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Abstract: In online data bases, the entries on extreme ultraviolet (EUV) spectra of Ca are much
more sparse than those of neighbouring elements such as Ar, K, Sc and Ti. This may be a result of
experimental problems with Ca in the laboratory as well as of the limited role of multiply charged Ca
ions in solar observations. Beam-foil EUV spectra of Ca and K are presented that provide survey data
of a single element each.
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1. Introduction

Early in the 19th century Wollaston and Fraunhofer detected dark lines in their prism spectra of
the Sun, and Fraunhofer labelled the strongest of these lines by capital letters of the alphabet. A few
decades later Kirchhoff and Bunsen recognized that those dark lines agreed in position with bright
lines in the spectra of a flame seeded with specific materials. Thus it was eventually learned that
Fraunhofer’s line ‘G’ (partly) originates from calcium (Ca, atomic number Z = 20) atoms, and his lines
‘H’ and ‘K’ belong to singly charged Ca+ ions. Evidently, Ca is abundant enough in the Sun to feature
prominently in the solar visible spectrum.

Subsequently, the various spectra of Ca have been studied in flames, arcs, sparks, and whatever
plasma discharge light sources seemed appropriate, and the extent of the spectral coverage has
expanded from the visible to the infrared (IR), ultraviolet (UV), vacuum ultraviolet (VUV, wavelengths
below 200 nm), and extreme ultraviolet (EUV, wavelengths below 110 nm) to the X-ray range
(wavelengths shorter than, say, 5 nm). However, the NIST ASD online database [1] lists only about
60 lines of Ca VI to Ca XIV in the wavelength range 10 to 80 nm. In contrast, the data entries on
the next lower or heavier ions, K (Z = 19, about 550 lines), Sc (Z = 21, about 400 lines), and Ti
(Z = 22, about 800 lines), are much more numerous. Contrary to most other elements, the NIST ASD
wavelength tables on many Ca spectra state Ritz wavelengths only, that is, results from term analysis
rather than original measurement. Apparently the study of Ca in spectroscopic light sources has posed
larger experimental problems than for many other elements. Many of the experimental data on Ca are
of inconsistent quality and cannot be used as reliable references.

I have therefore looked again at some of the recent spectroscopic literature on Ca, especially some
under-evaluated Ca data of my own experiments (none of these Ca data are of the high accuracy
required for a completion of the NIST ASD tables), and I offer suggestions for future work. I am
leaving out of my discussion any spectroscopic work on neutral Ca atoms or on Ca ions in low
charge states. Also, the properties of Ca ions with very few electrons can nowadays be computed
to high precision with various ab initio approaches such as Multi-Configuration Dirac-Hartree-Fock
(MCDHF), Many-Body Perturbation Theory (MBPT), Relativistic Configuration Interaction (RCI),
or Multi-Reference Møller-Plesset (MRMP); for a recent discussion on the capabilities of some of these
techniques see [2].

A number of studies have addressed the EUV spectra of multiply charged ions of calcium
(for references see [1,3–5]). This work focuses on the charge state ions from Ca6+ to Ca12+. Some of the
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earlier compilations [5,6] are more extensive (on Ca data) than the present NIST ASD online database [1].
However, there are some abrupt wavelength coverage limits (especially for some ions of Ca), if a
data source did not extend further. This is often a question of laboratory equipment. For example,
normal-incidence spectrometers have a poor efficiency below a wavelength of about 40 nm, and many
grazing-incidence spectrometers are inefficient above 35 to 40 nm. NIST ASD work bridges such
problematic wavelength ranges via term analysis and theoretical study. A compilation by Fawcett [7]
covers transitions in the n = 2 shell, based on observed data and systematic isoelectronic analyses.
A more recent compilation, the CHIANTI database [8–13], combines (mostly) solar observations with
computations and contains computed EUV spectra of elements that are prominent in stars. Ca is
moderately prominent in solar EUV spectra. However, in spectral ranges of high line density, such as
the EUV from 17 to about 30 nm, lines of Fe dominate the solar coronal emission [14] and probably
mask some of the (typically weaker) Ca features.

