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Abstract: In this study, we analyzed the light absorption by diatomic molecules or colliding atoms
in a spectral region dominated by an avoided crossing of adiabatic state levels or crossing of the
corresponding diabatic state levels. Our attention was focused on the low-resolution spectrum
at a higher gas temperature under local thermodynamic equilibrium conditions. The absorption
measurements of mixed vapors of potassium (≈80%) and cesium (≈20%) were made in the temperature
range of 542–715 K and the infrared spectral range 900–1250 nm. In this area, the main spectral

contributions were the broad A1Σ+
(u)

(
0+
(u)

)
−X1Σ+

(g)

(
0+
(g)

)
bands of K2, Cs2, and KCs molecules. There

was a crossing of A1Σ+
(u)

(
0+
(u)

)
and b3Π(u)

(
0+
(u)

)
state potential curves and the coupling of this state

was due to the matrix element
〈
A1Σ+

(u)

(
0+
(u)

)∣∣∣∣∣Hso

∣∣∣∣∣b3Π(u)

(
0+
(u)

)〉
of the spin–orbit interaction. Using

data for relevant electronic potential curves and transition dipole moments existing in the literature,

the spectra of the A1Σ+
(u)

(
0+
(u)

)
−X1Σ+

(g)

(
0+
(g)

)
molecular bands of K2, Cs2, and KCs molecules were

calculated. Full quantum mechanical and semi-quantum coupled channel calculations were done and
compared with their non-coherent adiabatic or diabatic approximations. Through the comparison of
our theoretical and experimental spectra, we identified all observed spectral features and determined
the atoms’ number density and gas temperature.

Keywords: diatomic molecules; optical spectra; spin-orbit coupling; non-adiabatic transitions;
thermodynamic equilibrium

1. Introduction

Several approaches to the theoretical simulation of low-resolution, high-temperature optical spectra
of diatomic molecules under local thermodynamic equilibrium conditions have been analyzed in detail
by Beuc et al. [1]. Using relevant data for molecular potential curves and transition dipole moments,
theoretical simulations can be powerful tools for identifying spectral features, gas temperatures, and
atom number densities. Whereas in Beuc et al. [1], the optical transition between two well-isolated
adiabatic states is analyzed, in this paper, the photon absorption from the lower adiabatic state into
two excited non-radiative coupled electronic states is studied.

Many years ago, Devdariani et al. [2–4] and O’Callaghan et al. [5] studied this problem within
semiclassical theory using a Landau-Zener approximation [6,7]. Although their analysis focused on
the absorption and emission of light by colliding atoms, their conclusions can be qualitatively applied
when interpreting quantum mechanical calculations of bound–bound molecular transitions.

The focus of this study was the spectral phenomenon that exists for all alkali metal homo- and
hetero-nuclear molecular spectra. On the red side of the first resonant atomic transition doublet,

the spectrum is dominated by molecular A1Σ+
(u)

(
0+
(u)

)
− X1Σ+

(g)

(
0+
(g)

)
bands (shorter A − X bands).
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The brackets in the sub-script contain the gerade or ungerade symmetry mark, which is valid only

for homo-nuclear molecules. The potential curve of the singlet A1Σ+
(u)

(
0+
(u)

)
state crosses with the

potential curve of one component b3Π(u)

(
0+
(u)

)
of the triplet electronic state b3Π(u)

(
Ω(+,−)

(u)

)
. These

electronic states are coupled by the matrix element
〈
A1Σ+

(u)

(
0+
(u)

)∣∣∣∣∣Hso

∣∣∣∣∣b3Π(u)

(
0+
(u)

)〉
of the spin-orbit

(SO) interaction, which has as a consequence the perturbation of the A−X spectrum.
For several decades, low-resolution spectra of the A−X band at high temperatures have been

widely experimentally and theoretically investigated, for example: Li2 [8–11], Na2 [1,8,11,12], K2 [11–15],

Rb2 [16], and Cs2 [1,5,17,18]. The influence of A1Σ+
(u)

(
0+
(u)

)
− b3Π(u)

(
0+
(u)

)
coupling is directly observed

only in the case of the heavy alkali dimers Rb2 and Cs2 due to their large SO interaction.

Many more studies of A1Σ+
(u)

(
0+
(u)

)
− b3Π(u)

(
0+
(u)

)
mixing in alkali dimer spectra

have been done using high-resolution spectroscopic techniques, such as laser-induced
fluorescence Fourier transform spectroscopy and optical–optical double resonance polarization
spectroscopy. By using deperturbation analysis, accurate spectroscopic data have reproduced

the potential curves of A1Σ+
(u)

(
0+
(u)

)
andb3Π(u)

(
0+
(u)

)
electronic states and coupling matrix element〈

A1Σ+
(u)

(
0+
(u)

)∣∣∣∣∣Hso

∣∣∣∣∣b3Π(u)

(
0+
(u)

)〉
in the case of homonuclear dimers K2 [19–21], Rb2 [22,23], and

Cs2 [24,25], and heteronuclear dimers LiCs [26,27], NaCs [28], RbCs [29,30], and KCs [31–33]. In these

theoretical analyses of spectroscopic data, the rotational couplings of b3Π(u)

(
Ω(+,−)

(u)

)
state components

whose angular moments Ω differ by 1 are included. The theoretical analysis in this study was focused
on the low-resolution spectrum; therefore, this type of coupling can be neglected.

To our knowledge, there is no study of the high-temperature low-resolution A −X spectra of
heteronuclear dimers in the literature. We measured the absorption spectrum of a potassium and
cesium vapor mixture at temperatures of 542–715 K. In the infrared spectra from 900–1250 nm, the
dominant contributions were the A −X bands of K2, Cs2, and KCs dimers. Using existing relevant
potential curves and transition dipole moments obtained by quantum chemical calculations and
the analysis of spectroscopic data, we calculated theoretical spectra in the measured wavelength
range. We compared coupled channel quantum mechanical spectra calculations with coupled
channel semi-quantum calculations and showed that a time-efficient semi-quantum approach yielded
results comparable to a full quantum approach. Using semi-classical theory [2–5], we defined the
conditions under which coupled channel calculations can be approximated by non-coherent adiabatic
or diabatic approximations.

By comparing the experimental absorption coefficients with the theoretical simulations, we
determined the temperature and potassium and cesium number densities in the gas mixture.
The numerically time-efficient semi-quantum coupled channel calculus gave satisfactory good
low-resolution spectra for K2, Cs2, and KCs dimers and can be used as an efficient alkali gas
diagnostic tool.

2. Theoretical Background and Methods

The total Hamiltonian of a diatomic molecule is H(r, R) = TR + Hel(r, R), wherein TR = − }2

2µ∆R

is the nuclei kinetic energy operator and µ is the molecular reduced mass. Hel(r, R) is the electronic
part of the Hamiltonian containing the electron kinetic energy operator, all electrostatic interactions
in a molecule, and the spin–orbit interaction, all of which depend on the interatomic distance R and
positions vectors of all electrons r. The eigenvector of the Hamiltonian H(r, R) is the function:

ΨM(r, R) =
∑

i

φi(r, R))ψiM(R), (1)
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which is represented as a sum of the product of the wavefunctions φi(r, R) that describe electrons and
the functions ψiM(R) that describe the motion of the atoms. By including the wavefunctions ΨM(r, R)

into the Schrödinger equation, one obtains a series of coupled equations:(
TR + Hel

ii (R) + Xii(R) − E
)
ψiM(R) = −

∑
j,i

(
Hel

i j(R) + Xi j(R)
)
ψ jM(R), (2)

where Hel
i j(R) =

〈
φi(r, R)

∣∣∣Hel
∣∣∣φ j(r, R)

〉
, Xi j(R) =

〈
φi(r, R)

∣∣∣TR
∣∣∣φ j(r, R)

〉
−

}2

2µ

〈
φi(r, R)

∣∣∣∇R
∣∣∣φ j(r, R)

〉
∇R.

In a spherical coordinate system, Xij can be written as Xi j = XR
ij +XA

ij , where XR
ij depends on electronic

wavefunction changes related to the interatomic distance R and XA
ij depends on changes related to the

rotation of the molecule (for details, see Janev et al. [34]). The functions φi(r, R) belong to a complete
set of orthogonal normalized functions that can be chosen in various ways.

