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Abstract: We consider the Casimir force between two vortices due to the presence of density
fluctuations induced by turbulent modes in a Bose–Einstein condensate. We discuss the cases
of unbounded and finite condensates. Turbulence is described as a superposition of elementary
excitations (phonons or BdG modes) in the medium. Expressions for the Casimir force between two
identical vortex lines are derived, assuming that the vortices behave as point particles. Our analytical
model of the Casimir force is confirmed by numerical simulations of the Gross–Pitaevskii equation,
where the finite size of the vortices is retained. Our results are valid in the mean-field description of
the turbulent medium. However, the Casimir force due to quantum fluctuations can also be estimated,
assuming the particular case where the occupation number of the phonon modes in the condensed
medium is reduced to zero and only zero-point fluctuations remain.
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1. Introduction

The concept of quantum vacuum plays a central role in modern physics and the Casimir force is a
direct manifestation of its properties. This force was first considered for two parallel plates located
at some distance in vacuum, due to quantum fluctuations of the electromagnetic vacuum field [1,2].
It was then generalised to other configurations, such as atom-wall interactions, usually called the
Casimir–Polder interaction [3], and to other vacuum states, such as the acoustic vacuum in a fluid [4–6]
and the electrostatic wave vacuum in a plasma [7]. Of particular interest was the extension, in this last
reference, to the case of a turbulent medium. Here we consider the Casimir effect in this broader sense,
as the mean force associated with a large spectrum of fluctuations in a medium, but quantum vacuum
fluctuations will also be considered.

The Casimir effect has been previously studied in a BEC for a variety of purposes, with a major
focus on the Casimir–Polder force [8–12], but the mechanical coupling between a two-dimensional
BEC with a graphene sheet [13], and the motion of impurity atoms in a BEC [14] were also studied.
Here we introduce another configuration relevant to BECs, by considering the contribution of the
Casimir force to the interaction between two vortices in a turbulent BEC. This is directly relevant
to the important problem of vortex-vortex interactions [15–17], which has been a central issue on
quantum turbulence in superfluids and condensates [18]. It should also be mentioned that vortex
dynamics and their interaction with the background have been also studied in a variety of papers
(see, in particular, [19] and further references in [16]).

Turbulence is an important topic in quantum fluids. It has a long tradition in superfluid
Helium research [20], and has also been studied in Bose–Einstein condensates (BEC) of diluted
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alkali vapours [21,22]. Turbulence in a quantum fluid can be seen as a non-equilibrium state resulting
from the coexistence of vortices with a broad spectrum of elementary excitations in the medium.
The interaction of vortices with a broad spectrum of such fluctuations is therefore recognised as an
important ingredient of BEC turbulence [23].

The Casimir force can then provide an appropriate and natural tool for the diagnosis of quantum
turbulence and vortex interactions. Furthermore, vortices can easily be excited in rotating or in
time-varying media, and provide a spontaneous material structure on which elementary excitations
can collide. From a quantum field perspective, the turbulent modes themselves can be seen as
microscopic particles acting on the macroscopic structure of the vortex lines, changing both the single
vortex dynamics and the two-vortex interactions. The case of single vortex dynamics could be used as
a BEC analogue of Brownian motion. However, the Casimir force is clearly distinct from the addition
of two independent Brownian forces, because it is intrinsically dependent on the interaction between
two nearby vortices.

In this paper, we consider the Casimir force between two vortices due to the presence of density
fluctuations induced by turbulent modes in a Bose–Einstein condensate. The turbulence spectrum
is described as a superposition of appropriate Bogolioubov–de Gennes (BdG) modes, which are
the elementary excitations of the medium. They are a special kind of phonons, sometimes also
called bogolons.

In our description, two vortices are assumed immersed in a gas of quasi-particles, phonons or
bogolons. We discuss the cases of both unbounded and finite condensates. The particular case of a
cylindrical BEC will be considered. We use a mean-field description, which ultimately relies on the
vortex and Thomas–Fermi (TF) equilibrium solutions of the Gross–Pitaevskii (GP) equation. On a more
phenomenological basis, we will also be able to discuss the case of quantum fluctuations, considered
as a particular case of the turbulent fluctuations where the occupation number of the quantised BdG
modes tends to zero, and only the zero-point fluctuations of the quantised field remain.