Ca spectra can be employed for the diagnostics of tokamak plasma discharges [15], which requires
not only wavelength spectra but also transition rates provided both in NIST ASD and CHIANTI.
CHIANTI provides spectral modelling results for a number of electron density values. A recent
evaluation of the EUV spectra of a tokamak plasma containing Ar and Ca [16] found a number of cases
for high charge states of Ca (such as Ca XIV, Ca XV) in which parts of some line multiplets matched the
predicted line intensity patterns while other components of the same multiplet did not. The multiplet
line intensity patterns can be estimated from first principles [17] if the coupling is not too far from LS
coupling; the CHIANTI collisional-radiative model modifies these patterns according to the coronal
environmental conditions. Drastic deviations of experiment from theory might arise from line blends
or imperfect wavelengths. For the low-density tokamak plasma discharge, most Ar and Ca data were
found to be compatible with CHIANTI [16]. A key problem in using astrophysical observations as
used for CHIANTI is interference from a large number of other elements; the identification of a given
line with a given element cannot be tested.

In the laboratory one may expect that it is possible to distinguish the elements. For example,
the plasma experiment [16] introduced Ca and F by laser ablation of CaF2, so that the appearance
time of presumed Ca or F lines could be cross-linked to the time structure of the injection process.
In fact, no F lines were identified, and some of the purported Ca lines did not match the injection
pulses. In experiments at an electron beam ion trap (EBIT) at Livermore [18–20], Ca was introduced
as a low-pressure vapour from a heated chemical compound. Eventually, high-resolution spectra
were recorded in the wavelength band 12.4 to 13.4 nm [21]. The electron beam energy was varied so
that spectra of an ion cloud with a predetermined highest ion charge state could be compared and
thus the spectra to which individual lines belonged be estimated, if not always determined. Such an
analysis makes use of the calculated or measured ionization potentials of all charge states (see Figure 1).
Numerous previously unknown lines were seen and seemed to fill a gap in the sparse listings of Ca
data in the NIST ASD database. The same spectral range was later covered in the aforementioned
tokamak plasma experiment with Ca and F injection [16], which, however, did not confirm the Ca
data in [21]. For all elements lighter and for many elements heavier than Ca (in particular of the iron
group) the spectra are sufficiently well known to exclude that any of those could explain the EBIT
observations. It was concluded instead that a much heavier element, such as Ba (Z = 56), a component
of the electron gun material in EBIT, had likely contaminated the experiment.

Potassium, like other odd-atomic number elements, is less abundant in the Sun than
nearby even-number elements and hence it is not represented among Fraunhofer’s strongest lines.
For accelerator-based atomic physics studies of multiply charged ions, the preferred (tandem)
accelerator type requires the injection of negative ions. These are not easily formed of K or
potassium-carrying compounds, and consequently K yields a relatively weak signal. However, K is
easy to excite as an atom in many other ways, and therefore the literature base for K data is more
ample than for Ca data. A set of beam-foil EUV spectra of K is presented below as a counterpart to the
Ca spectra.
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Figure 1. Ionization potentials of various Ca ions ([5] and others). The much higher values for one-
and two-electron ions have been truncated.

Here we will discuss Ca data that precede those in [16,21]. Parts of the data have been published
before [3,4]. The data have been obtained by beam-foil spectroscopy at the Bochum Dynamitron
tandem accelerator laboratory, more than two decades ago. The technique is explained in the next
section along with peculiarities of the experimental procedures. The motivation for presenting results
from older measurements is that in beam-foil spectroscopy one handles a mono-isotopic ion beam,
so that all spectra observed stem from a single element each, in this case calcium and potassium,
respectively, and that any elemental ambiguity is avoided.

2. Beam-Foil Spectroscopy

There is anecdotal evidence from the 1950s of nuclear physicists noting visible light in their
scattering chambers where fast ion beams were interacting with thin foil targets. In about 1963,
Kay (in the UK) and Bashkin (in the USA) recognized the possible atomic physics interest in such
foil-excited ion beams, and both researchers laid out the basic properties of such a measurement
technique [22,23]. For about a third of a century the field evolved, thrived [24], and wilted [25].

The key feature is a fast (on the order of 1% of the speed of light and faster) ion beam passing
through a thin foil which merely provides a dense electron target. The ions lose but a small fraction of
their energy and remain (mostly) in a well collimated beam. The collisions with the many electrons
of the target material occur frequently and energetically. The efficient excitation results in very
line-rich spectra. Inner-shell ionization as well as multiple excitation occur, followed by Auger
decay. With higher ion beam energies, the ions reach higher charge states, with a predictable charge
state distribution.