The adiabatic representation is a uniquely defined base of wavefunctions that diagonalize the
electronic Hamiltonian Hel

i j(R) = Va
i (R)δi, j. In the adiabatic representation, Equation (2) has the form:

(TR + Vi(R) + Xii(R) − E)ψiM(R) = −
∑
j,i

Xi j(R)ψ jM(R). (3)

Potential curves Vi(R) for adiabatic states of the same symmetry cannot intersect (Wigner-Neuman
theorem) and they avoid crossing. In the region of avoided crossing, adiabatic states of the same
symmetry are coupled by the matrix element XR

ij (radial coupling). Note that the adiabatic or diabatic

states whose electronic angular momentum Ω differ by 1 are coupled by the matrix element XA
ij (angular

coupling). In the region where one can neglect all matrix elements Xi j (Born-Oppenheimer adiabatic
approximation BOA), Equation (2) has the simple form:

(TR + Vi(R) − E)ψiM(R) = 0, (4)

and the molecular wave function has the simple form ΨM(r, R) = φi(r, R)ψiM(R). Please note, in the
case of molecules with large reduced masses, which is true for the dimers analyzed in this paper, the
Xii(R) matrix elements are negligible.

The diabatic representation according to Lichten [35] is the base of electronic wavefunctions for
which the matrix elements Xi j are negligible (Xi j << 1) and the Equation (2) has the simple form(
TR + Vd

i (R) − E
)
ψiM(R) = −

∑
j,i

Hel
i j(R)ψiM(R), where Vd

i (R) = Hel
ii (R). The diabatic base for which

XR
ij(R) = 0 is called the radial diabatic base. Smith [36] has shown that the adiabatic and the radial

diabatic base are connected through a unitary transformation. Unlike the uniquely defined adiabatic
base, there is a class of radial diabatic bases that can be obtained using a unitary transformation (R
independent) of one of them. In this study, we chose a diabatic base that diagonalized the electronic
Hamiltonian at small interatomic distances.

The probability of an optical transition between the lower energy molecular state M′′ and higher

energy state M′ is proportional to the square of the molecular dipole moment
^
D(r, R) matrix element:

σM′
M′′ ∝

∣∣∣∣∣〈ΨM′′ (r, R)
∣∣∣ ^
D(r, R)

∣∣∣ΨM′(r, R)
〉∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣
∑
i, j

〈
ψiM′′ (R)

∣∣∣Di j(R)
∣∣∣ψ jM′(R)

〉∣∣∣∣∣∣∣∣
2

, (5)

where Di j(R) =
〈
φi(r, R)

∣∣∣ ^
D(r, R)

∣∣∣φ j(r, R)
〉

is the electronic dipole moment for the transition between
the adiabatic or diabatic states i and j.



Atoms 2020, 8, 28 4 of 21

2.1. One Excited Electronic State

If one assumes that the conditions for the Born-Oppenheimer approximation are satisfied,
the wave function of the molecular state is given by one product of the nuclear and electronic
wave function ΨvJΛ(r, R) = φΛ(r, R)ψvJΛ(R). Here, the electronic state is labeled with Λ (Λ
usually refers to the axial component of the electronic angular momentum). The motion of the
atoms is characterized by vibrational v and rotational J quantum numbers. After the separation
of the variables, the rovibrational wavefunction can be expressed as a product of the rotational
and vibrational wavefunctions ψvJΛ(R) = <J(θ,ϕ) 1

RϕvJΛ(R). The Schrödinger equation for the
vibrational wavefunction is:(

EvJΛ −VΛ(R) −
}2

2µ
J(J + 1) −Λ2

R2 +
}2

2µ
d2

dR2

)
ϕvJΛ(R) = 0, (6)

where VΛ(R) is the electronic potential of the electronic state Λ. The same equation gives the energies
EεJΛ and the energy-normalized wavefunctions φεJΛ of the free states.

The spectra of the averaged absorption from the lower Λ′′ to the upper Λ′ electronic state comprise
contributions from the transitions between all rovibrational states of a lower (v′′ , J′′ , Λ′′ ) and the upper
(v′, J′, Λ′) electronic state.

The absorption cross-section for the transition from a rovibrational state (v′′ , J′′ , Λ′′ ) to the
rovibrational state (v′, J′, Λ′) is [8,9]:

σv′ J′Λ′

v′′ J′′Λ′′ (ν) =
8π3ν
3hc

2− δ0, Λ′+Λ′′

2− δ0, Λ′′

SJ′Λ′

J′′Λ′′

2J′′ + 1

∣∣∣∣〈ϕv′′ J′′Λ′′
∣∣∣D(R)

∣∣∣ϕv′ J′Λ′
〉∣∣∣∣2g(ν− νtr), (7)

where D(R) =
〈
φΛ′′ (r, R)

∣∣∣ ^
D(r, R)

∣∣∣φΛ′(r, R)
〉

is the electronic transition dipole moment, g(ν− νtr) is the

line-shape function, hνtr = Ev′, J, Λ′ − Ev′′ ,J, Λ′′ is the transition energy, and SJ′Λ′

J′′Λ′′ is the Hönl–London
factor. At thermodynamic equilibrium, the reduced absorption coefficient is [8,9,12]:

k(ν, T) = C(Λ′′ , T)ν
∑

v′′ v′ J′′ J′

ωJ′′

ωJ
exp

(
−

Ev′′ J′′Λ′′

kBT

)
SJ′Λ′

J′′Λ′′

∣∣∣∣〈ϕv′′ J′′Λ′′
∣∣∣D(R)

∣∣∣ϕv′ J′Λ′
〉∣∣∣∣2g(ν− νi j). (8)

C(Λ′′ , T) is a statistical factor that depends on the symmetry of the electronic states and
the temperature:

C(Λ′′ , T) =
ωJ

3hc
2− δ0, Λ′+Λ′′

2− δ0, Λ′′

(2S + 1)(2Λ′′ + 1)
(2SA + 1)(2LA + 1)(2SB + 1)(2LB + 1)

(
2π
µkT

)
3/2

, (9)

where SA,B is the spin and LA,B is the angular momentum of atom A, B. ωJ is a statistical factor that
depends on the atomic nuclear spin and parity of the molecular angular momentum J with the averaged
value ωJ = 1

2 for the homonuclear molecules and ωJ = 1 for heteronuclear molecules.
In each electronic state Λ, there is a finite number of bound and quasi-bound states

with unity-normalized wavefunctions ϕvJΛ and an infinite continuum of free rovibrational
states with energy-normalized wavefunctions φεJΛ. Therefore, the sum over the rovibrational
transitions in Equation (8) formally includes the integration over the bound-free, free-bound, and
bound-bound transitions.

To calculate the energies and wavefunctions of rovibrational states, the FGH method (Fourier
grid Hamiltonian) is used, where functions are represented on a finite number of grid points Ri (i = 1,
. . . , N) [37]. On the grid of uniformly spaced points, where δR = Ri+1 −Ri for the electronic state S
with an electronic angular moment L and electronic potential VP, the N × N Hamiltonian matrix is
defined as:
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HJ,L,S =
}2

2µ


1
δR2

(
π2

3 −
1

2i2

)
+

J(J+1)−L2

Ri
2 i = j

(−1)i− j 1
δR2

8i j

(i2− j2)2 i , j

+

{
VS(Ri) i = j

0 i , j

}
. (10)

Energies Eν,J,L,S and radial wavefunctions ϕν,J,L,S can be determined using the diagonalization of
the Hamiltonian matrix HJ,L,S. Eigenvalues of the matrix HJ,L,S represent the energies of rovibrational
states and eigenvectors of the Hamiltonian matrix containing the corresponding unity-normalized
wavefunction on the grid points. This method, in addition to the bound-state energies, gives a
discrete set of free-state continuum energies, but in the range spanned by the grid, the corresponding
unity-normalized wavefunctions do represent the states of a continuum.