2. Theoretical Model

Our theoretical framework is the GP equation describing the evolution of the condensate
wavefunction ψ = (Ψ + ψ̃) exp(−iµt/h̄), with the slow component Ψ defining the presence of
topological vortices, and the (rapidly) oscillating part ψ̃ describing the fluctuations from the turbulent
background. Here, µ is the chemical potential. The slow part is determined by the time-averaged GP
equation [24]

ih̄
∂Ψ
∂t

= [H0 + g(n + 2nt)− µ]Ψ, (1)

with the Hamiltonian H0 = −(h̄2/2m)∇2 + U0(r), U0(r) the confining potential, and g = 4πh̄2a/m
quantifying the interaction strength, where a is the scattering length. We also have defined the average
density n = |Ψ|2 and the turbulent density nt = 〈|ψ̃|2〉, with 〈〉 denoting a time average.

We shall now consider the case of a condensate containing two vortices located at positions r1

and r2. In a quasi-two-dimensional sample, one can consider the vortex lines parallel to the z axis.
Moreover, in the case of large distances r12 = |r1 − r2| � ξ, with ξ = h̄/

√
2mgn0 the healing length,

we can describe them as point particles on the plane. Here, n0 is the asymptotic value of the condensate
density, far away from the vortex lines. In this case, we can show that the interaction energy (per unit
length) between the two vortices is given by—see Appendix A for details

E12 = `1`2
2πh̄2

m
n0α12 ln

(
ξ

|r1 − r2|

)
, (2)

with
α12 = 1 +

1
n0

[nt(r1) + nt(r2)] (3)
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and `j, with j = (1, 2), the topological charge of the vortices. In the absence of turbulence, nt = 0,
the factor α12 becomes equal to one, as seen from Equation (A5), and we are reduced to previously
known results. This allows us to determine the additional dynamical features of the two vortices,
due to the presence of a turbulent background. The previous expressions are valid for nt � n0,
which means that this new contribution remains small.

For convenience, let us define the potential V12, such that E12 = 2πh̄n0V12(r1, r2). It can then be
shown that the equations of motion for the two vortices can be written in the form [25]

`j
drj

dt
= −ez ×∇jV12, (4)

or, alternatively

`1
dr1

dt
= ez × (F0 + Ft1) , `2

dr2

dt
= −ez × (F0 − Ft2) . (5)

Here, we have defined the regular force F0 as

F0 = `1`2
h̄α12

m
(r1 − r2)

|r1 − r2|2
, (6)

as well as the turbulent forces

Ftj = `1`2
h̄

mn0
[∇nt(r)]j ln

(
ξ

|r1 − r2|

)
, (7)

where the gradients are taken at positions r = rj. From these expressions, we can conclude that the
existence of turbulent forces breaks the symmetry of the equations of motion and introduces important
qualitative changes in the motion of vortex pairs. In order to understand these changes we consider
the evolution of the vector distance r12 = r1 − r2, which evolves according to

dr12

dt
= (`1 + `2)

h̄
m

α12

r2
12

(ez × r12) + ez × FC . (8)

Here, we have introduced the Casimir force between the two vortices, as defined by

FC =
h̄

mn0
ln
(

ξ

r12

)
[`1∇1 − `2∇2] nt(r). (9)

This expression indicates that significant qualitative changes in the dynamics of two interacting
vortices will occur in the presence of turbulence. However, we should stress that the absolute value of
the Casimir force is much smaller than the usual Magnus force between vortices, |FC/F0| � 1.

