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Abstract: Doubly differential cross sections for projectile ionization in fast collisions of few-electron
uranium ions with the nitrogen target are calculated within the first order of the relativistic
perturbation theory. A comparison with the recent measurements of the energy distribution of
forward-emitted electrons is made and good agreement is found.
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1. Introduction

For many decades ion-atom collisions serve as a tool for studying basic processes in atomic
physics. Nowadays, owing to the usage of storage rings a more efficient and detailed exploration of
such processes becomes accessible [1,2]. Storage rings provide a wide range of projectile charge states
and velocities, which together with the implementation of various internal targets and detectors leads
to unprecedented experimental conditions.

Ionization of highly charged projectile heavy ions can uniquely be studied in storage rings in the
inverse kinematics in collisions with gas targets. In this process, called electron loss to the continuum
(ELC), the velocity of the ejected “cusp” projectile electrons is close to the projectile velocity [3]. Besides,
in such collisions, an electron moving in the beam direction and with v ≈ vP can also be originated
from ionization of the target, which constitutes the electron capture to the projectile continuum process
(ECC). Due to the detection of the projectile charge after the reaction zone, electrons ejected from
different centers can be separated in a single experiment [4].

For low-Z projectiles ECC and ELC cross sections were measured from 1970s [4–8]. For highly
charged uranium ions a series of measurements was recently performed in the experimental storage
ring (ESR) at GSI (Darmstadt, Germany) using a magnetic electron spectrometer [9–13]. Theoretical
calculations of ionization probabilities and cross sections based on the first-order perturbation theory
were largely discussed in the literature [14–22].

In this contribution, we perform computations of the energy distribution of the forward-emitted
electrons in the course of ionization of Li- and Be-like uranium ions in near relativistic collisions with the
nitrogen target. In the framework of the relativistic first-order perturbation theory, doubly differential
cross sections (DDCS) for ionization are obtained in the projectile reference frame. Using the
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transformation of the cross section to the laboratory reference frame and extraction of the forward part
we obtain the desired energy distribution to compare with the recent experimental data [10].

The paper is organized as follows. In Section 2 the basic formalism is outlined, including the
formulation of the perturbation theory for the calculation of the doubly differential cross section in the
projectile frame in Section 2.1, its transformation to the laboratory frame in Section 2.2, and description
of the screening potentials used in Section 2.3. The results for Be- and Li-like ions are presented
and discussed in Sections 3.1 and 3.2, correspondingly. Finally, a summary and outlook are given
in Section 4.

Relativistic units h̄ = c = me = 1 are used throughout the paper unless otherwise stated.

2. Basic Formalism

2.1. Doubly Differential Cross Section within the First-Order Perturbation Theory

Let us consider ionization of a projectile ion in the reference frame where it is at rest by a target
atom moving along a straight-line trajectory with constant velocity ~β and impact parameter~b, so that
~b · ~β = 0. The projectile ionization may be caused by the target nucleus and target electrons. The total
cross section for ionization with good accuracy can be approximated by the incoherent sum of each
contribution [23,24]. Moreover, while the nucleus contribution is proportional to Z2

T, the electron
one scales as their number, i.e., target charge ZT for a neutral atom. In what follows, we neglect the
ionization by target electrons and consider only the nucleus contribution to the ionization cross section.
The transition amplitude from the initial bound projectile state ψniκiµi (~r) with energy Ei to the final
continuum state ψ~p f µ f

with energy E f in the first-order perturbation theory reads as [25]

a f i = iγαZT

∫
dt ei(E f−Ei)t〈~p f µ f |

1− βαz

r′(t)
|niκiµi〉. (1)

Here we assume that the z- and x-axes are directed along ~β and~b, correspondingly, γ = 1/
√

1− β2 is
the Lorentz factor, α is the fine-structure constant, r′(t) =

√
(x− b)2 + y2 + (γ(z− βt))2 is the distance

between the projectile electron and the target nucleus, αz is the Dirac matrix. Moreover, the initial
state is characterized by a principal quantum number ni, angular momentum-parity quantum number
κi, and total angular momentum projection µi, while the final state is described by an asymptotic
momentum ~p f and spin projection µ f . Then the DDCS is given by

d2σ

dE f dΩ f
= p f E f

1
2ji + 1 ∑

µiµ f

2π
∫ ∞

0
db b|a f i|2, (2)

where the integration over the impact parameter, summation over the final spin projections,
and averaging over the initial total angular momentum projections are performed. The integration
over the time and impact parameter is convenient to perform introducing the Fourier transform from
the space coordinate~r to the momentum coordinate~s [15,16]. In this way one obtains

d2σ

dE f dΩ f
=

4
2ji + 1

(
αZT

β

)2

∑
µiµ f

∫ ∞

q

∫ 2π

0

s ds dφs

(s2 − (qβ)2)2 |M f i|2, (3)

where q = (E f − Ei)/β and
M f i = 〈~p f µ f |(1− βαz)ei~s·~r|niκiµi〉. (4)