The quantum calculation (QC) of spectra using Equation (8) are time-consuming and therefore not
suitable for fast diagnoses (see the discussion in Beuc et al. [1]). If one needs to analyze low-resolution
spectra using the Q-branch approximation (only J′′ → J′′ transitions) by replacing the summation
over J′′ with the summation over the kM intervals containing n neighbor J′′ values, the efficient form of
the reduced absorption coefficient is [1]:

k(ν, T) = C(Λ′′ , T)ν
N,N,kM∑

v′′ = 0,v′ = 0,k = 0
n[2(kn + Λ) + n] exp

(
−

Ev′′ JkΛ′′

kBT

)∣∣∣∣〈ϕv′′ JkΛ′′
∣∣∣D(R)

∣∣∣ϕv′ JkΛ′
〉∣∣∣∣2g(ν− νtrk). (11)

The number of intervals kM is the nearest integer of N/n, Λ is the larger value of Λ′′ and Λ′, and
Jk(Jk + 1) = (kn + Λ)(kn + Λ + n) + 1

2 (n
2
− 1). In this study, we use the absorption coefficient in

Equation (11) in the wavelength domain as a QC result:

k(λ, ∆λ, T) = C(Λ′′ , T) λ
∆λ

N,N,kM∑
v′′ = 0,v′ = 0,k = 0

n[2(kn + Λ) + n] exp
(
−

Ev′′ JkΛ′′

kBT

)∣∣∣∣〈ϕv′′ JkΛ′′
∣∣∣D(R)

∣∣∣ϕv′ JkΛ′
〉∣∣∣∣2H(λ, ∆λ,λtr)

(12)
In the above equation, the line profile g(λ− λ(i)tr ) is approximated with a Heaviside pi (or boxcar)

function H(λ, ∆λ,λtr) =

1 λtr ∈ (λ− ∆λ,λ+ ∆λ)

0 λtr < (λ− ∆λ,λ+ ∆λ)
, where the optical transition wavelength is

λtr = c/νtr and ∆λ is equal to or larger than the line profile half-width and smaller than the
instrumental profile half-width.

Semi-quantum approximation (SQA) [1,15] give an even faster algorithm for calculating the
low-resolution reduced absorption coefficient, which in the wavelength domain, has a form:

k(λ, ∆λ, T) = C(Λ′′ , T) λ
∆λ

2µkBT
}2

N,N∑
v ′′ , ν ′

exp(−
Ev′′ JΛ′′

kBT )
∣∣∣∣〈ϕv′′ ,J,Λ′′

∣∣∣RD(R)
∣∣∣ϕv′,J,Λ′

〉∣∣∣∣2H(λ, ∆λ,λtr), (13)

where J is equal to the larger value of Λ′′ and Λ′. This expression was formally obtained using a
completely semi-classical procedure but was in a quantum-like form. An evaluation of the applicability,
accuracy, and numerical efficiency of Equations (8), (11), (12), and (13) was extensively discussed in
Beuc et al. [1].

One can describe the radial movement of atoms using a classical trajectory R = R(t)

with the radial velocity vr(t) =

√
2
µ

(
E−VΛ(R(t)) − E ρ2

R(t)2

)
, where E is the energy

of the molecule and ρ is the collision impact parameter. The wavefunction of
the molecule in the electronic state Λ′′ “dressed” [38] with photon frequency ν is

ΨEρΛ′′ (r, t) = ΦΛ′′ (r, R(t)) exp

− i
}

t∫
−∞

dt′[V′′ (R(t′)) + hν]

 and the wavefunction of the molecule in
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the excited state Λ′ is ΨEρΛ′(r, t) = ΦΛ′(r, R(t)) exp

− i
}

t∫
−∞

dt′V′(R(t′))

. The absorption cross-section

of the optical transition between the lower (EρΛ′′ ) and the upper (EρΛ′) molecular state is:

σ
EρΛ′

EρΛ′′ ∝

∣∣∣∣∣∣∣∣
∞∫
−∞

dt
〈
ΦΛ′′ (r, R)

∣∣∣ ^
D(r, R)

∣∣∣ΦΛ′(r, R)
〉

exp

− i
}

t∫
−∞

dt′[V′′ (R(t′)) + hν−V′(R(t′))]


∣∣∣∣∣∣∣∣
2

. (14)

At thermodynamic equilibrium, the reduced absorption coefficient is given by the averaged
absorption cross-section over parameters of the statistical ensemble E and ρ:

k(ν, T) = C(Λ′′ , T)
64π2

h3 ν

∞∫
ε
′′

min

dE · E exp(−
E

kBT
)

∞∫
0

dρ · ρ

∣∣∣∣∣∣∣∣
∞∫
−∞

dtD(t) exp

 1
}

t∫
0

(∆(t′) − hν) dt′


∣∣∣∣∣∣∣∣
2

, (15)

where ∆(R(t)) = VΛ′(R(t)) −VΛ′′ (R(t)) is the electronic transition difference potential.
The non-coherent quasi-static approximation is done using the first-order stationary phase

approximation of the time-dependent integral in Equation (15), partial integration over ρ, and
neglecting the rapidly oscillating terms [1,39]:

k(ν, T) = B(Λ′′ )ν
n∑

i = 1

R2
i D(Ri)

2∣∣∣∆′(Ri)
∣∣∣ exp(−

VΛ′′ (Ri)

kBT
), (16)

where ∆′(R) = d
dR ∆ (R), B(Λ′′ ) = π

√
2

3}3cωJ
2−δ0, Λ′+Λ′′

2−δ0, Λ′′

(2S+1)(2Λ′′+1)
(2SA+1)(2LA+1)(2SB+1)(2LB+1) , and the summation

is over all real Condon points Ri satisfying ∆(Ri) = hν. This approximation gives a good description
of the spectra but diverges at the difference potential extremes, which are most often the consequence
of the avoided crossing of the adiabatic electronic states’ potential curves.

In the case where the difference potential has only one extreme point Re, a coherent uniform Airy
approximation of the spectral profile is defined [1,39]. In the classically allowed region, the reduced
absorption coefficient has the form:

k(ν, T) = B(Λ′′ )ν


[

R2
1D(R1)

2

|∆′(R1)|
exp(−

VΛ′′ (R1)

kBT ) +
R2

2D(R2)
2

|∆′(R2)|
exp(−

VΛ′′ (R2)

kBT )

]
3
√
π(
√

zL(z) + 1
√

z
H(z))

+2 R1
2D(R1)D(R2)√
|∆′(R1)| |∆′(R2)|

exp(−
VΛ′′ (R1)

kBT )3
√
π(
√

zL(z) − 1
√

z
H(z))

, (17)

where R1 and R2 are the Condon points satisfying ∆(R1,2) = hν, and the mapping parameter is

z = z(ν, T) =
( µ

2kBT

) 1
3

 3sgn[∆′′ (Re)]
4}

R2∫
R1

dR(∆(R) − hν


2
3

. The functions L(z) =
∞∫
0

dx Ai[−zx]2

x2 exp
(
−1/x3

)
and H(z) =

∞∫
0

dx Ai′[−zx]2

x3 exp
(
−1/x3

)
are integrals of the square of the Airy function and its first

derivative, respectively. The uniform Airy approximation can be extended to the case where the
transition difference potential has several extremes [1].

2.2. Two Coupled Excited Electronic States

In this paragraph, an optical transition from the ground electronic state Λ′′ satisfying BOA to
two coupled electronic states Λ′1 and Λ′2 is analyzed. It is assumed that the electronic wavefunction
of the excited states belonging to the radial diabatic base diagonalizes the electronic Hamiltonian
at small interatomic distances. The electronic wavefunction and potential for the ground state are
ΦΛ′′ (r, R) and VΛ′′ (R) for the excited states Φd

Λ′1,2
(r, R) and Vd

Λ′1,2
(R), respectively. The excited
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electronic diabatic states are coupled via the matrix element V(R) =
〈
Φd

Λ′1
(r, R)

∣∣∣∣Hel(r, R)
∣∣∣∣Φd

Λ′2
(r, R)

〉
and all other coupling matrix elements Xi j(R) and Hel

i j,i(R) are neglected. The difference potentials

for the transitions between the ground and excited states are ∆d
Λ′1,2

(R) = Vd
Λ′1,2

(R) −VΛ′′ (R) and

the corresponding transition dipole moments are dd
Λ′1,Λ′2(R) = 〈ΦΛ′′ |D(R)

∣∣∣ΦΛ′1,Λ′2
〉
. The potential

curves Vd
Λ′1,Λ′2(R) and difference potential curves ∆d

Λ′1,2
(R) intersect at an interatomic distance Rc,

Vd
Λ′1

(Rc) = Vd
Λ′2

(Rc), and ∆d
Λ′1

(Rc) = ∆d
Λ′2

(Rc).
The corresponding adiabatic states’ wavefunctions Φa

Λ′1,2
(r, R) and potentials Va

Λ′1,2
(R) are given

by diagonalizing the matrix

 Vd
Λ′1

(R) V(R)
V(R) Vd

Λ′2
(R)