Ionization and excitation take place in a high density environment, but then the fast ions leave
the foil within a fraction of a picosecond and continue on their flight path in high vacuum, practically
without further collisions. Because the ions remain on a common beam trajectory, one can observe a
given spectral feature and follow its decay, with distance from the exciter foil (usually in the range of a
few µm to many cm) serving as a measure of time after excitation. This way, the mean lifetimes of
atomic levels can be measured, in the range from a few picoseconds to many nanoseconds. The methods
and certain complications are explained in References [24,25], along with examples and achievements.
The technique has proved an efficient tool for ions of all charge states and all elements.
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Charge State Distributions

The use of a gas or foil stripper has been essential in many ion accelerator schemes since the 1940s.
Charge state distributions (CSD) within ion beams that have been passed through a thin foil have been
a topic of interest and concern in most heavy-ion accelerator laboratories, because one wants to select
a specific ion charge state and isotope, or for feeding a specific ion beam to another accelerator stage.
The charge state of the ion travelling through a thin foil (or a gas) evolves as a dynamic balance of
electron loss (by collisions with the tiny nuclei, the target electron cores, and the quasi-free electrons of
the target material) and electron capture (from the quasi-free electrons of the target material). An early
collision model by Dmitriev and Nikolaev [26,27] yielded basically correct results, but a fair number
of formulas were developed to yield more accurate estimates, including fits to the growing body of
experimental data.

Some of these prescriptions address low-, medium-, or high-energy ion beams specifically.
For example, the studies by Sayer, Delaunay, and Shima et al. [28–30] have addressed work at ion beam
energies from some 0.1 MeV/amu to a few MeV/amu (amu is the atomic mass unit or mass number),
which is typical for many industry and university laboratories. The results of these studies largely
agree with each other, which is not surprising, because they have been adjusted to experimental data.
Two decades later, national accelerator centres entered a new working range of some 10 MeV/amu
and higher. The ETACHA code [31] was explicitly optimized to describe the CSD at ion beam energies
that are available at the high energy accelerator at GANIL (France).

Around the year 2000, a group around T. Nandi began to publish beam-foil data on few-electron
ions of elements in the iron group (for representative examples, see [32–35]). In physics terms,
this was largely a continuation of much earlier work elsewhere [36–39], but still of some interest.
Beam-foil studies of lighter elements had shown dozens of spectral lines in the X-ray wavelength
range of interest [40]. The data in [32–35] showed two wide lines from a solid state X-ray detector.
References [32–35] described levels and their decays in two- and three-electron ions, for example in V,
at ion beam energies of 100 and 158 MeV. The aforementioned papers on CSD [28–30] indicated that
the charge state fraction of He-like V at 100 MeV should be about 0.1%, and of Li-like V 1.4%, that is,
these charge state ions should practically not be present. At the higher ion beam energy of 158 MeV,
the corresponding fractions should be about 3.1% and 14.6%, respectively. How could the production
of the high charge states discussed possibly be ascertained at these ion beam energies? The first
papers [32,33] do not even comment on this essential aspect of the reported work. Later papers [34,35]
mention reference [31]: Apparently the production of high charge states was estimated solely on
the basis of the predictions of the ETACHA code whose own authors explicitly state that it is not
applicable at lower ion energies—such as those in [32–35]. The charge state fractions predicted by the
code outside its range of applicability are unreliable and, indeed, unrealistic. Only a more powerful
heavy-ion accelerator could have produced the desired charge state ions; Reference [30] indicates an
ion beam energy range about twice as high as the higher energy used in the Nandi experiment—as
was, indeed, used in the earlier, original experiments [36–39]. The Nandi experiment in fact did not
produce sufficient amounts of the charge states (few-electron ions) reported, and hence the subsequent
discussion based on this assumption was fallacious. Specific levels in two- and three-electron ions
behave differently from five- and six-electron ions (likely produced in the Nandi experiment) with
their different atomic structure. The only way to prove the presence of the wanted ions is to repeat
the experiment with equipment of significantly better spectroscopic capabilities. To date, however,
no such experiment has been reported by the Nandi group. In the present study, the appearance of the
line spectra of individual charge state ions closely matches the CSD work [28–30].
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3. Beam-foil Data on Calcium

3.1. Spectra

The operation of a tandem ion accelerator requires the provision of negative ions, in this case
CaO−, which yields a higher ion beam current than is available with Ca−. Ca is a difficult element for
any heavy-ion tandem accelerator. The Dynamitron tandem accelerator laboratory at Ruhr-Universität
Bochum successfully trained the sputter ion source [41,42] to provide the highest output among similar
facilities and handled high ion beam currents (of other elements) reliably. Nevertheless, the Ca ion
beam current remained smaller by an order of magnitude than the ion beam currents achieved with
other elements. The CaO− molecule splits inside the gas stripper in the high voltage terminal of the
tandem accelerator, and the Ca ion carries on with only a fraction of the kinetic energy of the original
molecule. This circumstance significantly limits the final ion beam energy achievable. The combination
of intended wavelength coverage and necessary signal statistics within the time budget of a multi-user
facility limits the spectral resolving power that may be employed. Even if higher spectral resolution
can be achieved by using narrower spectrometer slits, a meaningful level of signal statistics is required
for statistical reliability. Better quality data can be gathered only at the high cost of operating time or
multichannel detection.