This matrix element is calculated using the plane wave expansion

ei~s·~r = 4π ∑
LM

iL jL(sr)Y∗LM(~̂s)YLM(~̂r), (5)
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where YLM are the spherical harmonics and jL are the spherical Bessel functions [26], together with the
expansion of the distorted wave

ψ~p f µ f
(~r) =

1√
E f p f

∑
κµ

ile−i∆κ Cjm
lµ−µ f , 1

2 µ f
Y∗lµ−µ f

( ~̂p f )ψE f κµ(~r), (6)

where Cjµ
lm, 1

2 µ f
is the Clebsch-Gordan coefficient, ∆κ is the difference between the asymptotic

large-distance phase of the Dirac-Coulomb solution and the free Dirac solution [27]. Furthermore,
ψEκµ is the Dirac partial wave with a given energy E, angular momentum-parity quantum number κ,
and total angular momentum projection µ represented by a bispinor

ψEκµ(~r) =
1
r

(
GEκ(r) χκµ(~̂r)

i FEκ(r) χ−κµ(~̂r)

)
, (7)

and normalized on the energy scale,

〈ψEκµ|ψE′κµ〉 = δ(E− E′). (8)

The initial Dirac wave function ψniκiµi (~r) is also expressed by a bispinor with radial components
Gniκi (r) and Fniκi (r) normalized to 1. Substituting Equations (5) and (6) into Equation (4), one obtains
the following expression for the matrix element M f i in the momentum space:

M f i =
4π√
E f p f

∑
κµ

∑
LM

iL−lei∆κ Cjm
lµ−µ f , 1

2 µ f
Y∗lµ−µ f

( ~̂p f )Y∗LM(~̂s)〈E f κµ|(1− βαz)jL(sr)YLM(~̂r)|niκiµi〉. (9)

Then the matrix elements in Equation (9) can be written as [16,22]

〈E f κµ|(1− βαz)jL(sr)YLM(~̂r)|niκiµi〉 =
3

∑
λ=1

dλR(λ)
E f Lκ(s)∑

t

(−1)ji−µi
√

2t + 1
CtM

jµ,ji−µi
A(λ)

tLM , (10)

where d1 = 1, d2 = −d3 = iβ, the radial integrals are defined by

R(1)
E f Lκ(s) =

∫ ∞

0
dr jL(sr)(GE f κ(r)GEiκi (r) + FE f κ(r)FEiκi (r))

R(2)
E f Lκ(s) =

∫ ∞

0
dr jL(sr)FE f κ(r)GEiκi (r)

R(3)
E f Lκ(s) =

∫ ∞

0
dr jL(sr)GE f κ(r)FEiκi (r),

(11)

and angular coefficients read as

A(1)
tLM = CtM

LM,00〈κ‖YL‖κi〉
A(2)

tLM = CtM
LM,10〈−κ‖[YL ⊗ σ]t‖κi〉

A(3)
tLM = CtM

LM,10〈κ‖[YL ⊗ σ]t‖ − κi〉.

(12)

In our approach, the integrals (11) are evaluated numerically, while the analytical integration is possible
for the case of the wave functions in the pure Coulomb potential [28]. The radial components of the
Dirac wave functions GEκ and FEκ as well as the phase shifts ∆κ are computed using the RADIAL
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package [29]. Finally, after substitution of Equation (9) into Equation (3) one arrives at the DDCS for
ionization in the form

d2σ(E f , Ω f )

dE f dΩ f
=

2(4π)2

2ji + 1

(
αZT

β

)2

∑
k

Ck(E f )Pk(cos θ f ) (13)

with

Ck(E f ) = ∑
LL′M

∑
κκ′tt′

iL−L′+l′−lei(∆κ−∆κ′)(−1)1/2+j′+ji+j+k−M
√
(2l + 1)(2l′ + 1)(2j + 1)(2j′ + 1)

× Ck0
l0,l′0Ck0

t′M,t−M

{
j′ ji t′

t k j

}{
l′ 1/2 j′

j k l

}
∑
λλ′

M(λ)
tLM M(λ′)

t′L′Mdλd∗λ′

×
∫ ∞

q

s ds
(s2 − (qβ)2)2 R(λ)

E f Lκ(s)R(λ′)
E f L′κ′(s)YLM(arccos(q/s), 0)YL′M(arccos(q/s), 0)

(14)

and Pk(cos θ f ) standing for a Legendre polynomial.