:

Va
Λ′1,2

(R) = 1
2

[
Vd

Λ′1
(R) + Vd

Λ′2
(R) ±

√
∆d(R)

2 + 4V(R)2
]

Φa
Λ′1,Λ′2(r, R) = 1

√
2

√
1± ∆d(R)√

∆d(R)
2+4V(R)2

Φd
Λ′1(r, R) ± 1

√
2

√
1∓ ∆d(R)√

∆d(R)
2+4V(R)2

Φd
Λ′2(r, R)

(18)

where ∆d(R) = Vd
Λ′1(R)−Vd

Λ′2(R). There is a simple relationship between the diabatic state potential

difference ∆d(R) and the adiabatic state potential difference ∆a(R) =

√
∆d(R)

2 + 4V(R)2.
Difference potentials and the corresponding transition dipole moments for the transition between

the ground state and excited adiabatic states are:

∆a
Λ′1,2

(R) = 1
2

[
∆d

Λ′1(R) + ∆d
Λ′2(R) ±

√
∆d(R)

2 + 4V(R)2
]

da
Λ′1,2

(R) = 1
√

2

√
1± ∆d(R)√

∆d(R)
2+4V(R)2

dd
Λ′1

(R) ± 1
√

2

√
1∓ ∆d(R)√

∆d(R)
2+4V(R)2

dd
Λ′2

(R)
(19)

In the neighborhood of the diabatic state potential curves’ crossing point, the potential curves
Va

Λ′1,2
(R) and difference potential curves ∆a

Λ′1,2
(R) have an avoided crossing, and the transition dipole

moments significantly depend on the interatomic distance. The electronic adiabatic states Λ′1 and
Λ′2 are coupled via a radial matrix element, and their couplings with all other electronic states were
assumed to be negligible.

The molecular wavefunction of the excited state Ψv′ J′Λ′(r, R) can be written as a sum of coupled
states functions in a diabatic (d) or adiabatic (a) representation:

Ψv′ J′Λ′(r, R) = φa,d
v′ J′Λ′1

(R)Φa,d
Λ′1

(r, R) + φa,d
v′ J′Λ′2

(R)Φa,d
Λ′2

(r, R). (20)

The energies Ea,d
vJΛ′ and rovibrational radial wavefunctions ϕa,d

vJΛ′1,2
(R) in both representations are

the solutions of the coupled channel Schrödinger equation:(
Ea,d

v′ J′Λ′ −Va,d
Λ′1

(R) − }2

2µ
J′(J′+1)−Λ′2

R2 + }2

2µ
d2

dR2

)
ϕa,d

v′ J′Λ′1
(R) = C(R)a,dϕa,d

v′ J′Λ′2
(R)(

Ea,d
v′ J′Λ′ −Va,d

Λ′2
(R) − }2

2µ
J′(J′+1)−Λ′2

R2 + }2

2µ
d2

dR2

)
ϕa,d

v′ J′Λ′2
(R) = C(R)a,dϕa,d

v′ J′Λ′1
(R)

(21)

It is assumed here that both electronic states Λ′1,2 have the same electronic angular moment Λ′.
The coupling matrix element in the diabatic representation is C(R)d = V(R), and in the adiabatic

representation, it is C(R)a = 1
2µ

〈
φa

Λ′1
(r, R)

∣∣∣∣ d2

dR2

∣∣∣∣φa
Λ′2

(r, R)
〉
+ 1

µ

〈
φa

Λ′1
(r, R)

∣∣∣∣ d
dR

∣∣∣∣φa
Λ′2

(r, R)
〉

d
dR . To solve

the coupled channel Equation (21) numerically, it is suitable to use the diabatic representation and the
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FGH method [40]. Energies and radial wavefunctions can be determined via diagonalization of the 2N
× 2N Hamiltonian matrix:

HCC =

(
HJ,Λ′,Λ′1 V

V HJ,Λ′,Λ′2

)
, (22)

where HJ,Λ′,Λ′1 is an N × N matrix defined by Equation (10) and V =

{
V(Ri) i = j

0 i , j

}
is an N ×

N matrix.
The absorption cross-section for the transition from a rovibrational state (v′′ , J′′ , Λ′′ ) of the ground

electronic state to the rovibrational states (v′, J′, Λ′) of the coupled excited electronic states is:

σv′ J′Λ′

v′′ J′′Λ′′ (ν) ∝ SJ′Λ′

J′′Λ′′

∣∣∣∣∣〈ϕv′′ J′′Λ′′ (R)
∣∣∣∣da,d

Λ′1
(R)

∣∣∣∣ϕa,d
v′ J′Λ′1

(R)
〉
+

〈
ϕv′′ J′′Λ′′ (R)

∣∣∣∣da,d
Λ′2

(R)
∣∣∣∣ϕa,d

v′ J′Λ′2
(R)

〉∣∣∣∣∣2g(ν− νtr)

= SJ′Λ′

J′′Λ′′ g(ν− νtr)·

·

[∣∣∣∣∣〈ϕv′′ J′′Λ′′
∣∣∣∣da,d

Λ′1

∣∣∣∣ϕa,d
v′ J′Λ′1

〉∣∣∣∣∣2 + ∣∣∣∣∣〈ϕv′′ J′′Λ′′
∣∣∣∣da,d

Λ′2

∣∣∣∣ϕa,d
v′ J′Λ′2

〉∣∣∣∣∣2 + 2Re
(〈
ϕv′′ J′′Λ′′

∣∣∣∣da,d
Λ′1

∣∣∣∣ϕa,d
v′ J′Λ′1

〉〈
ϕv′′ J′′Λ′′

∣∣∣∣da,d
Λ′2

∣∣∣∣ϕa,d
v′ J′Λ′2

〉)] (23)

where the transition energy is hνtr = Ea,d
v′ J′Λ′ − Ev′′ ,J, Λ′′ . The reduced absorption coefficient for the

transition from the lower electronic state Λ′′ to the excited coupled electronic states in the adiabatic or
diabatic representation can be written as:

k(ν, T) = ka,d
Λ′1

(ν, T) + ka,d
Λ′2

(ν, T) + 2ka,d
int(ν, T). (24)

This is a full quantum mechanical coupled channel approach (QCC) in the adiabatic or diabatic
representation. The first contribution represents an optical transition to the electronic state Λ′1, the
second contribution represents the transition to the electronic state Λ′2, and third contribution represents
their interference. The calculations of ka,d

Λ′1(ν, T), ka,d
Λ′2(ν, T), and ka,d

int(ν, T) can be done using Equations (8)

or (12) by replacing
∣∣∣∣〈ϕv′′ J′′Λ′′ |D|ϕv′ J′Λ′

〉∣∣∣∣2 with
∣∣∣∣∣〈ϕv′′ J′′Λ′′

∣∣∣∣da,d
Λ′1

∣∣∣∣ϕa,d
v′ J′Λ′1

〉∣∣∣∣∣2,
∣∣∣∣∣〈ϕv′′ J′′Λ′′

∣∣∣∣da,d
Λ′2

∣∣∣∣ϕa,d
v′ J′Λ′2

〉∣∣∣∣∣2,

and Re
(〈
ϕv′′ J′′Λ′′

∣∣∣∣da,d
Λ′1

∣∣∣∣ϕa,d
v′ J′Λ′1

〉〈
ϕv′′ J′′Λ′′

∣∣∣∣da,d
Λ′2

∣∣∣∣ϕa,d
v′ J′Λ′2

〉)
, respectively.

The same Equation (24) holds for the semi-quantum coupled channel approximation
(SQCC), where in Equation (13), the transition energy is hνtr = Ea,d

v′ JΛ′
− Ev′′ ,J, Λ′′ and∣∣∣〈ϕv′′ΛΛ′′ |RD|ϕv′ΛΛ′

〉∣∣∣2 is replaced by
∣∣∣∣∣〈ϕvJ′′Λ′′

∣∣∣∣Rda,d
Λ′1

∣∣∣∣ϕa,d
vJΛ′1

〉∣∣∣∣∣2,
∣∣∣∣∣〈ϕvJ′′Λ′′

∣∣∣∣Rda,d
Λ′2

∣∣∣∣ϕa,d
vJΛ′2

〉∣∣∣∣∣2, and

Re
(〈
ϕvJ′′Λ′′

∣∣∣∣Rda,d
Λ′1

∣∣∣∣ϕa,d
vJΛ′1

〉〈
ϕvJ′′Λ′′

∣∣∣∣Rda,d
Λ′2

∣∣∣∣ϕa,d
vJΛ′2

〉)
for each contribution, respectively.

