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Abstract: In this work, we studied the Lyman-alpha line in the presence of a magnetic field, such as
the ones found at the edge of tokamaks. The emphasis is on the contribution of the motional Stark
effect on line broadening, which may have comparable effects to the internal plasma microfields
for the spectral line in question. The effect of the magnetic field, temperature, and the Maxwell
distribution of the ion velocities and density on Lyman-alpha are studied.
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1. Introduction

Spectroscopy is often used for non-intrusive tokamak diagnostics, as atomic parameters are
modified by the surrounding plasma. Typically observed atomic properties, such as widths and shifts
or level splittings are compared to calculations that account for the plasma environment, e.g., density,
temperature, magnetic field, etc. Such calculations of line profiles take into account the fact that a
spectral line shape is a complex function of the interaction of the emitter with perturbers and external
fields as well as on the internal structure of the emitter. So far, the majority of research on line profile
only accounts for the Stark effect [1]. However, magnetic fields also play an important role in a number
of areas of current interests: Astrophysics (magnetic stars, white dwarfs, stars neutron), plasmas
generated by high energy lasers, and magnetic fusion (tokamak, stellarator, pinch). Comparatively,
little work has been done for plasmas in the presence of the magnetic field. Stark–Zeeman effects on
spectral lines is still largely unexplored, with only few theoretical studies opening the way for more
research [2–5].

Among these works, Nguyen-Hoe et al. [5] calculated the profiles of hydrogen lines in the presence
of electron collisions, the static ion microfield, and an external uniform magnetic field. They considered
electron densities between 1015 cm−3 and 1018 cm−3 and magnetic fields less than or equal to 12 tesla.
Results concerning the Lyman-α, Lyman-β, and the Lyman and Balmer α were obtained. For very low
magnetic fields B, the profiles merge with the pure Stark profiles, previously calculated by [6–8].

For large B > 1 Tesla, the line shapes deviate significantly from a pure Stark profile. These differences
depend both on the orientation of the viewing direction relative to the magnetic field, and on the ratio
between the displacement due to the Zeeman single magnetic field and the Stark shift due to the plasma
electric microfield. The dependence on the emission angle, relative to the magnetic field, complicates
the calculation because the assumption of an isotropic plasma is no longer valid in the presence of a
magnetic field.
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The magnetic field has a number of effects: First, it splits the atomic levels of the emitter. Second,
it modifies the motion and distribution functions of the plasma particles. This has been studied
in [9,10] and it was found that the spiraling motion of charged particles may be neglected if the
line width is much larger than the cyclotron frequency and in addition, because of competing effects,
modifications are typically not large.

In this work we focus on a third effect, the motional Stark effect and its influence on the emitter,
rather than the motion of the plasma particles. Since, in intense magnetic fields, this phenomenon may
be more important than the Stark effect itself and does not consider other effects.

This work is organized as follow: First, the relevant equations and parameters are introduced in
Section 2. In Section 3, a version of the Stark broadening theory, including the motional Stark effect is
presented. We neglect fine structure effects because of the strong magnetic fields of interest (B > 1
Tesla). Section 4 presents the results and compares and contrasts the role of different effects in relation
to line broadening. A brief conclusion follows in Section 5.

2. Motional Stark Effect (MSE)

Due to the motion of the emitter with velocity
−→
V in the magnetic field ~B, the emitting electron

experiences an electric field-called ‘Lorentz field’ in this paper, given by:

−→
EL =

−→
V ×−→B (1)

This field produces a Stark effect in the reference frame of the emitter, so that the total Hamiltonian
takes the form:

H(E, B) = H0 + Hs f +
−→
d · −→E (t) + h̄−→ω ·

(−→
L + 2

−→
S
)
+
−→
d · (−→V ×−→B ) (2)

where H0 is the field-free non-relativistic Hamiltonian of the atom, H f s is the fine-structure correction,
~d is the dipole operator (here, we will be using the length gauge), ~ω is the Larmor frequency (oriented
towards the magnetic field ~B),~L is the orbital momentum operator, and ~S is the spin operator of the
emitter.

Since the magnitude of the Lorentz field increases with the square root of the emitter temperature
and is linear in B, it is expected that the last term in Equation (2) can become very important for hot
plasmas and large B-fields and thus compete with or even dominate the plasma microfields.