The spectrometer employed was a McPherson Mod. 247 grazing-incidence scanning
monochromator equipped with a channeltron detector. The exit slit head motion was monitored
by a Heidenhain Moiré fringe length gauge reading to ±1µm. The R = 2.2 m diffraction grating
featured a groove density of 600 l/mm. A slit width of 50µm (80µm) resulted in a line width (FWHM)
of 0.035 nm (0.06 nm). The detection efficiency function of the spectrometer favoured the wavelength
range near λ ≈ 20 nm, but permitted measurements up to and even beyond 60 nm [43,44]. More details
and other spectrum samples can be found in References [3,4]. Figure 2 shows Ca beam-foil spectra
obtained at ion beam energies of 8 and 11 MeV, respectively. In order to avoid visual clutter in this and
the further figures, the spectrum numbers are indicated only for some prominent lines and line groups.
Most of the marked lines are listed in the NIST ASD tables [1] and thus easily identified. The spectrum
labels often mark groups of lines without individual fiducial markers. Given the high number of
line blends, the figures would otherwise be overburdened with labels that still would identify only a
fraction of the lines. Several line groups (for example, near λ = 43 nm and λ = 49 nm) are earmarked
with a question mark to indicate the lack of literature data.

The finite section of the ion beam observed by the spectrometer corresponds to a time-of-flight
interval of the ions on the order of 100 ps. The spectra depicted in the present figures have all been
recorded with the exciter foil inside the detection window and cover about the first 80 ps of the decays.
This is roughly commensurate with many of the n = 3 level lifetimes of the ions under study.

The spectra have been recorded under different conditions (ion beam energy, foil position, etc.),
so that there is no common intensity scale. The spectral line identifications in this and the subsequent
figures are based on the NIST ASD tables [1], augmented by Kelly’s compilations [5,6] and the
CHIANTI tables (version 8 [12]). At the higher ion beam energy, the Ca X lines (near λ = 41 nm and
λ = 42 nm) are somewhat brighter than nearby Ca IX and Ca VIII lines. The Ca VIII line group near
36 nm appears relatively brightly at the lower ion beam energy. This line group is not mentioned in the
NIST ASD database. The CHIANTI database lists many Ca VIII lines, with intensities obtained from
collisional-radiative models. Under the CHIANTI model conditions (electron density clearly lower than
the solid-state density in the exciter foil), the lines near 36 nm are expected to be rather weak, whereas
the beam-foil spectra show them clearly. The literature indicates a few Ca VIII lines in the group near
λ = 43 nm. The observed signal is higher at the higher ion beam energy, suggesting the presence of
unidentified lines of higher charge states as well. At λ ≈ 40.15 nm and at λ ≈ 43.55 nm there are lines
that are brighter at the higher ion beam energy. Both line positions are close to predictions for Ca XI [4],
but not close to the predictions of Ca XI in the CHIANTI tables [12]. Unfortunately, the computations [4]
do not include any spectrum simulation on the basis of collisional-radiative modelling. CHIANTI
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also predicts the wavelengths of transitions just beyond the established energy levels; most (if not
all) of these wavelengths are not close enough to observed spectral features to suggest identification.
As mentioned in the introduction, various computational schemes have claimed (almost) spectroscopic
accuracy [2]. This can be tested primarily for some principal transitions (mostly those connecting to the
ground state; for examples see [45–49] and references therein). For transitions between higher-lying
levels, the line density in a spectrum is often high, and the accuracy of even excellent computations in
many cases is then not high enough to distinguish between the candidate lines.
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Figure 2. Ca beam-foil spectra obtained at ion beam energies of 8 and 11 MeV, respectively. In order
to avoid visual clutter, the spectrum numbers are indicated only for some prominent lines and line
groups. Line width 0.06 nm.