If one neglects the coupling element C(R), the coupled Equation (21) is simplified into two
ordinary Schrödinger equations:(

Ẽa,d
v′ J′Λ′1

−Va,d
Λ′1

(R) − }2

2µ
J′(J′+1)−Λ′2

R2 + }2

2µ
d2

dR2

)
ϕ̃a,d

v′ J′Λ′1
(R) = 0(

Ẽa,d
v′ J′Λ′2

−Va,d
Λ′2

(R) − }2

2µ
J′(J′+1)−Λ′2

R2 + }2

2µ
d2

dR2

)
ϕ̃a,d

v′ J′Λ′2
(R) = 0

(25)

Because Ẽa,d
v′ J′Λ′1

, Ẽa,d
v′ J′Λ′2

, the interference contribution similar to the one in Equation (23) is
negligible and the absorption coefficient can be written as the non-coherent sum of transitions to the
excited states Λ′1 and Λ′2:

k(ν, T) = ka,d
Λ′1

(ν, T) + ka,d
Λ′2

(ν, T), (26)

where each contribution in Equation (26) can be calculated using Equations (8) or (12) by substituting

hνtr = Ẽa,d
v′ J′Λ′1,2

− Ev′′ ,J, Λ′′ and replacing
∣∣∣∣〈ϕv′′ J′′Λ′′ |D|ϕv′ J′Λ′

〉∣∣∣∣2 with
∣∣∣∣∣〈ϕv′′ J′′Λ′′

∣∣∣∣da,d
Λ′1,2

∣∣∣∣ϕ̃a,d
v′ J′Λ′1.2

〉∣∣∣∣∣2.

If the adiabatic (diabatic) representation is used in Equation (26), one gets a non-coherent
quantum-mechanical adiabatic (diabatic) approximation QAA (QDA) of QCC.
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Equation (26) also describes an approximation of SQCC, where each contribution is calculated

using Equation (13) by substituting hνtr = Ea,d
v′ JΛ′1,2

− Ev′′ ,J, Λ′′ and replacing
∣∣∣∣〈ϕv′′ JΛ′′ |D|ϕv′ JΛ′

〉∣∣∣∣2
with

∣∣∣∣∣∣
〈
ϕv′′ JΛ′′

∣∣∣∣Rda,d
Λ′1,2

∣∣∣∣ϕa,d
v′ JΛ′1,2

〉∣∣∣∣∣∣2. Depending on the choice of the electronic wavefunctions’ basis, one

obtains a non-coherent semi quantum adiabatic SQAA or diabatic SQDA approximation

2.3. The Landau–Zener Model

To analyze the essential properties of the absorption spectrum for transitions in the neighborhood
of the crossing of diabatic states’ potential curves, simplifications inherent to the Landau–Zener
model have been made. In the neighborhood of the crossing point Rc, the potentials of the excited
diabatic states can be approximated: Vd

Λ′1,2(R) ≈ Vd
Λ′1(Rc) + β1,2∆R (note that Vd

Λ′1
(Rc) = Vd

Λ′2
(Rc)),

and for the potential of the ground electronic state, VΛ′′ (R) ≈ VΛ′′ (Rc) + β0∆R, where ∆R = R −
Rc,β1,2 = d

dR Vd
Λ′1,2

(R)R = Rc
, and β0 = d

dR VΛ′′ (R)R = R0
. The transition difference potentials are

∆d
Λ′1,2

(R) ≈ ∆0 + α1,2∆R where αi = βi − β0 and ∆0 = Vd
Λ′1,2

(Rc) − V0(Rc). Additionally, the

following approximations can be used: for the coupling matrix element, V(R) ≈ V(Rc) = V, and for
the transition dipole moments,dd

Λ′1,2
(R) ≈ dd

Λ′1,2
(Rc) = d1,2.

Using the same approximation, the difference potentials for the transition between the ground
and the excited adiabatic states and the corresponding transition dipole moments are:

∆a
Λ′1,2

(R) ≈ ∆0 +
α1+α2

2 ∆R + sα1−α2
2

√
∆R2 + 4V2

(α1−α2)
2

da
1,2(R) ≈ s 1

√
2

√
1 + s ∆R√

∆R2+ 4V2

(α1−α2)
2

d1 +
1
√

2

√
1− s ∆R√

∆R2+ 4V2

(α1−α2)
2

d2
(27)

The difference potentials curves ∆a
Λ′1

(R) and ∆a
Λ′2

(R) are two branches of a hyperbola. If α1α2 > 0,
the potential curves are monotonic with only one Condon point at each frequency. When α1α2 < 0, the
difference potential curves ∆Λ′1

(x) and ∆Λ′2
(x) have a minimum and a maximum, respectively, and

both adiabatic states have two Condon points at each frequency.
To calculate the spectral profile in the neighborhood of the diabatic potential curves’ crossing

point, a satisfactory approximation is ∆R ≈ vr(Rc)∆t, where vr(Rc) is the radial velocity at the crossing
point. Using Equation (16), a non-coherent sum of the absorption coefficients for transitions to excited
diabatic states is:

kd(ν, T) = B(Λ′′ )νR2
c e−

V0(Rc)
kBT

 d2
1

|α1|
+

d2
2

|α2|

. (28)

This is the non-coherent semi-classical diabatic approximation (SCDA) of the spectra, which is
valid in both cases α1α2 > 0 and α1α2 < 0.

In the case α1α2 > 0, a non-coherent sum of the semi-classical absorption coefficient for the
transition to the excited adiabatic states’ semi-classical adiabatic approximation (SCAA) has the form
ka(ν, T) = kd(ν, T).

SCAA in the case α1α2 < 0 can be obtained using the uniform Airy approximation
(Equation (16)) [41]:

ka(ν, T) = B(Λ′′ )νR2
c e−

V0(Rc)
kBT

 d2
1

|α1|
+

d2
2

|α2|

La
d(Ω) + 2d1d2La

int(sΩ)

. (29)

The absorption coefficient is a function of the dimensionless reduced frequency (energy)
Ω = α1−α2

V
√
|α1a2 |

(hν− ∆0) suggested in Девдaриaниand Cебякин [2]. The crossing of diabatic

states difference potentials is at Ω = 0 and the maximum and minimum of the adiabatic state
difference potentials are at Ω = ±2. The profile La

d(Ω) = Id(Ω) + Id(−Ω) is a symmetric
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function of Ω, where Id(Ω) = 3
√
π

(√
(Ω+2)z(Ω)

Ω−2 L(z(Ω)) +
√

Ω−2
(Ω+2)z(Ω)

H(z(Ω))

)
, parameter

z = z(T, Ω) =

 3
4ξ

Ω∫
2

√

x2 − 4dx

2/3

, and ξ = ξ(T) = V2

}(α1−α2)

√
µ

2kBT is the Massey parameter of

nonadiabatic mixing. The interference profile La
int(Ω) = Ii(Ω)− Ii(−Ω) is an anti-symmetric function of

Ω, with La
int(0) = 0 and Ii(Ω) = 3

√
π

(√
(Ω+2)z(Ω)

Ω−2 L(z(Ω)) −
√

Ω−2
(Ω+2)z(Ω)

H(z(Ω))

)
as a consequence.