Let us now consider the case of two identical vortices, such that `1 = `2 = 1. This is the most
relevant case for typical experimental conditions, a discussion on which we shall elaborate later. In the
absence of turbulence, Equation (8) reduces to

dr12

dt
=

2h̄
mr2

12
(ez × r12) . (10)

The two vortices rotate around their centre-of-mass (CM), with an angular frequency equal to
Ω = (2h̄/mr2

12). When we include the turbulent background, two distinct effects appear. On the one
hand, the first term in Equation (8) is modified by the factor α12 6= 1. While the modified Magnus
force keeps the inter-vortex separation nearly constant, one observes a slight change on the vortex-pair
rotation frequency, which becomes slow varying in time according to Ω(t) = [2h̄/mr12(t)2]α12(t) as
the vortex pair evolves in the medium. On the other hand, the relative distance r12 will also vary,
due to the existence of the Casimir force FC. Notice, however, given the definition in Equation (9),
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that the inter-vortex radius seems to solely depend on the local density inhomogeneities (at the vortex
positions). An overall attractive or repulsive interaction arises when we consider how the presence
of the vortices influences the turbulent background. Since the condensate density vanishes at the
centre of the vortex core, one expects a complex structure of modes that are consistent with the
condition of vanishing density at the vortex core. On the average, this will lead to a vortex repulsion,
rooted in a mechanism that is analogous to the well known Casimir effect between conducting plates
in vacuum, as we shall demonstrate via numerical simulations of the Gross–Pitaevskii equation.
In such simulations, the finite size of the vortices will be retained, in contrast with the above simple
analysis, which is based on point-like vortex structures. Such a difference is not important at long
distances, such that r12 � χ, but will eventually become relevant at short distances. (The case of finite
condensates is discussed in greater detail in Appendix B).

3. Numerical Simulations

In order to understand the influence of a turbulent background on a vortex pair, we numerically
integrate the two-dimensional Gross–Pitaevskii equation using a split-step Fourier scheme [26].
The two-dimensional approximation should be accurate as long as the transverse size of the sample is
much larger than its longitudinal extension, in which case the degrees of freedom across this direction
are essentially frozen (these include vortex-line dynamics such as Kelvin waves).

Details of the numerical integration are given: The spatial step size is 0.2 (in units of the healing
length ξ), with a grid of 500× 500 points, and an integration time step of 0.01 (in units of the healing
length divided by the speed of sound, ξ/cs). Here, cs =

√
gn0/m is the Bogolioubov (or sound) speed.

As previously stated, the most experimentally relevant scenario is that of two vortices of equal vorticity.
In this case, the co-rotation around their centre-of-mass (CM) allows for a much longer acquisition
time, essential to the investigation of slow turbulence-induced dynamical features.

In order to mimic a realistic experimental scenario, we consider a finite size system, in particular,
a quasi-box trap with a radius of approximately 40 ξ—see Figure 1. This creates a quasi-homogeneous
sample, a crucial ingredient to preclude any effect arising from trap inhomogeneities. The system
is initialised by placing two vortices close to each other at some predetermined distance. These are
placed off the axis of the trap, to prevent any symmetry induced effect of the latter. The GP equation is
initially integrated in imaginary time in order to approach the ground state solution consistent with
the presence of the two vortices. We start the simulation (in real time) by shaking the external potential
in order to excite a turbulent wave background. This excitation last for approximately 500 ξ/cs s.

The numerical results are summarised in Figure 1. In Panels (a) and (b) we can observe a slow
increase in the inter-vortex distance. The fact that the distance of the two vortices centre-of-mass to the
trap axis—in Panel (c)—remains constant demonstrates that this effect originates from vortex-vortex
interactions and not from trap inhomogeneities. This is also demonstrated in Panel (d), where we
depict the presence of an overall homogeneous trap, at least in the regions where the vortices are
present. The extent of the shaded area, indicating higher density fluctuations, is higher in the regions
where the vortices travel. For illustration, we also show, in Panel (e) the power spectrum of the density
fluctuations at a given instant of time.

We should point out that a vortex pair, even in the presence of a quiescent background, radiates
sound waves due to its co-rotational motion as well as its precession around the trap [27]. This leads to
a loss of energy which, in turn, results in an increase of the inter-vortex distance. This process, however,
is much slower than the effect depicted here, and is irrelevant to the present analysis. To further
demonstrate this claim, we perform a simulation where all remains identical to the situation depicted
in Figure 1, except that there is no initial shaking of the external potential and generation of turbulent
modes is not occurring. These new simulation results are shown in Figure 2 where, in the absence of
the initial shaking, we observe a much slower increase in the vortex-vortex distance. Notice, that the
emission of sound waves itself induces a background of turbulent fluctuations, although of much lower
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amplitude, hence a much smaller effect on the vortex inter-separation. All the evidence therefore point
towards the existence of vortex-vortex repulsion induced by the presence of a turbulent background.

