between
the two condensates, the larger the overlap between them is. This is to be contrasted with
the case when light–matter interaction is absent, in which, larger intercomponent repulsion
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separates the condensates spatially. After the light–matter interaction, that is, when the
optical dipole potentials disappear, the miscibility between the condensates is determined
by intra- and inter-component interactions.
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Figure 7. (Color online) Shows the time evolution of the overlap integral Λ for a fixed Rabi frequency, with (a) Vmax = 1
and (b) Vmax = 10, and different interspecies scattering lengths a12 [see legends]. The dynamics is initiated by employing
LG(pump)-G(stokes) pulse sequence. The binary BECs are confined in harmonic trapping potential with frequency
ω = 2π × 30.832 Hz. The total number of atoms in the system is N = 104 and the intraspecies scattering lengths are given
by a11 = 100.04a0 and a22 = 95.44a0.

5. Conclusions

In conclusion, we have shown that how two-photon Raman transition can be used to
generate a rotating BEC with vorticity of either sign, by transferring atoms from another
condensate. In this transition, atoms gain angular momentum from the LG laser pulse be-
fore being transferred to a rotating condensate. Density patterns of the condensates during
the light–matter interaction depend on sign of the vorticity of the rotating condensate.

In particular, we have show that how a specific choice of pump and stokes beams can
alter the locations, within the trap, where the transferred particles start accumulating. No-
tably, this result stems form the optical potentials felt by the atoms of each individual state.
Most importantly, the interchange of pump and stokes laser beams not only changes the
sign of vorticity, but also gives rise different dipole potentials influencing both the growth
rate and growth region of the new Bose–Eintein condensate. The growth of the new conden-
sate with −1 unit vorticity is started from the central region of the trap, but a condensate
with +1 unit vorticity starts to grow from the peripheral region of the same. Furthermore,
the “smoothness” of the density profiles and the temporal evolution of rms radius imply
that there are very few excitations emerging during the light–matter interaction.

Moreover, we have shown that the number of transferred atoms can be monitored by
tuning the intercomponent interaction, if the peak Rabi frequency of light–matter interac-
tion is low and in particular, large intercomponent interaction subdues this transfer process.
In this way, by maneuvering the atom-light interaction strength and the intercomponent
scattering length one can create binary mixture of condensates.

Another major finding from our investigation is that intercomponent interaction kind
of plays an opposite role in the process of phase separation during the Raman transition
process, in contrast to literature [84] when such dynamical perturbation is absent. We
find that a stronger intercomponent interaction favors greater miscibility between the
condensates during the light–matter interaction.
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Finally, we point out that the storage of a photon pair entangled in OAM space
through Raman transition in the cold atomic ensemble has served as a sandbox to study
information processing [85]. Besides, because atoms can have higher spin manifolds than
light, the extension of our work to the spinor BEC would be an important study. Various
topological properties can be developed in the ground state depending on Rabi frequency
and atom-atom interaction strength, for example, a Mermin-Ho vortex or a meron pair
phase [86], and might lead to the exhibition of non-Abelian braiding statistics [87] which is
particularly interesting for topological quantum computing protocols [88]. We expect our
study will shed light for further research in this direction.
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Appendix A. Effects of Harmonic Trap and Time-Delay between the Pulses

Here we discuss the effects of the trapping frequencies of the harmonic potentials and
the time-delay between two pulses during the particle transfer and on the final population
of the component Ψ2. In particular, we are interested in the weak atom-light coupling
regime where both components contain finite number of particles. To that purpose we set
Vmax = 1, also the interspecies scattering length is a12 = 80a0. Figure A1a presents time
evolution of the fraction of total number of particles in Ψ2 for different trapping frequencies
ω. It is evident that consideration of a different trapping frequency only changes the time
scale of the relevant phenomenology. Remarkably, it does not alter the final population
of the Ψ2 to a great extent. The onset and the growth rate of the population transfer are
influenced by the trapping frequency. For instance, for ω/(2π) = 30.832 Hz, the transfer
starts at earlier time instant and occurs at a faster rate when compared to the others.