The following are asymptotically valid: La
d(Ω→ ±∞) = 1 and La

int(Ω→ ±∞) = 0. In the
neighborhood of the potential minimum Ω = 2, parameter z has a simple form z ≈ z̃(Ω) = ξ2/3(Ω − 2)
such that in the classically forbidden region Ω ≤ 2, functions Id(Ω) and Ii(Ω) can be approximated

using Id(Ω) ≈ 3
√
π
(
2ξ1/3L(̃z(Ω)) + 1

2ξ1/3 H(̃z(Ω))
)

and Iint(Ω) ≈ 3
√
π
(
2ξ1/3L(̃z(Ω)) − 1

2ξ1/3 H(̃z(Ω))
)

by analytical continuation.
The semi-classical time-dependent molecular wavefunction in the case of two non-radiative

coupled diabatic electronic states is:

ΨEρΛ′(r, t) = ΦΛ′1(r, R(t))A1(t) exp

− i
}

t∫
−∞

dt′Vd
Λ′1

(R(t′))

+ ΦΛ′2(r, R(t))A2(t) exp

− i
}

t∫
−∞

dt′Vd
Λ′2

(R(t′))

 (30)

Devdariani and coworkers [2–4] and O’Callaghan et al. [5] have studied the influence of
non-adiabatic electronic states mixing on the shape of the spectrum within semi-classical atomic
collision theory. The atomic collision can be divided into two half-collisions: the first refers to
the motion from R ≈ ∞ to the turning point R0, and the second from the turning point to R ≈ ∞.
Within the framework of the Landau–Zener model, each half-collision takes place over a time interval
t ∈ (−∞,∞), where t = 0 is at the crossing point Rc. The coefficients A1,2(t) are the solutions of the
coupled equations:

i} d
dt A1(t) = A2(t)V exp

(
i

2} (α1 − α2)vct2
)

i} d
dt A2(t) = A1(t)V exp

(
i

2} (α2 − α1)vct2
) (31)

There are two scenarios involving a collision process: the initial conditions of the first half-collision
are

∣∣∣A1(−∞)
∣∣∣ = 1,

∣∣∣A2(−∞)
∣∣∣ = 0 or

∣∣∣A1(−∞)
∣∣∣ = 0,

∣∣∣A2(−∞)
∣∣∣ = 1.

The cross-section for the transition between the lower molecular state Λ′′ dressed with photon hν
to the higher state Λ′ for each half-collision is:

σ
EρΛ′

EρΛ′′ (ν) ∝

∣∣∣∣∣∣ ∞∫
−∞

dt
〈
ΨEρΛ′′ (r, t)

∣∣∣∣∣_D(r, R(t))
∣∣∣∣∣ΨEρΛ′(r, t)

〉∣∣∣∣∣∣2
= d2

1

∣∣∣∣∣∣ ∞∫
−∞

dtA1(t) exp
(
i
(

vc
2}α1t2

− 2πνt
))∣∣∣∣∣∣2 + d2

2

∣∣∣∣∣∣ ∞∫
−∞

dtA2(t) exp
(
i
(

vc
2}α2t2

− 2πνt
))∣∣∣∣∣∣2

+2d1d2Re
(
∞∫
−∞

dtA1(t) exp
(
i
(

vc
2}α1t2

− 2πνt
)) ∞∫
−∞

dtA∗2(t) exp
(
−i

(
vc
2}α2t2

− 2πνt
))) (32)

Both groups of authors have calculated the spectral contribution for each half-collision and
both scenarios of the initial conditions. After non-coherent summation of all contributions and
averaging over the statistical ensemble at thermodynamic equilibrium, they obtained the relation for
the absorption coefficient:

kc(ν, T) = B(Λ′′ , ν)R2
c e−

V0(Rc)
kBT

 d2
1

|α1|
+

d2
2

|α2|

Lc
d(Ω) + 2

d1d2
√
|α1α2|

Lc
int(Ω)

. (33)

In O’Callaghan et al. [5], all calculations of spectral profiles Lc
d(Ω) and Lc

int(Ω) were made
numerically, but in Devdariani and coworkers [2–4], the authors found analytical solutions based on
the parabolic cylinder function Dy(x).
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In the case α1α2 > 0, both groups of authors obtained the same result for spectral profiles
Lc

d(Ω) = 1 and Lc
int(Ω) = 0. As a consequence, the reduced absorption coefficient obtained using

the semi-classical coupled channel approach SCCC is equal to that obtained using SCAA and SCDA,
namely kc(ν, T) = ka(ν, T) = kd(ν, T). This conclusion can be generalized to the spectrum in the
neighborhood of the diabatic curves’ crossing point Rc if this point is isolated from other crossing
points and the condition d

dR ∆d
Λ′1

(R) d
dR ∆d

Λ′2
(R)R = Rc

> 0 is satisfied.
For α1α2 < 0, both groups of authors obtained a similar behavior of the profile functions

Lc
d(Ω) = Id(Ω) + Id(−Ω) − P(ξ) and Lc

int(Ω) = Iint(Ω) − Iint(−Ω). The functions Lc
d(Ω) and Lc

int(Ω)

have the same symmetry property concerning the sign of the frequency and the asymptotic behavior
Lc

d(±∞) = 1 and Lc
int(±∞) = Lc

int(0) = 0, as well as the corresponding functions in the adiabatic
representation. In Devdariani and coworkers [2–4], the functions Id(Ω) and Iint(Ω) were calculated
analytically as follows:

Id(Ω) = 1
π1/2

∞∫
0

dx
x1/2 ex− 3π

2
ξ

x1/2

∣∣∣∣∣D−i ξ

x1/2

(
ei 3π

4 ξ1/2

x1/4 Ω
)∣∣∣∣∣2

Iint(Ω) = 2ξ1/2

π1/2

∞∫
0

dx
x1/2 ex− 3π

2
ξ

x1/2 Re
[
e−i 3π

4 D
−i ξ

x1/2

(
ei 3π

4 ξ1/2

x1/4 Ω
)
D
−i ξ

x1/2 −1

(
ei 3π

4 ξ1/2

x1/4 Ω
)]

P(ξ) = 1
π1/2

∞∫
0

dx
x1/2 ex− 2πξ

x1/2

(34)

The function P(ξ) refers to a temperature-averaged probability of a molecule moving in a potential
of the initial diabatic electron state. Similarly, the probability of the molecule moving in the initial
adiabatic state potential is 1− P(ξ).

Figure 1a,c shows the spectral profiles Ld(ξ, Ω) and Lint(ξ, Ω), respectively, as functions of the
frequency Ω and parameter ξ. Due to the symmetry properties, the spectral profiles are presented
for positive frequencies Ω only. The maximum value of the profiles is near Ω = 2, corresponding
to the position of the minimum of the adiabatic state difference potential ∆a

Λ′1 (satellite rainbow).
It can be seen that at low values of parameter ξ, both profiles tend toward the values of SCDA
Ld(ξ→ 0, Ω) = 1 and Lint(ξ→ 0, Ω) = 0 .

The differences of the spectral profiles in SCAA and SCCC La
d(ξ, Ω) − Ld(ξ, Ω) and La

int(ξ, Ω) −

Lint(ξ, Ω) are shown in Figure 1b,d, respectively. It is seen that the differences between these two
approaches are small or negligible for ξ > 0.2. The differences are slightly larger in the case of profiles
Lint(ξ, Ω) but this is less important since it is very common that a scalar product d1d2 is small or equal
to zero and the same holds for the second contribution in Equation (33). From Figure 1 it can be
concluded that SCCC can be approximated for ξ� 0.1 using SCDA and for ξ > 0.2 using SCAA.

We can generalize the conclusion to any case of diabatic electronic states’ potential crossing, as
long as this crossing is isolated from other crossings and the condition d

dR ∆d
Λ′1

(R) d
dR ∆d

Λ′2
(R)R = Rc

< 0
is satisfied, and the Massey parameter is:

ξ =
V(Rc)

2

}
∣∣∣ d
dR ∆d(R)

∣∣∣
R = Rc

√
µ

2kBT
. (35)

The criteria of applicability for SCAA and SCDA obtained in semi-classical theory can be applied
to both quantum mechanical and semi-quantum approaches.
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Figure 1. Absorption spectra contributions Ld(ξ, Ω) and Lint(ξ, Ω) as a function of the Massey parameter
ξ and reduced frequency Ω are shown in (a,c). The differences between these contributions and their
adiabatic approximations La

d(ξ, Ω) − Ld(ξ, Ω) and La
int(ξ, Ω) − Lint(ξ, Ω) are shown in (b,d).

3. Results

3.1. Experiment

A T-type all-sapphire cell (ASC) of 4 cm in length and 1 cm in inner diameter was used for
the transmission measurements in the K-Cs mixture vapor. The mixture in the sealed cell was 80%
potassium and 20% cesium. The number density of atoms and molecules in the cell depends on the
temperature at the tip of the side-arm finger (Tf) and the cell body (Tc). Tc was higher than Tf (at least
30 K) to prevent the condensation of the vapors on the inner side of the sapphire cell. The temperatures
were controlled using two Chromel-Alumel Thermocouples.