... ...

a)

b) c) d)
e)

Figure 1. (color online) Panel (a) depicts a typical simulation. The first three plots correspond to
t = 0, 250, 500 ξ/cs, during the shaking of the external potential. The remaining density maps depict
later stages, at t = 2000, 4000 ξ/cs, respectively, where vortices evolve a fully developed turbulent
background. Notice that the vortex dipole precesses around the trap axis due to the total content of
orbital angular momentum in the system. The inter-vortex distance and the dipole centre-of-mass
distance to the trap axis is plotted in panels (b,c), respectively. Here, the vertical blue line corresponds
to the end of the potential shaking step, while the red line in panel (c) depicts the average CM distance.
In panel (d) we plot the density profile across a slice y = 0, with 〈〉 denoting time average (during the
entire simulation span) and the red lines indicating the average CM distance, as before. Moreover,
the shaded are corresponds to the one sigma level of density fluctuations. Panel (e) depicts the power
spectrum of the density fluctuations for a particular time instant, with the blue and red lines indicating
the scales associated with the size of the trap and mean inter-vortex radius.

a) b)

c)

Figure 2. (color online) Simulation in the absence of potential shaking. Here Panels (a–c) are equivalent
to Panels (b–d) of Figure 1.
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4. Conclusions

We have studied the Casimir force between two vortices, due to vortex interactions in a turbulent
medium. Both the infinite homogeneous case and the confined cylindrical configuration were
considered. We have assumed that the two vortex lines were parallel to each other, but extensions
of the present approach to the general case and the inclusion of Kelvin waves can also be envisaged.
Our discussion was based on the well-known mean-field solutions for the average density profiles
and vortex velocity profiles. The turbulent field was described as a superposition of BdG modes.
The observed slow increase in the inter-vortex distance is mainly due to the unbalanced contributions
of short scale and large scale oscillations to the vortex-vortex interactions, in complete analogy with the
original quantum Casimir model [1,2]. We have assumed that the distance between vortices was much
larger than the healing length, so that, on a plane perpendicular to the vortex lines, the two interacting
vortices could be described as point particles, forming a two-dimensional dynamical system driven by
the turbulent medium.

Our results show that, although the Casimir force stays much weaker that the usual mean-field
force between two vortices, it introduces important qualitative changes on the dynamics of vortex
pairs, which seems appropriate for experimental investigation. In particular, this force can eventually
be used as an additional diagnostic of the properties of quantum turbulence. For instance, in a pair of
identical vortices rotating around its centre of mass, the rotation frequency will vary in time according
to the content of the turbulent spectrum, and the distance between the two vortices will not stay
constant, in contrast with the case of a quiescent medium. Our analytical estimates of the turbulent
Casimir force were illustrated by numerical examples and confirmed by 2D numerical simulations of
the GP equation.

It would be interesting to explore the possible connection between the spacial bunching in density
fluctuations with the actual value of the Casimir force. In that respect, our present numerical results
are inconclusive, and a more detailed analysis is needed. We hope that the present work will stimulate
theoretical and experimental work on the proposed new directions. In particular, detection of the
Casimir force by measuring the distance between two nearby vortices, seems feasible using the state of
the art of turbulent BEC experiments [22].

It could also be shown that our present model, although based on the mean-field approximation,
is able to describe the Casimir force due to quantum zero-point fluctuations, when the occupation
number of the phonon or bogolon modes in the condensed is reduced to zero. A discussion of this
phenomenological approach to quantum fluctuations is included in Appendix C. A more rigorous
formulation, going beyond the present mean-field approximation, will be addressed in the future.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the European Union Horizon 2020 program under Grant Agreement No.
820392 (PhoQuS Consortium).