Next we inspect the effect of varying time-delay between the two pulses on the
population transfer in the weak light–matter coupling regime (see Figure A1b). We fix the
peak location (τ2) of the stokes pulse at τ2 = 10.33 ms and vary the peak location (τ1) of the
pump pulse. We notice that maximum particle transfer is approximately 45% of the total
population, which is achieved when τ1 lies in the range 11.36–12.39 ms. However, when the
time delay is too large (τ1 = 15.49 ms) or too small (τ1 = 10.36 ms) the number of particles
in Ψ2 decreases. Besides, when the time delay is very small, in other words temporal
peaks of the two pulses are very close to each other, the growth of the population shows
a very different behavior, see the blue curve in Figure A1b. The noticeable swell, during
the light–matter interaction, in the curve corresponding to τ1 = 10.36 ms can be related
to the creation of significant amount of excitations in both components. These excitations
stemming from the interactions with laser pulses also remain in both components after
the interaction is over. We remark that such residual excitations leave their finger-prints
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onto the density profiles of the components (not shown here for the brevity), and bear the
signatures of the break-down of coherent population transfer.
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Figure A1. (Color online) Time evolution of the fraction of particle number transferred to the BEC Ψ2 for (a) various
trapping frequencies ω and (b) various peak positions of the (τ1) of the pump laser pulse. A LG-G pulse sequence is used to
trigger the dynamics in the weak light–matter interaction regime characterized by Vmax = 1. While studying the effect of
the trapping frequencies [(a)], τ2 and τ1 are fixed at 10.33 ms and 13.43 ms, respectively. On the other, the rapping frequency
ω = 2π× 30.832 Hz and peak position τ2 = 10.33 of stokes pulse are kept fixed when studying the variation of τ1 [(b)]. The
total number of particles in the system is N = 104, and the intra-and interspecies interactions are a11 = 99a0, a22 = 95.44a0

and a12 = 80a0.

Appendix B. Hamiltonian and Derivation of Equation of Motions

Let Ψ̂†
j and Ψ̂j be the creation and annihilation operators respectively for atoms at state

|j〉. The Hamiltonian for interacting boson alkali atoms in a trap potential, with respect to a
frame rotating at the frequency of applied laser fields in the rotating wave approximation
can be written as

H =
∫

dr1Ψ̂†
1(r1, t)ĥ1Ψ̂1(r1, t) +

∫
dr2Ψ̂†

2(r2, t)ĥ2Ψ̂2(r2, t) + h̄∆
∫

dr3Ψ̂†
3(r3, t)Ψ̂3(r3, t)

+
U11

2

∫
dr1Ψ̂†

1(r1, t)Ψ̂†
1(r1, t)Ψ̂1(r1, t)Ψ̂1(r1, t) +

U22

2

∫
dr2Ψ̂†

2(r2, t)Ψ̂†
2(r2, t)Ψ̂1(r2, t)Ψ̂1(r2, t)

+ U12

∫
dr′Ψ̂†

1(r
′, t)Ψ̂†

2(r
′, t)Ψ̂1(r′, t)Ψ̂2(r′, t) + h̄

∫
dr′Ω1(r′, t)eil1φΨ̂†

3(r
′, t)Ψ̂1(r′, t)

+h̄
∫

dr′Ω2(r′, t)eil2φΨ̂†
3(r
′, t)Ψ̂2(r′, t) + H.c

we have following commutation relations for the bosonic operators:

[Ψ̂j(r, t), Ψ̂†
k(r
′, t)] = δ(r− r′)δjk, (A1)

[Ψ̂j(r, t), Ψ̂k(r
′, t)] = 0,

[Ψ̂†
j (r, t), Ψ̂†

k(r
′, t)] = 0

Now Heisenberg equation of motion gives

ih̄
∂Ψ̂1(r, t)

∂t
= [Ψ̂1(r, t), H] (A2)
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ih̄
∂Ψ̂2(r, t)

∂t
= [Ψ̂2(r, t), H] (A3)

ih̄
∂Ψ̂3(r, t)

∂t
= [Ψ̂3(r, t), H] (A4)

Using bosonic commutation relation and Heisenberg equation of motion we get

ih̄
∂Ψ̂1(r, t)

∂t
= ĥ1Ψ̂1(r, t) + U11Ψ̂†

1(r, t)Ψ̂1(r, t)Ψ̂1(r, t) (A5)