In Figure 2a, we present the transmission intensities I(λ, T) for several cells’ Tc and finger Tf

temperatures in the infrared spectral region between 900 nm and 1250 nm.
Assuming a low light intensity and a uniform medium inside the absorption cell of length

L, using Beer-Lambert’s Law I(λ, T) = I0(λ)e−L·K(λ,T), one can determine the linear absorption

coefficient K(λ, T) = 1
L ln

(
I0(λ)
I(λ,T)

)
, where Io(λ) is the intensity at the entrance of the cell. Following the

measurements shown in Figure 2a, we approximated Io(λ) ≈ I(λ, Tc, f = (542, 533)K). The absorption
coefficients for several temperatures are shown in Figure 2b.

Assuming the local thermodynamic equilibrium at an effective temperature T, the linear absorption
coefficient of the mixture of potassium and cesium vapor for a low-pressure binary approximation was:

K(λ, T) = NK(T)
2kK2(λ, T) + NCs(T)

2kCs2(λ, T) + NK(T)NCs(T)kKCs(λ, T), (36)
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where kK2(λ, T), kCs2(λ, T), and kKCs(λ, T) are the reduced absorption coefficients of K2, Cs2, and
KCs molecules, respectively, and NK(T) and NCs(T) are the number densities of K and Cs atoms,
respectively. To analyze the spectra shown in Figure 2a,b, it was necessary to determine the reduced
absorption coefficients of the K2, Cs2, and KCs molecules in the near-infrared part of the spectrum.
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Figure 2. Relative intensity (in arbitrary units) of the light transmitted through a sapphire absorption
cell at several temperatures Tc, f is shown in (a). The alkali mixture absorption coefficients for the
corresponding temperatures are shown in (b).

3.2. Near-Infrared Spectra of K2, KCs, and Cs2 Molecules

The dominant contribution to the near-infrared spectrum of alkali dimers is the A − X band.
This molecular band is the result of optical transitions between all rovibrational states of the excited

A1Σ+
(u)

(
0+
(u)

)
(A state) and the ground X1Σ+

(g)

(
0+
(g)

)
electronic states (X state). The potential curve of

the A1Σ+
(u)

(
0+
(u)

)
state crosses with the potential curve of the triplet electronic states b3Π(u)

(
Ω(+−)

(u)

)
.

One component of the triplet state b3Π(u)

(
0+
(u)

)
(b state) is coupled with the A state via the matrix

element of the SO interaction 〈A|HSO|b〉. The electronic transition dipole moment for the A − X

transition is d(R) = 〈A|
^
D(r, R)|X〉 and the b −X transition is dipole-forbidden:〈b|

^
D(r, R)|X〉 = 0.

The consequence of the A − b coupling is the perturbation of the A − X spectrum. In the case of
heteronuclear KCs dimer, there is an allowed transition b3Π − a3Σ+ but its contribution in the spectral
region of interest is negligible and will not be analyzed in this study.

Most quantum-chemical ab-initio calculations are usually non-relativistic calculations in
which the electronic Hamiltonian H̃el(r, R) = Hel(r, R) − HSO(r, R) does not include SO
interactions. As a result of these calculations, the electronic wavefunctions in Hund‘s
case (a) are the representation and the corresponding electronic potentials, which are

VX(R) =
〈
X1Σ+

(g)

∣∣∣∣H̃el

∣∣∣∣X1Σ+
(g)

〉
, and VA(R) =

〈
A1Σ+

(u)

∣∣∣∣H̃el

∣∣∣∣A1Σ+
(u)

〉
and Ṽb(R) =

〈
b3Π(u)

∣∣∣H̃el
∣∣∣b3Π(u)

〉
,

respectively. The SO interaction removes the triplet state b3Π(u)

(
Ω(+−)

(u)

)
component’s degeneration〈

b3Π(u)

(
Ω(+−)

(u)

)∣∣∣∣∣Hel

∣∣∣∣∣b3Π(u)

(
Ω(+−)

(u)

)〉
= Ṽb(R)+

(Ω−1)
3 δ3Π(R) [42] such that the diabatic state b potential

is Vb(R) = Ṽb(R)− 1
3δ3Π(R). The A− b coupling matrix element is 〈A|HSO|b〉 =

√
2

3 δ f s(R). Functions
δ3Π(R) and δ f s(R) have the same asymptotic behavior, namely δ3Π(∞) = δ f s(∞) = δ, where
δ is the first doublet P 3

2 , 1
2

fine structure splitting (potassium 57.7103 cm−1, cesium 554.0388 cm−1).



Atoms 2020, 8, 28 14 of 21

In References [20–33], the functions δ3Π(R) and δ f s(R) are fit to the Morse potential form and
differ slightly at small interatomic distances. For the sake of simplicity, in this study, we used the
approximation δ3Π(R) = δ f s(R).

Using the diabatic states’ wavefunctions and potentials, one can construct the
corresponding adiabatic (α and β) state potentials and wavefunctions by diagonalizing matrix VA(R)

√
2

3 δ f s(R)
√

2
3 δ f s(R) Vb(R)

:

Vα,β(R) = 1
2

[
VA(R) + Vb(R) ±

√
∆Ab(R)

2 + 8
9δ f s(R)

2
]

Φα,β(r, R) = 1
√

2

√
1± ∆Ab(R)√

∆Ab(R)
2+ 8

9 δ f s(R)
2
ΦA(r, R) ± 1

√
2

√
1∓ ∆Ab(R)√

∆Ab(R)
2+ 8

9 δ f s(R)
2
Φb(r, R)

(37)

where ∆Ab(R) = VA(R) − Vb(R). Because the b − X transition is dipole-forbidden, the adiabatic
transition dipole moment α−X and β−X transitions have the simple form:

dα,β(R) =
1
√

2

√√√√
1±

∆Ab(R)√
∆Ab(R)

2 + 8
9δ f s(R)

2
d(R). (38)

To obtain the electronic potential curves and transition dipole moments required in our calculations,
we used existing theoretical and experimental data from the literature. In the case of the K2 molecule, to
construct potential curves, we combined ab-initio results [43], experimental data [19–21], and long-range
region analytical results [44]. The spin–orbit function δ f s(R) is taken from Manaa et al. [21] and the
transition dipole moment was from Yan and Meyer [43]. For the KCs molecule, all data were taken
from the Supplementary Materials of Borsalino et al. [33]. In the case of the Cs2 molecule, for the
diabatic state potentials, we used ab-initio results [45,46] (for states with 6S + 6P asymptote energies
was shifted by +14 cm−1) and experimental data [24,25]. In the long-range region, the potential curves
were smoothly matched with analytical curves [44]. The function δ f s(R) was taken from Bai et al. [25]
and the transition dipole moment was from Allouche and Aubert-Frécon [47].

All relevant potential curves for K2, KCs, and Cs2 molecules are shown in Figure 3. It can be
seen that the SO splitting function δ f s(R) in the K2 molecule was approximately ten times smaller
than in the case of the KCs and Cs2 molecules. The diabatic states’ potential curves VA(R) and Vb(R)
had two well-separated crossing points for each molecule: K2 (9.0 Bohr, 46.3 Bohr), KCs (9.6 Bohr,
20.9 Bohr), and Cs2 (10.9 Bohr, 24.1 Bohr). In the same region, the potential curves of the adiabatic
states avoided crossing.

At the long-range crossing point, d
dR ∆A(R) d

dR ∆b(R)R = Rc
> 0, where ∆A(R) = VA(R) −VX(R)

and ∆b(R) = Vb(R)−VX(R) are the difference potentials of the A−X and b−X transitions, respectively.
According to the discussion in Section 2.3, in the neighborhood of the diabatic state potentials’ crossing
point, the adiabatic state difference potentials were monotonic functions and the absorption spectra
could be found using a non-coherent adiabatic approximation.