It is therefore interesting to compare the strengths of the Lorentz field EL to the typical plasma
microfield E0 (both in CGS (Centimetre, Gram, Second)). The former is:

EL = B ·V/c. (3)

In denser or colder plasmas, it is common to estimate E0 from the Holtsmark normal field.
The static picture entailed by this choice, however, is not appropriate if our interest is in low density
and high temperatures plasmas, where the electric field consists of temporally separated collisions.
Instead, for hydrogen lines, a more appropriate estimate for E0 is the field at the Debye length, since
this is the phase space region that has the most perturbers. In practice, the normal field of Holtsmark
is still a satisfactory estimate even for relatively hot plasmas [11]:

E0 = 2πe(
4N
15

)2/3 = 2.63eN2/3. (4)

By replacing V by its mean thermal value and assuming equal emitter and plasma particle
temperatures, the ratio between the typical Lorentz and electric fields is given by:

EL
E0

= 2330 · B · T1/2

N2/3 . (5)
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This ratio is presented in Figure 1 as a function of density for different magnetic field.
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Figure 1. The ratio of the Lorentz to the Stark field for two different magnetic fields.

For high temperatures, and when the density is low, the effect of the Lorentz field may become
important, or even exceed the Stark effect. Thus, under certain conditions, the MSE may compete or
even dominate the Stark effect.

3. The Spectral Line

In the presence of an external magnetic field, the total probability (for all directions) of emission of
radiation is proportional to the squared modulus |〈n′l′m′ |d−m| njm〉|2. However, the relative intensity
of the Zeeman components when observed in a particular direction (relative to the direction of the
magnetic field applied to the source) is of greater interest. The probability of emission (and therefore

the line strength), in a given direction n, is proportional to ∑
∣∣∣e∗ · d f i

∣∣∣2 [12], where the summation
is over the two independent polarizations, e, which are possible for a given n. For example, if the
observation is done along the field (along the z-axis), this sum is given by:

|dx|2 + |dy|2. (6)

This means that only two σ components (m = ±1) are observed in the longitudinal direction
(along the field).

For observation in the perpendicular direction, the intensity is proportional to the sum:

|dy|2 + |dz|2. (7)

In the formalism of an emission lines’ profile of an ion emitter immersed in plasma, the intensity
of the line is given by the Fourier transform of the autocorrelation function of the dipole:

I (ω) =
∫ ∞

0
exp (−iωt)Cdd (t) dt. (8)
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The calculation of this function in the case of the longitudinal observation is then given by:

I(ω) = Re
∫ ∞

0
dt exp(−iωt)Cdxdx (t) + Re

∫ ∞

0
dt exp(−iωt)Cdydy(t). (9)

The dipole operator evolution is governed by the evolution operator given by (h̄ = 1):

TE(t) = exp[−it(H(
−→
E ,
−→
B ))] (10)

where:
H(
−→
E ,
−→
B ) = H0 +

qe

2m
−→
B
(−→

L + 2
−→
S
)
+
−→
d
−→
E +

−→
d
(−→

V ×−→B
)

(11)

where the structure fine is not considered. The dipolar part in the Hamiltonian (2):

−→
d .
−→
E +

−→
d .
(−→

V ×−→B
)
= qe

(
Exx + Eyy + Ezz

)
+

qeB
c
(
xVy − yVx

)
(12)

possess only off-diagonal matrix elements whereas the magnetic part (the second term in (11)) is diagonal:

〈nl′m′| qe

2m
(Lz + 1)|nlm〉 = h̄ω0(m + 1)δl l′ δm m′ (13)

where ω0 is the angular frequency given by the Larmor equation :

ω0 = − qe

2m
B. (14)

The x-dipolar autocorrelation function has the following expression:

Cdxdx (t) = ∑
αβα′β′

dx
αβ

{〈
β |T∗b | β

′〉 〈α |Ta| α〉
}

av d∗xα′β′ (15)

The averaging subscript (av) will be defined later. The evolution operator T∗b acts on the lower level
(n = 1). Only the magnetic part in T∗b contributes and gives an extra exponential factor exp(−iω0t)
due to the relation (13). Then the last equation becomes:

Cdxdx (t) = exp(−iω0t) ∑
αβα′β′

δββ′d
x
αβ {〈α |Ta| α〉}av d∗xα′β′ (16)

or:
Cdxdx (t) = exp(−iω0t) ∑

αβα′β′
dx

α,100 {〈α |Ta| α〉}av d∗xα′ ,100 (17)

where the vector column:

dx
α,100 =


< 100|dx|200 >= 0

< 100|dx|21− 1 >= q
< 100|dx|210 >= 0
< 100|dx|211 >= −q

 . (18)

Note by |1 >= |200 >, |2 >= |21− 1 >, |3 >= |210 >, |4 >= |211 >, then Cdxdx (t) can be easily
transformed to:

Cdxdx (t) = q2 exp(−iω0t)[〈2|Ta|2〉+ 〈4|Ta|4〉 − 2Re〈2|Ta|4〉]av. (19)