Figure 3 shows Ca beam-foil spectra obtained at ion beam energies of 5 and 8 MeV, respectively.
The gap between the Ca X 3s-3p resonance lines near λ = 55.8 and λ = 57.4 nm is largely empty at an
ion beam energy of 5 MeV, but at an ion beam energy of 8 MeV it contains a group of lines. This step
in the charge state distribution [29,30] identifies the additional lines as belonging to Ca XI, and their
line pattern has been confirmed by ab-initio atomic structure computations [4]. Those computations
established the identities of a fair number of other lines as well. Such a clear discrimination of charge
states as demonstrated in Figure 3 is rarely seen in beam-foil spectra. The spectra are dominated by
lines of Ca IX and Ca X, with some known much weaker lines of Ca VI, Ca VII, Ca VIII, and Ca IX.
There is a considerable number of unidentified, but statistically robust, even weaker lines, that can be
seen in spectra recorded at two ion beam energy settings.
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Figure 3. Ca beam-foil spectra obtained at ion beam energies of 5 and 8 MeV, respectively. Line width
0.06 nm.

The ionization potentials of the Ca ions (Figure 1) show a large step from Na-like ions
(single valence electron) to Ne-like ions (tightly bound closed shells). In devices such as an electron
beam ion trap (EBIT) [18–20], the mono-energetic electron beam can be adjusted to take advantage of
this step; thus it is easy to produce a charge state distribution in the trapped ion cloud that features
Ne-like ions as the highest-charged ones. In beam-foil spectroscopy, the interaction of the ion beam
(with its own bound electrons) with the target foil electrons (with their own energy distribution) is more
smeared out in collision energy. Consequently, the ion beam energy threshold for producing the next
higher charge state is less well defined than with the electron beam energy in an EBIT. Nevertheless,
it may happen that at one given ion beam energy a certain charge state is not yet reached, but at higher
energies it is, and spectral features belonging to that charge state ion show up.

How do predictions of the charge state distribution fare compare to the spectroscopically identified
charge states in Figures 2 and 3? There is a saying among accelerator people that any such predictions
for highly-charged ions are no better than ±1 unit. For the Ca ion charge states and at the ion beam
energies of interest here, the predictions by Delaunay [29] versus those by Shima et al. [30] differ by
much less than one charge state. Neither Delaunay nor Shima et al. expect more than 2% Ne-like ions
at the lower beam energy, but about 10% at 8 MeV, as is borne out by the data (Figure 3). In beam-foil
spectroscopy the 3s-3p and 3p-3d lines of Na-like are boosted by massive cascade repopulation and
show among the brightest lines in the present spectra even if the charge state fraction may be small
at unfavourable ion energies. The Delaunay tables predict Na-like ions to be dominant (charge state
fraction just above 30%) between 10 and 11 MeV ion beam energy, while the table of Shima et al. places
the maximum just below 12 MeV. Delaunay and Shima et al. predict little change for Na-like ions and
a slight increase for Ne-like ion contributions.
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Figure 4 shows the Ca beam-foil spectrum near the 3s-3p resonance transitions of Ca X. The line
group in the middle can be identified by atomic structure computations [4] as belonging to Ca XI.
However, there are further weak lines not yet identified in the literature.
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Figure 4. Ca beam-foil spectrum near the 3s-3p resonance transitions of Ca X. Line width 0.05 nm.

Signal statistics and spectral resolution contribute to the discernibility of weak spectral features.
The channeltron detector had a dark rate of 1 to 2 counts per minute. Thus the typical background in
the spectra shown amounts to about 1 count per channel. Rather weak features of the proper line width
(typically about 3 channels FWHM) can be discriminated from the background. Figure 5 shows the
beam-foil spectrum of Ca near the most prominent line of the doubly excited spectrum Ca X* [50,51].
There are several lines that are almost as narrow as single transitions should appear, but nevertheless
they are known [1] to represent blends of Ca IX lines. Fiducial markers indicate a multitude of
unidentified Ca lines, most of them of low signal and thus difficult to judge for the presence of line
blends. Even so, they make up the numerical majority of spectral features in this sample. Further
measurements at higher resolving power together with accurate theoretical computations would be
necessary to classify many of the presently unidentified spectral features.
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Figure 5. Spectrum of Ca near the most prominent line of the doubly excited spectrum Ca X*. Fiducial
markers indicate a multitude of unidentified Ca lines. Line width 0.03 nm.
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3.2. Lifetime Measurements

Beam-foil spectroscopy has unique capabilities for lifetime measurements (whereas, with few
exceptions, the spectroscopy of stationary light sources has reached a higher resolving power).
Therefore the earlier study of Ca [3] mostly addressed level lifetimes. Na-like ions with their single
valence electron outside a closed-shell core are considered well calculable [52]. The Ca X lifetime values
in this experiment turned out longer than the prediction (lower decay rate), if still within the scatter
expected of any such data. A colleague proposed corrections to theory instead [53], suggesting to
cancel the one or other decay channel so that one might find out after which of these closures lifetime
“prediction" and measurement might match. However, quantum mechanics does not permit such
arbitrary selection rules.