Acknowledgments: J.T.M. and A.G. would like to thank the financial support of CNPq Brazil. A.G. also thanks
funding of FAPESP Brazil. H.T. and J.D.R. would like to thank FCT Portugal for support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Energy of Two Vortices

We consider cylindrical coordinates r = (r, θ, z). Using the standard definition for the vortex
energy Ev [28,29], for a single vortex with topological charge `, axis parallel to the z-direction and
location at r = 0, we obtain

Ev =
πh̄2

m
[n0 + 2nt(0)] `2 ln(D/ξ). (A1)

This is the energy per unit length, taken over a cylindrical volume with size D � ξ, with the healing
length ξ = h̄/

√
2mgn0. This differs from the usual expression for Ev, by the addition of a term
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proportional to turbulent density nt. This is only valid for nt � n0, which means that this new
contribution remains small. However, it will introduce important qualitative changes.

Let us now consider two interacting vortices, immersed in the turbulent medium. For vortex lines
parallel to the z-axis and positions in the perpendicular plane described by rj, with j = 1, 2, such that
r12 = |r1 − r2| � ξ, we can describe them as point particles on this plane. The total vortex energy
is E = (Ev1 + Ev2) + E12, where Evj are the single vortex energies considered above, and E12 is the
interaction energy

E12 = mn0

∫
αt(r) (v1 · v2) dr , (A2)

where αt(r) = 1 + nt(r)/n0. The vortex velocities vj can be defined as

vj(r) = `j
h̄
m

ez ×
(
r− rj

)∣∣r− rj
∣∣2 . (A3)

Noting that r/r2 = ∇ ln(r), and that the Green’s function G(r) = ln(r) is solution of the equation
∇2G(r) = 2πδ(r), we can obtain after integration by parts, the total energy (per unit length)

E12 = `1`2
2πh̄2

m
n0α12 ln

(
ξ

|r1 − r2|

)
, (A4)

with
α12 = 1 +

1
n0

[nt(r1) + nt(r2)] . (A5)

Here, we have symmetrised the result with respect to r1 and r2.

Appendix B. The Case of Finite Condensates

Let us consider vortices in a cylindrical condensate. In the presence of turbulence, we can define a
modified Thomas–Fermi (TF) equilibrium profile n(r), with a radius a > a0, such that [24]

a = a0 +
2gNt

πω2
0a3

0
, Nt =

∫ a

0
nt(r)rdr , (A6)

where a0 refers to a quiescent medium. The energy of a single vortex located at, r = 0, is [28,29]

Ev =
πh̄2

m
l2
∫ a

0

n(r)
r2 rdr . (A7)

This differs from the usual value in the absence of turbulence, Ev0, for two reasons: first, because the
radius of the condensate has changed from a0 to a; second, because the background density has also
changed, from n0(r) to n0(r) + 2nt(r). We can approximately write Ev = Ev0 + Ẽv, where Ev is the
unperturbed energy

Ev0 '
πh̄2

m
l2n0(0) ln

(
a0

ξ

)
, (A8)

and the additional energy associated with turbulence is determined by

Ẽv =
πh̄2

m
l2
[∫ a

a0

n0(r)
r2 rdr + 2

∫ a

0

nt(r)
r2 rdr

]
. (A9)

Using Equation (A6), this can also be written as

Ẽv =
2πh̄2

m
l2

[
n0(0)

2gNt

πω2
0a3

0
+ nt(0) ln

(
a0

ξ

)]
. (A10)
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It is useful to describe turbulence as a superposition of BdG modes such that [24]

ψ̃(r, t) = ∑
νpk

ψ̃νpkFνp(r)eiνθ exp(iωνpk − ikz) , (A11)

where ψ̃νpk are the mode amplitudes, and Fνp(r) = Cνp Jν(ανpr/a) the radial mode functions. Here,
ανp as the successive zeros of the Bessel functions, such that Jν(ανp) = 0, and Cνp = a

√
π Jν+1(ανp) are

normalisation factors. The mode frequency ωνpk is related with the axial wavenumber through the
BdG dispersion relation [24]. in general, the time average defining the turbulent density nt =< |ψ̃|2 >

is taken over a period larger than that of the relevant BdG modes. This is compatible with the existence
of very slow time variations, due to a slow beating between different modes, eventually non-negligible
with respect with the rotation frequency Ω.