As the last term is zero, the x-dipolar autocorrelation function is given by:

Cdxdx (t) = q2[exp(−iω0t)〈2|T̃a|2〉+ exp(+iω0t)〈4|T̃a|4〉]av. (20)
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The same technique used in [13], applies to compute 〈2|T̃a|2〉 and 〈4|T̃a|4〉, and the x-dipolar
autocorrelation function becomes (after inserting the collision operator Φe which takes into account
the magnetic field [1]):

Cdxdx (t) = q2 exp(−Φet)(exp(−iω0t) + exp(+iω0t))[2 + cos(ηh(t))] =

2 exp(−Φet) cos(ω0t)[2 + cos(ηh(t))] (21)

where η = D/h̄ and:

h(t) =

√
2
∫ t

0
dτ(t− τ) <

−−→
E(τ)
−−→
E(0) > (22)

and −−→
E(t) =

−→
E Stark(t) +

−→
E Lorentz(t). (23)

Neglecting the correlation between the Stark and Lorentz microfield, we can write:

<
−−→
E(τ)
−−→
E(0) >= CEE

Stark(t) + CEE
Lorentz(t) (24)

where:
CEE

Stark(t) =<
−→
E Stark(t)

−→
E Stark(0) > (25)

is the Stark microfield auto-correlation function and

CEE
Lorentz(t) =<

−→
E Lorentz(t)

−→
E Lorentz(0) >= B2 <

−→
V (t)

−→
V (0) >= B2CVV(t) (26)

is the Lorentz microfield auto-correlation function. The first correlation function CEE
Stark(t) is given

by [11] valid for neutral emitters:

CEE
Stark(t) =

3r0

λD
√

π

1
t
[1 + t2 − t

√
π(t2 + 3/2) exp(t2)er f c(t)] (27)

where t is the time expressed in units of the plasma frequency, and λD the electronic Debye length and
r0 is the mean distance between atoms.

The second correlation function CEE
Doppler(t) is given in the Brownian model by Hansen [14] valid

for neutral emitters:
CEE

Lorentz(t) = B2 kT
m

exp(− 3kT
2mDv

t) (28)

where Dv is the self diffusion coefficient and k is the Boltzmann constant. In the case of the static
approximation, the x-dipolar autocorrelation function reads:

Cdxdx (t) = 2 exp(−Φet) cos(ω0t)[2 + cos(ηt
√
< E2 > +B2 < V2 >)]. (29)

The contribution of the y-component (second term in (9)) is the same as the x-component in the
expression of intensity:

I(ω) = 2Re
∫ ∞

0
dt exp(−iωt)Cdxdx (t). (30)

4. Results and Discussion

We first performed a set of calculations (Figure 2–6), taking account of the MSE to determine the
parameters for which a spectroscopically important MSE could appear. Clearly, the Zeeman splitting
made sure of a measurable B-field and this must survive the Stark and Doppler broadening, if the
B field is to be measured. Figure 2 shows the estimate range of parameters for which the Zeeman
splitting remains visible. In Figure 3, we refine this estimate by also taking the Doppler broadening
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into account. All calculations compute the Lyman-alpha line in Hydrogen plasmas for a strong B-field
for a parallel direction of observation, at several conditions of temperature and densities.
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Figure 6. Lyman Alpha line in the hydrogen plasma: The electron temperature effect on the line with
the MSE effect without the Doppler effect and fine structure effects.

All spectral lines are in arbitrary units and frequencies are in the plasma frequency unit. Figure 2
and 3 are for an electron density Ne = 1015 cm−3 and temperature T = 3 eV. The MSE is taken into
account. Figure 2 is without the Doppler effect and Figure 3 is with the Doppler effect. Figure 2 is for
different magnetic fields in the range [1 Tesla–10 Tesla], whereas Figure 3 is for the range [10 Tesla, 30
Tesla]. We also note from these two figures that the Doppler effect and MSE are in competition in the
formation of the line profile: When the Doppler effect is absent, the MSE is immediately manifested as
soon as B exceeds 1 Tesla, and when the Doppler effect is present, the MSE begins to manifest from
B = 18 Tesla. Figure 4 further confirms this: If the magnetic field B is not strong enough (B < 18 Tesla),
the Doppler effect and MSE are increasingly accentuated with the temperature so that they hide the
Zeeman effect.

Figure 5 shows the effect of the density on the spectral line when the Doppler effect is not
considered: The Zeeman effect was found to be quite pronounced for densities that are less than
Ne = 1016 cm−3. For higher densities, the fine structure must be taken into account. Figure 6 shows the
effect of the temperature on the spectral line when the Doppler effect is not considered: The Zeeman
effect was found to become increasingly pronounced as the temperature decreases. For temperatures
above 10 eV, the fine structure must also be taken into account.