On the other hand, in the same experiment several Ca IX lifetime results turned out shorter than
predicted. In the most interesting of these cases in such a Mg-like ion, relativity opens (via multiplet
mixing) an intercombination decay channel for the 3p2 1D2 level to the 3s3p 3Po

1 level, which had been
overlooked in several computations (see [3]). The beam-foil study added another significant data
point to this isoelectronic sequence. The interested reader is advised that [3] contains a repeated typo:
the 3p2 1D2 level was mistakenly replaced by the 3s3d 1D2 label in several locations.

4. Beam-foil Data on Potassium

The ion beam current with KO− out of the ion source and K3+ delivered by the accelerator was
about a factor of 30 lower than achieved with “easy” elements of the iron group. An earlier experiment
addressed mostly n = 3 and n = 4 levels of the F-like spectrum of K (K XI) and presented sections of the
beam-foil spectrum [54]. The experimental parameters have been discussed there and correspond to
the parameters for Ca mentioned above.

4.1. Survey Spectrum of Potassium, 37 to 75 nm

Figure 6 shows a display of the beam-foil EUV spectrum of K that is longer compared to the earlier
study [54], which emphasized specific details in K XI. The motivation for presenting a more complete
display is the multitude of easily observed K lines, of which the strongest lines in the wavelength
range 37 to 75 nm are well known and labelled by the spectrum number in Figure 6. The charge state
distribution [28–30] at an ion beam energy of 12.8 MeV lets us expect prominent lines of K VIII to K XII.
Because of the atomic structure, the highest of these charge states (spectrum K XII) is actually not
expected to show up in this wavelength range. K VII and lower charge state spectra have many lines in
this wavelength range, but the associated ion charge states are too low in the production cross section
to contribute visibly (with perhaps the exception of one K VII line near 41.1 nm). There are many more
lines listed in the data bases [1,5,6] that are not all identifiable in this beam-foil spectrum. Several K XI
lines have been identified [54] with the aid of semi-empirically adjusted Hartree-Fock Relativistic (HFR)
computations. The HFR code is a derivative of the Cowan code [55]. The Cowan code employed is of
limited accuracy as a predictive tool, but various parameters can be adjusted to match experimental
data. In this way the computational accuracy can be improved incrementally while maintaining a
consistent view of the whole atomic system. Finally, several lines in the spectrum, many in only partly
resolved groups, cannot yet be identified from the literature. Examples lie near 37.65, 38.0–38.5, 39.65,
40–41, 44.5–44.75, 46.1–46.3, 47.3–47.6, 51.6, 53.8–54.3, 57.3–58, 61.5–61.8, and 66.1 nm. Just short of
40.50 nm the 4f-5g transition array of Ca X is expected, short of 50.0 nm the 4f-5g transition array of
Ca IX, and close to 61.62 nm the 5g-6h transition array of Ca XI. These transitions between levels of
maximum angular momentum (known as yrast transitions in nuclear physics) are often prominent
in beam-foil spectra, because the decays of many high-n, high-` levels are funnelled through such
transitions. Another few weak lines appear in the wavelength range 67–75 nm where the spectrometer
efficiency is rather low [43,44]. The line group at 74.5 nm is likely the K X (Ne-like) 5g-6h transition
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array. At 50.0 nm the K IX (Na-like) 4f-5g transition array is expected, and a line just short of that
wavelength is clearly seen.
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Figure 6. Spectrum of K at an ion beam energy of 12.8 MeV. Line width 0.06 nm. Identified spectral
features are marked by the spectrum number.

Figure 7 shows a detail of the range covered in Figure 6, but at an ion beam energy of 5 MeV.
In contrast to Figure 6, where the wavelength interval of 48 to 49 nm almost appears as a gap in the
spectrum, at this lower ion beam energy a line multiplet of K VII dominates, and a K X line appears with
low intensity. The K VII 3s23p 2Po

1/2,3/2–3s3p2 2P1/2,3/2 multiplet has four components, with expected
relative intensities of 10, 20, 40, and 20 [17], in the sequence of increasing wavelength. The spectrometer
efficiency curve is practically flat over this interval [43,44], and the observation closely matches the
predicted line ratios. The uncertainty of the line ratios in this measurement is dominated by counting
statistics; the amplitude of the weak component is determined to within about 8%, and that of the
strong component to within about 4%. In this case, the line identifications and the line ratios in the
multiplet are consistent.