+ U12Ψ̂†
2(r, t)Ψ̂2(r, t)Ψ̂1(r, t) + Ω∗1(r, t)e−il1φΨ̂3(r, t),

ih̄
∂Ψ̂2(r, t)

∂t
= ĥ2Ψ̂2(r, t) + U22Ψ̂†

2(r, t)Ψ̂2(r, t)Ψ̂2(r, t) (A6)

+ U21Ψ̂†
1(r, t)Ψ̂1(r, t)Ψ̂2(r, t) + h̄Ω∗1(r, t)e−il2φΨ̂3(r, t),

and

ih̄
∂Ψ̂3(r, t)

∂t
= h̄∆Ψ̂3(r, t) + h̄Ω1(r, t)eil1φΨ̂1(r, t) (A7)

+ h̄Ω2(r, t)eil2φΨ̂2(r, t).

Eliminating of the field operator Ψ̂3(r, t) adiabatically,

ih̄
∂Ψ̂3(r, t)

∂t
= 0 (A8)

Ψ̂3(r, t) = −(Ω1(r, t)eil1φΨ̂1(r, t) + Ω2(r, t)eil2φΨ̂2(r, t))/∆ (A9)

Putting (A9) into (A5) and (A6) we get,

ih̄
∂Ψ̂1(r, t)

∂t
= ĥ1Ψ̂1(r, t) + U11Ψ̂†

1(r, t)Ψ̂1(r, t)Ψ̂1(r, t)+ (A10)

U12Ψ̂†
2(r, t)Ψ̂2(r, t)Ψ̂1(r, t)− h̄|Ω1(r, t)|2

∆
Ψ̂1(r, t)−

h̄Ω2(r, t)Ω∗1(r, t)
∆

Ψ̂2(r, t)e−i(l1−l2)φ

and

ih̄
∂Ψ̂2(r, t)

∂t
= ĥ2Ψ̂2(r, t) + U22Ψ̂†

2(r, t)Ψ̂2(r, t)Ψ̂2(r, t)+ (A11)

U21Ψ̂†
1(r, t)Ψ̂1(r, t)Ψ̂2(r, t)− h̄|Ω2(r, t)|2

∆
Ψ̂2(r, t)−

h̄Ω1(r, t)Ω∗2(r, t)
∆

Ψ̂1(r, t)ei(l1−l2)φ

where Ω1(r) and Ω2(r), Rabi frequencies of the transitions |1〉 → |3〉 and |3〉 → |2〉, are
given by E1(r, t) · d13/h̄ and E2(r, t) · d32/h̄ with d13 and d32 being the corresponding
transition dipole moments. we consider d13 = d23 = d. At T = 0, in limit of low energy s-
wave scattering, and neglecting quantum fluctuation, the field operator Ψ̂j can be replaced
by a complex valued wavefunction Ψj. Therefore, (A3) and (A4) become
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ih̄
∂Ψ1(r, t)

∂t
=
[
− h̄2

2m
∇2 + V(r)− h̄|Ω1(r, t)|2

∆

]
Ψ1 + U11|Ψ1|2Ψ1 + U12|Ψ2|2Ψ1 (A12)

−
h̄Ω2(r, t)Ω∗1(r, t)

∆
Ψ2(r, t)e−i(l1−l2)φ

and

ih̄
∂Ψ2(r, t)

∂t
=
[
− h̄2

2m
∇2 + V(r)− h̄|Ω2(r, t)|2

∆

]
Ψ2 + U11|Ψ2|2Ψ2 + U12|Ψ1|2Ψ2 (A13)

− h̄Ω1(r, t)Ω∗2(r, t)
∆

Ψ2(r, t)ei(l1−l2)φ

Using (1) and (4)

∣∣∣Ω(1)2

∣∣∣2 = (
Emaxd32

h̄∆
)2e(−

t−τ1(2)
T )2

(x2 + y2)|l1(2)|e
−2( x2+y2

w2
1(2)

)

(A14)

and

Ω∗2Ω1 =(
Emaxd32

h̄∆
)2e−(

t−τ1
T )2−( t−τ2

T )2
(x2 + y2)

|l1|+|l2|
2

× e

− 2(x2+y2)(
1

w2
1
+ 1

w2
2

) (A15)

Here the BEC is considered to be confined at z = 0 plane and ω1 ≈ ω2.
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