5. Conclusions

In this work we have presented new results concerning the broadening of the hydrogen spectral
line at the edge of a Tokamak, where Doppler broadening is dominant over fine structure, electronic
broadening, ion Stark broadening, the MSE, and Zeeman separation.The study showed that when the
magnetic field is larger than 10 Tesla, Zeeman separation becomes visible. For less intense magnetic
fields, the Doppler effect is discarded, the Zeeman effect for different values of the magnetic field could
be seen. The relative importance of the MSE compared to Stark broadening was more pronounced for
high temperatures and low densities.



Atoms 2020, 8, 91 9 of 9

Author Contributions: All authors participated equally in the preparation of this article. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: No conflict of interest.

References

1. Touati, K. Analyse Spectroscopique des Plasmas en présence d’un Champ Magnétique. Ph.D. Thesis,
Université of Provence, Marseille, France, 2003.

2. Rosato, J.; Marandet, Y.; Peiffer, A.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R. Modeling of
Stark-broadened lines in a fluctuating edge plasma. Contrib. Plasma Phys. 2014, 54, 565. [CrossRef]

3. Touati, K.; Meftah, M.T. Line Shapes in the Magnetized Plasmas. J. Mod. Phys. 2012, 3, 943–946. [CrossRef]
4. Rosato, J.; Capes, H.; Godbert-Mouret, L.; Koubiti, M.; Marandet, Y.; Rosmej, F.; Stamm, R. Modeling of Stark

Profiles in a Fluctuating Edge Tokamak Plasma. Contrib. Plasma. Phys. 2006. [CrossRef]
5. Hoe, N.; Drawin, H.W.; Herman, L. Effect of a Uniform Magnetic Field on the Line Profiles of the Hydrogen.

J. Quant. Spectrosc. Trans Fer Radiat. 1967, 7, 429. [CrossRef]
6. Griem, H.R.; Kolb, A.; Chen, Y. Stark broadening of neutral helium lines in a plasma. Phys. Rev. 1959, 116, 4.

[CrossRef]
7. Griem, H.R.; et Blaha, M.; Keepple, P.C. Stark-profile calculations for Lyman-series lines of one-electron ions

in dense plasmas. Phys. Rev. A 1979, 19, 2421. [CrossRef]
8. Alexiou, S. Erratum: Z scaling of the 3P-3S Li isoelectronic series transition: Quadrupole Stark broadening

and resonances. Phys. Rev. A 1994, 49, 106. [CrossRef] [PubMed]
9. Alexiou, S. Line Shapes in a Magnetic Field: Trajectory Modifications I: Electrons. Atoms 2019, 7, 52.

[CrossRef]
10. Alexiou, S. Line Shapes in a Magnetic Field: Trajectory Modifictions II: Full Collision-Time Statistics. Atoms

2019, 7, 94. [CrossRef]
11. Brissaud, A.; Goldbach, C.; Léorat, J.; Mazure, A.; Nollez, G. On the validity of the model microfield method

as applied to Stark broadening of neutral lines. J. Phys. B. 1976, 9. [CrossRef]
12. Berestetskii, V.B.; Lifchitz, E.M.; Pitaevskii, L.P. Course of Theoretical Physics, 2nd ed.; Pergamon Press: Oxford,

UK, 1982; Volume 4, Chapter V, Section 51.
13. Bouguettaia, H.; Chihi, I.; Chenini, K.; Meftah, M.T.; Khelfaoui, F.; Stamm, R. Application of path integral

formalism in spectral line broadening: Lyman-α in hydrogenic plasma. JQSRT 2005, 94, 335–346. [CrossRef]
14. Hansen, J.P.; McDonald, I.R. Theory of Simple Liquids, 3rd ed.; Academic Press: Cambridge, MA, USA, 2005.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/ctpp.201410045
http://dx.doi.org/10.4236/jmp.2012.39123
http://dx.doi.org/10.1002/ctpp.200610061
http://dx.doi.org/10.1016/0022-4073(67)90042-8
http://dx.doi.org/10.1103/PhysRev.116.4
http://dx.doi.org/10.1103/PhysRevA.19.2421
http://dx.doi.org/10.1103/PhysRevA.49.106
http://www.ncbi.nlm.nih.gov/pubmed/9910211
http://dx.doi.org/10.3390/atoms7020052
http://dx.doi.org/10.3390/atoms7040094
http://dx.doi.org/10.1088/0022-3700/9/7/014
http://dx.doi.org/10.1016/j.jqsrt.2004.09.015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motional Stark Effect (MSE)
	The Spectral Line
	Results and Discussion
	Conclusions
	References