As the example of the tokamak experiment shows, this consistency check is a helpful way to
detect shortcomings in a spectrum analysis. I have encountered attempts at classification that were
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based solely on the agreement of measured and computed wavelengths. When using theoretical data,
it is imperative to check whether for an assumed classification all components of a given line multiplet
are compatible with the observed spectrum. It is important to be cognizant of the applicability and
accuracy limits that theoretical methods still do have, to avoid misusing their predictions.
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Figure 7. Detail spectrum of K at an ion beam energy of 5 MeV. Line width 0.045 nm. Identified spectral
features are marked by the spectrum number. The K VII transition array marked is discussed in the text.

4.2. Potassium Spectrum 10 to 21 nm

It has been noted above that the NIST ASD online database holds many more entries on EUV
lines of K than of Ca. One of the wavelength ranges in which the number of entries differs is the
range below 20 nm. Figure 8 shows a beam-foil spectrum of K in the wavelength range from 10 to
21 nm. The ion beam energy of 12.8 MeV is expected to maximize the spectrum signal for K X (Ne-like),
and to provide a high yield of K IX (Na-like) and K XI (F-like). The spectrum shows a multitude
of weak lines the investigation of which would profit from better signal statistics. Also warranted
are more wavelength references throughout the wavelength interval. This is a notorious problem
in beam-foil spectroscopy where only a single element is present in the spectra. In this spectrum,
four features can be identified unambiguously and used as initial wavelength anchors. They are the
K XI 2s22p5 2Po

3/2,1/2–2s2p6 2S1/2 transitions at 15.2462 and 15.8126 nm [1], respectively, the lower
levels of which have been studied in detail by Edlén [56–58], the K XII 2s22p4 3P2–2s2p5 3Po

2 transition
at λ = 17.4412 nm, and the K IX 2p63d–2p64f transition array at λ ≈ 20.58 nm. Near the 17.4412 nm–line
(by far the strongest component of the multiplet) other components of the same transition multiplet can
be recognized from the NIST ASD tables. Also, the K IX 3d-5f and 3d-6f lines of the NIST ASD tables
find counterparts among the weaker lines below 15 nm. These lines could serve as further reference
lines, if the spectral resolution was slightly better. Several (unmarked) lines in the wavelength interval
13.5 to 13.94 nm arise from K XI [54]. (This publication gives references to early work on this spectrum.)
The NIST ASD tables list a fair number of lines as belonging to K X, but without further identification.
The present beam-foil spectrum at least corroborates their identification with potassium.
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Figure 8. Spectrum of K at an ion beam energy of 12.8 MeV. Line width 0.035 nm. The most prominent
lines are marked by the spectrum number. The detection efficiency rises from the left to the right of the
figure by a factor of about four [44].

4.3. Branching Ratio Measurement

In the F-like spectrum K XI there is a displaced n = 2 level worth studying, the upper level of
the line doublet 2s22p5 2Po

3/2,1/2–2s2p6 2S1/2 in the middle of Figure 8. This multiplet connects the
two lowest terms in the level scheme of K XI, and the excitation requires the lowest energy of any
electric dipole transition in this ion. The line doublet therefore can serve as an indicator that in a light
source this ionization stage has been reached. For this reason, CHIANTI [12] lists these two lines,
although K otherwise is of little interest in solar spectroscopy. However, the lines are not listed in
the Kelly tables [6], whereas many other K lines are. (The corresponding lines of Ca XII are not listed
in the NIST ASD tables.) Recent computations have treated these levels and transitions along the
isoelectronic sequence [48,59].

Given the atomic structure situation and the small 2s22p5 2Po
3/2,1/2 fine structure interval in

comparison to the 2s-2p term difference, the branching ratio of the two decays of the same upper level
ought to reflect the ratio of the statistical weights of the lower levels, that is a factor of two. Since the
individual transition rates depend on the third power of the transition energy, the actual line ratio is
expected as 2.23 in K XI (2.19 in Ar X and 2.28 in Ca XII, respectively). The spectrum in Figure 8 yields
a value of 2.3 ± 0.3, which includes a 20% correction for the detection efficiency of the spectrometer
used [44]. The uncertainty of the result is dominated by that of the steepness of the efficiency curve.
Across the spectrum in Figure 8, the detection efficiency increases with wavelength by about a factor
of 4 to 5. The observed value of the line ratio agrees with expectation.