2.2. Lorentz Transformation of the Doubly Differential Cross Section

Up to now, we have derived the formulas for the DDCS for ionization in the projectile reference
frame. To make a comparison with experimental data, one should transform it into the laboratory
reference frame. The corresponding Lorentz transformation is [25]

d2σl

dEl
f dΩl

f
(El

f , θl
f ) =

pl
f

p f

d2σ

dE f dΩ f
(E f , θ f ), (15)

where the Lorentz transformation for the energy, momentum, and angle variables reads as

pl
f sin θl

f = p f sin θ f ,
pl

f cos θl
f = γ(p f cos θ f + βE f ),

El
f = γ(E f + βp f cos θ f ).

(16)

The experimentally obtained energy distribution takes into account only electrons emitted in a cone
with an opening angle θmax with respect to the projectile beam direction. This means that the doubly
differential cross section in the laboratory reference frame has to be further averaged over the angle
interval [0, θmax] to give the desired energy spectrum,

d2σl

dEl
f dΩl

f

∣∣∣∣∣
θl

f≈0◦
=

1
1− cos θmax

∫ θmax

0

d2σl

dEl
f dΩl

f
sin θl

f dθl
f . (17)

It is worth noting that the dependencies of laboratory frame energy and angle on both projectile
frame energy and angle, Equation (16), require calculation of the cross section at different energies
(angles) in the projectile reference frame, in order to obtain the cross section at a single energy (angle)
in the laboratory reference frame. To avoid excessive interpolations, the sufficiently dense uniform
two-dimensional grid (El

f , θl
f ) in the laboratory frame was first transformed to the (nonuniform)

projectile-frame grid (E f , θ f ) used for the cross section calculation by Equation (13). Afterwards,
the obtained cross section was transformed back to the primary laboratory-frame grid and averaged
according to Equations (15)–(17).
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2.3. Screening Potential for Electron Wave Functions

The calculation of DDCS for ELC described in Section 2.1 requires initial and final state wave
functions, which are the solutions of the one-electron Dirac equation in a central potential. Since the
projectiles, we are interested in, are Li- and Be-like ions, the one-particle approximation accompanied
by a screening potential should be applied. The simplest choice is the Coulomb potential −Zeff/r with
some effective charge Zeff. The effective charge is smaller than the nuclear charge ZP and accounts
for its screening by other electrons. For example, Zeff = 90 was used in Ref. [10] for the calculation of
ionization from the L-shell. Alternatively, more elaborated potentials like the local Dirac-Fock [30],
asymptotically corrected [31] exchange Kohn-Sham [32] (without correlations) or Perdew-Zunger [33]
can be used. These potentials have correct asymptotic behavior at large r and provide binding energies
closer to the experimental values. A generalization of the density functional formalism to the relativistic
case can be found in Ref. [34]. We found that the obtained energy distribution of emitted electrons
only slightly depends on the type of screening potential. In the results presented in the next section,
the Perdew-Zunger (PZ) potential was employed for the wave function calculation.

3. Results and Discussion

The approach outlined above was used for the calculation of the energy distribution of the
electrons emitted from the few-electron uranium projectiles in fast collisions with nitrogen molecules.
The two corresponding scenarios were recently investigated in the ESR at GSI (Darmstadt, Germany).
For the high collision energies considered here, the molecular character of the target can be neglected.
The total cross sections for ELC presented below were obtained as a sum of the contributions of each
projectile electron (two 1 s and two 2 s electrons for U88+; two 1 s and one 2 s electron for U89+) per one
nitrogen target atom.