If we now have two different vortices at a distance r12 ∼ 2b � ξ, both located at r = b but on
different angles θ with respect to the axis, their interaction energy (per unit length) will be

E12 =
πh̄2

m
l1l2 ∑

j=1,2

[
n0(b) + nt(b, θj)

]
ln
(

1
r12

)
, (A12)

For a modified TF density profile, we can use n0(b) = n0(1 − b2/a2), where n0 is the density at
the centre. Assuming the generic turbulent modes of Equation (A11), we can also write: nt(b, θ) =

nrad(b) + nang(b, θ), where the purely radial part of the turbulent density fluctuations is defined by

nrad(b) = ∑
νpk

ñνpk|Fνp(b)|2 , (A13)

and the angular part results from the beating between modes with different helicity, as

nang = ∑
ν 6=ν′ ,pp′k

ñνν′Fνp(b)Fν′p′(b) exp[i(ν− ν′)θ] , (A14)

where ñνν′ =
∣∣∣ψ̃νpkψ̃ν′p′k

∣∣∣. A similar beating between modes with different axial wavenumber k could
also be defined, but with no influence on the vortex interaction processes described here.

Following the same procedure as for the case of an unbounded medium, we can then derive an
expression for the Casimir force, formally identical to Equation (9). For turbulence with a cylindrical
symmetry and θ1 − θ2 = ±π, we are reduced to

FC =
h̄

mn0
ln
(

1
r12

)
(l1 − l2)

(
∂nt

∂r

)
b

, (A15)

This shows that, for identical vortex numbers l1 = l2, located opposite to each other, the Casimir force
can only result from a cylindrical symmetry breaking of the background turbulence. In the simplest
case, this can result from the beating between two BdG modes with different values of ν, as shown by
Equation (A14). For a single mode (ν, p), we simply have nt(b) = |Flp(b)|2.

Appendix C. Quantum Fluctuations

Fluctuations of the quantised turbulent vacuum become relevant when the amplitude of the
turbulent modes tends to zero. Only fluctuations associated with the zero-point energy of the BdG
mode spectrum will remains. In order to calculate the corresponding Casimir force, we start with the
energy associated with the turbulent modes Et = g

∫
nt(r) |Ψ(r)|2 dr. We have previously noticed that
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the turbulent density nt(r) can be described by mode superposition. Using Equation (A13), we can
then write for a cylindrical condensate:

Et = g ∑
νpk

ñνpk Iνp , Iνp =
∫ a

0
|Fνp(r)|2n0(r)rdr . (A16)

This should be compared with the energy associated with the mode quantisation, which can be
stated as

EQ = ∑
νpk

h̄ωνpk

(
Nνpk +

1
2

)
, (A17)

Here, Nνpk =
〈

a∗νpkaνpk

〉
are the mode occupation numbers, defined as the expectation values of

the product between the creation and destruction operators, in the usual way. For a given axial
wavenumber k, the BdG mode frequencies satisfy the dispersion relation ω2

νpk = c2
s k2 + h̄2k4/4m2,

where cs is the Bogolioubov sound speed cs =
√

gIνp/m [24]. Comparing the two expressions of Et

and EQ, for Nνpk = 0, we obtain the zero-point density fluctuations of the BdG spectrum, as

ñνpk =
1
2

h̄ωνpk

gIνp
. (A18)

The turbulent density profile associated with these zero point fluctuations can then be determined as

nrad(b) =
h̄

2g ∑
νpk

ωνpk

Iνp

∣∣Fνp(b)
∣∣2 . (A19)

Given the weak dependence of the mode frequency with respect to the helicity ν, we can assume that
the amplitudes ñνν′ associated with the angular part of the fluctuations (A14) are of the same order.
We should notice that the summation over the quantum modes extends to infinity, which means that
appropriate cutoffs should be used. This could be determined by the relevant temporal scales the
boundary conditions.

In this phenomenological model, the zero-point fluctuations are described as a limiting case of the
turbulent fluctuations. The advantage of such an approach is that it provides a unifying description of
both turbulence and quantum fluctuations. However, the spectral cutoffs remain uncertain and a more
rigorous formulation of quantum turbulence will be needed.
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