It may be interesting to check the same ratio for the neighbouring elements Ar and Ca. Ar is
not available at a tandem ion accelerator (no negative Ar ions to start from), and the Bochum Ca
beam-foil spectra had a starting point at somewhat longer wavelengths. However, the aforementioned
measurement at a tokamak plasma [16] included, both, Ar and Ca in the appropriate charge states.
The observations at the tokamak resulted in signal ratios of 6.22 for Ar and of 3.5 for Ca, instead of
the simple estimates mentioned above. Obviously, in either case the signal must have had additional
contributions to the stronger line that spoiled the straightforward interpretation of the signal ratio
as a line ratio or branching ratio. Indeed, this conclusion has been drawn in that paper [16], but it
is not clear which blending partners contributed how much. The blending seemed to matter less
in Ca than in Ar, but spectroscopy on its own is often insufficient to disentangle a close blend.
Theory and collisional-radiative spectral modelling may help to clarify a difficult measurement
situation. However, the tokamak plasma contained further elements besides the wanted Ar and Ca
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(and some F), which would cause additional problems in spectral modelling. Moreover, in this case the
wavelengths CHIANTI holds for the two Ar X lines are incorrect by 0.5%, a rare occurrence. “Incorrect”
in this case does not mean a chance disagreement with some other measurement, but a deviation
from Edlén’s systematic study of many ions along the isoelectronic sequence [57], a cornerstone
among wavelength references. Moreover, an electron beam ion trap study with very high spectral
resolution [60] has corroborated Edlén’s Ar X wavelengths that are also used in the NIST ASD tables.
Another detail concerns transition rates and line ratios. In F-like ions from Ar X to Fe XVIII, the line
ratio obtained from the ratio of the transition wavelengths (decay of a common upper level) progresses
regularly along the isoelectronic sequence. In contrast, the ratio of transition rates given in the NIST
ASD tables or CHIANTI progresses irregularly, with deviations between less than 1% to about 10%
between the predictions and in comparison to the above estimate. A spectrometer with a flat efficiency
curve in the range from 7 to 20 nm should be suitable to yield such line ratios for all elements of the
iron group.

The line ratio result for K XI is compatible with the estimate based on the wavelength ratio and
with more detailed computations within the 15% experimental error estimate. A similar agreement
has been found for Cl-like ions of iron group elements [61], which feature n = 3 electrons instead of
the n = 2 electrons in the F-like ions, between measurement and several computations. For the Cl-like
ions it was also feasible to do beam-foil lifetime measurements, and there the computations scattered
by about a factor of two, indicating that the absolute values of the transition rates are not as well
predicted as their ratio. For F-like ions, two recent calculations provide lifetimes of the 2s2p6 2S1/2
level. Jönsson et al. [48] apply RCI computations and find good agreement of the results obtained
in Babushkin and Coulomb gauges, respectively. Aggarwal [59] presents lifetime results of MCHF
computations that are very close to those reported by Jönsson et al., and lifetime results obtained by
using the GRASP code that (for K XI to V XV) are shorter by about 10%. Unfortunately, no lifetime
measurement has been reported for K XI.

5. Discussion

It is useful to study spectra of a given element or atomic system in a variety of light sources.
I have mentioned the non-confirmation of “Ca" spectra recorded at an EBIT near wavelengths of
λ = 13 nm [21] by a tokamak experiment [16]. Some of the wavelengths of lines of highly charged Ca
ions, which after solar observations were assumed to be known and thus listed in the CHIANTI data
base, were not found in that same tokamak experiment [16]. The EUV spectrum of the tokamak plasma
(with wavelengths from 10 to 25 nm) was dominated by Ar and Ca, but contained several strong lines
from contaminants as well. A corresponding spectrum from a foil-excited ion beam might have shown
the Ca lines exclusively. Such an element-pure spectrum is available at longer wavelengths, up to
60 nm. In this range many, mostly weak, lines remain unidentified, since the databases on Ca lines are
rather sparse. The present spectra should be useful in the analysis of data from other light sources,
because the beam-foil light source is uni-elemental. A similarly mono-isotopic spectrum of 39K has
been presented that can serve for systematic cross checks with the Ca spectra. Moreover, it has been
demonstrated how clean line ratio measurements can be in the absence of interference from lines of
other elements. An archive search for corresponding data of heavier elements is underway.
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