3.1. Be-Like Projectiles

Let us start with presenting the results for the 90.38 MeV/u U88+-N2 collision. Figure 1 shows the
DDCS for ELC in the forward direction. The value of the maximal acceptance angle of the spectrometer
θmax = 2.4◦ was adopted in Equation (17). Due to unknown electron detection efficiency, the absolute
cross sections were not derived from the data in Ref. [10]. Thus, the shown experimental data of
Ref. [10] were renormalized on our results at El

f = 49.06 keV. The obtained results well describe the
experimental data, slightly underestimating them at high electron energies, and tend to overestimate
at small energies. Also one can see that our results for emitted electron energies larger than 60 keV and
smaller than 40 keV agree with the theoretical predictions of Ref. [10] obtained in the framework of
the first-order perturbation theory as well. However, in the vicinity of the cusp, which is located at
El

f = 49.58 keV, the present results are considerably higher than those of Ref. [10]. The only difference
between the two calculations is in screening potentials employed. The binding energies of the initial
2 s states calculated in these potential are very close to each other: E2s(PZ; Z = 92) = −32.50 keV
and E2s(Zeff = 90) = −32.41 keV. Meanwhile, in the additional calculation with the same screening
potential as in Ref. [10] we still see the difference in the emitted electron energy distribution in the
laboratory frame. Moreover, we also compared the DDCS for ELC in the projectile frame (see Figure 2
of Ref. [10]) and found excellent agreement between the outcomes of two calculations. This could
mean that the difference arises at the stage of the Lorentz transformation of the cross section to the
laboratory frame and the following averaging over angles. Basically, both calculations describe the
experimental data rather well, despite the omission of a possible atomic electron contribution to the
electron loss process.
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Figure 1. DDCS for ELC observed at θl
f ≈ 0◦ in the 90.38 MeV/u U88+-N2 collision. The theoretical

predictions and experimental data of Ref. [10] (renormalized to our results) are also shown. The vertical
line at El

f = 49.58 keV corresponds to the cusp.

3.2. Li-Like Projectiles

Let us move to ELC in the 75.91 MeV/u U89+-N2 collision. In the corresponding experiment,
only data for the process of radiative electron capture to the continuum have been analyzed up
to now [13]. So, we present here our theoretical predictions alone. Figure 2 shows the DDCS for
ELC averaged in the angle interval [0, θmax] according to Equation (17). Since in operation of the
spectrometer there are some effects difficult to estimate, the effective angular acceptance is not known
precisely, and the value of θmax = 3.3◦ ± 0.3◦ can be adopted [13]. The vertical line at El

f = 41.64 keV
corresponds to the kinetic energy of the electrons in the electron cooler. This energy defines the ion
beam velocity and, hence, it is the energy of the cusp electrons moving with the velocity equal to
the projectile velocity. From the figure, one can see that the dependence of DDCS on θmax is mainly
located near the cusp, while the wings of the energy distribution are almost independent on the given
θmax variation. With decreasing θmax the magnitude of the peak increases. Note that the prefactor in
Equation (17) diverges at the limit θmax → 0.

In Figure 3 the DDCS for ELC is presented for the value of θmax = 3.3◦ along with the contributions
from K- and L-shells.

The K-shell ELC is only 3% of the total one, which is caused by the large difference in the
ionization potentials for 1 s and 2 s electrons: Ip(1s) = 128.9 keV, while Ip(2s) = 32.91 keV. However,
the additional photon detection made it possible to identify the K-shell contribution in the preceding
experiment with Be-like projectiles [10].
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Figure 3. Same as Figure 2 for θmax = 3.3◦, but contributions from the L- and K-shells are
shown separately.

4. Summary and Outlook

In this study, the doubly differential cross sections for electron loss to the continuum have been
calculated in the framework of the relativistic first-order perturbation theory for few-electron uranium
ions colliding with a nitrogen target. The energy distributions of electrons emitted in the projectile
beam direction have been presented, and for the 90.38 MeV/u U88+-N2 collision compared with the
experimental data of Ref. [10]. For the 75.91 MeV/u U89+-N2 collision we have shown the contributions
of the 1 s and 2 s electrons to the total ELC cross section and explore its dependence on the angular
acceptance of the spectrometer used in the corresponding experiment (see Ref. [13]).
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Besides the considered collisions involving few-electron uranium ions, a number of experiments
on various ELC cross sections measurements with 64-electron U28+ projectiles at 30–50 MeV/u energies
were performed in Darmstadt [35–37]. Their outcome found a strong asymmetry of the cusp shape,
which was not predicted by theory [37], so the independent calculation is required. We plan to extend
our approach to the description of multielectron projectiles and perform the desired computations.
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De Filippo, E.; Gumberidze, A.; Guo, D.L.; et al. Radiative-electron-capture-to-continuum cusp in U88+ +N2

collisions and the high-energy endpoint of electron-nucleus bremsstrahlung. Phys. Rev. A 2014, 90, 022707.
[CrossRef]

10. Hillenbrand, P.M.; Hagmann, S.; Voitkiv, A.B.; Najjari, B.; Banaś, D.; Blumenhagen, K.H.; Brandau, C.;
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