Figure 4a–c shows the short-range region difference potentials of the A −X, b −X, α −X, and
β−X transitions for the K2, KCs, and Cs2 molecules, respectively. At the short-range crossing point,
d

dR ∆A(R) d
dR ∆b(R)R = Rc

< 0 and the difference potentials of the α−X and β−X transitions had extrema
in the neighborhood of the crossing point. As pointed out in Section 2.1 and Equation (16), the extremes
of the difference potentials indicate the positions of the satellite rainbow in the spectrum. The difference
potential of α −X had one minimum each at 985 nm, 1072 nm, and 1126 nm for the K2, KCs, and
Cs2 molecules, respectively. The β −X transition difference potential had maxima and minima at
(996 nm, 1055 nm), (1107 nm, 1192 nm), and (1197 nm, 1205 nm) for K2, KCs, and Cs2, respectively.
The minima of the X − β transition difference potential approximately coincided with the minima of
A−X transition difference potential. Figure 4d–f shows the relevant transitions dipole moments. In the
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neighborhood of the diabatic potentials’ crossing point, the dipole moments of the α−X and β−X
transitions changed significantly with the interatomic distance, especially in the case of the K2 dimer.
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Figure 4. Difference potential curves of the A-X, b-X, α-X, and β-X transitions for K2, KCs, and Cs2

molecules are shown in (a–c), respectively. The corresponding transition dipole moments are shown
in (d–f). The labels on the left side of the upper panel denote energy, and the right-side denotes the
wavelength of the transition.

At the short-range crossing point Rc, the Massey parameter ξ at a typical experimental temperature
700 K is given in Table 1 for all dimers. The A− b coupling for the K2 dimer was much smaller than for
Cs2 even for the KCs dimer. In Table 1, the probability of atomic motion in diabatic potential P(T)
and the probability of atomic motion in adiabatic potential 1− P(T) is given. It is evident that at the
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temperature of 700 K, in the K2 molecule, the atoms mainly moved in a diabatic potential, and for the
KCs and especially Cs2 molecules, movement was in an adiabatic potential.

Table 1. The first row gives the crossing points Rc of the potential curves of electronic states A and b
for K2, KCs, and Cs2 molecules. In the second row, the Massey parameters at the crossing points for the
temperature T = 700 K are given. In the third and fourth rows, the averaged probabilities P of atoms
moving in diabatic potentials and the probabilities for atoms moving in adiabatic electronic potentials
are given, respectively.

K2 KCs Cs2

Rc 9.0 9.57 10.87
ξ(700 K) 0.0051 0.21 0.75
P(700 K) 0.87 0.12 0.0056

1−
P(70 K)

0.13 0.88 0.9944

The behavior of the rotational Bν constants also indicated the influence of the mixing of the two
electronic states. The energy-dependent Bν constants for A,b,α, and β, as well as the coupled A and b
states for all dimers, are shown in Figure 5a–c. For the K2 molecule, the coupled states Bν constants
were grouped around the diabatic states constants, but in the case of KCs and especially Cs2 molecules,
they were grouped around the adiabatic states Bν constants. These facts are consistent with the Massey
parameter shown in Table 1.
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Figure 5. Constants of A, b, α, and β, as well as the coupled A and b electronic states, in the case of K2,
KCs, and Cs2 molecules are shown in (a–c), respectively.

Using the full quantum (semi-quantum) approach, we calculated the reduced absorption
coefficients for transitions between the X state and the coupled A and b states QCC (SQCC), non-coherent
adiabatic approximation QAA (SQAA), and non-coherent diabatic approximation QDA (SQDA) of this
transition. The rovibrational energies and radial wavefunctions were calculated using the FGH method
via diagonalization of Hamiltonian matrices (Equations (10) and (22)). The number of grid points was
N = 800 in the quantum mechanical calculation and N = 2000 in the semi-quantum calculation.



Atoms 2020, 8, 28 17 of 21

Using Equations (12) and (13), the rovibrational transition contributions were collected in bins of
0.4 nm and the spectra were smoothed using a Gaussian with a half-width of 0.9 nm for the quantum
approach and 3.0 nm for the semi-quantum approach. Summation over the rotational quantum number
J in the quantum approach was replaced by summation over the groups of n = 3 neighbor J values.

The numerical evaluation in this study was done using the Wolfram Mathematica 12.1 computing
system. To calculate all the rovibrational contributions needed for the SQAA and SQDA spectra, 27 s
of computer time was required, and for SQCC, 48 s was required. Using these data to calculate the
absorption coefficient (Equation (13)) at a given temperature, 1 s of computer time was required for
SQAA and SQCC, and 0.5 s was required for the SQDA spectra. For the full quantum mechanical
approach, 340 s of computer time was required to calculate all the rovibrational contributions of the
QAA and QDA spectra, and 830 s was required to calculate the QCC spectra. For the absorption
coefficient evaluation at a given temperature, 70 s was required for the QCC and QAA spectra, and 38
s was required for the QDA spectra.

The reduced absorption coefficients at 700 K obtained using different approaches are shown in
Figure 6. Each column in Figure 6 shows the different theoretical approaches for each of the dimers
(K2, KCs, Cs2). The first row of Figure 6 shows the QCC and SQCC spectra, the second row shows
the QAA and SQAA spectra, while the third row shows the QDA and SQDA spectra. It is noticeable
that the non-coherent diabatic approximation (QDA, SQDA) gave an almost identical result as the
coupled channel calculation (QCC, SQCC) in the case of K2. In contrast, the non-coherent adiabatic
approximation (QAA, SQAA) gave very similar results to the coupled channel calculation (QCC,
SQCC) in the case of KCs and an almost identical result in the case of the Cs2 molecule. Furthermore,
excellent agreement of the semi quantum approximation (SQCC, SQAA, SQDA) with the full quantum
calculation (QCC, QAA, QDA) was evident, especially in the case of the Cs2 molecule.
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Figure 6. Reduced absorption coefficients of K2, KCs, and Cs2 molecules at temperature T = 700K
are shown in the first (a,d,g), second (b,e,h), and third columns (c,f,i), respectively. The first row (a–c)
shows the QCC and SQCC spectra, the second row (d–f) shows the QAA and SQAA spectra, and the
last row (g–i) shows the QDA and SQDA spectra.

3.3. The Comparison of the Experimental and Theoretical Absorption Coefficient

The absorption coefficient is temperature dependent, especially in the case of bound–bound
transitions. Figure 7a–c shows the theoretical absorption coefficients of A −X transition calculated
using the QCC approach at several experimental temperatures for K2, KCs, and Cs2 molecules.
Using Equation (36), we aimed to obtain the best fit of the experimental spectrum and theoretical
simulation by iteratively changing the following parameters: temperature T, potassium atom number
density NK, and cesium atoms number density NCs. The iterative procedure started with the
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experimental temperature but the best agreement was obtained at the end of the iteration with a
temperature that was about 20 K higher than the initial one. Theoretical simulations were done for two
temperatures, as shown in Figure 7d,e. The sapphire cell was filled with potassium and cesium in an
approximate ratio of NK/NCs = 4.0. Figure 7d,e show the results obtained for NK/NCs = 4.0 and
NK/NCs = 3.7, respectively.
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Figure 7. The first column shows the reduced absorption coefficients of K2, KCs, and Cs2 molecules
(a–c, respectively) in the temperature range T = 550 K–750 K. The comparison of the experimental
absorption coefficient (black curve) with the theoretical simulation (red curve) is in the second column
(d,e). The theoretical simulations of the contributions of KCs, Cs2, and K2 molecules are shown in
green, blue, and magenta, respectively.

In Figure 7d,e, the spectral contributions of K2, KCs, and Cs2 molecules calculated using the QCC
approach are shown in magenta, green, and blue, respectively. By comparing the experimental and
theoretical spectra, all important features in the experimental spectrum were identified. The peak at
1048.5 nm was related to the minimum of the K2 α−X transition difference potential at 1055 nm. The
shoulder at 1068 nm was related to the minimum of the KCs α−X transition difference potential at
1072 nm. The broad oscillating structure around 1106 nm was related to the maximum of the KCs β−X
transition difference potential at 1107 nm, and the peak at 1189 nm was related to the minimum at 1192
nm. The peak at 1208 nm was related to the minimum of the Cs2 β−X transition difference potential at
1205 nm.

4. Discussion and Conclusions

We studied the influence of the spin–orbit coupling of two excited diabatic electronic states of the
same symmetry whose potential curves intersected on the high-temperature spectrum of the optical
transition. In the neighborhood of the diabatic state potential curves’ crossing point, the potential
curves of the corresponding adiabatic states of the same symmetry avoided crossing and these states
were mixed via the matrix element of radial non-adiabatic coupling. To obtain the correct spectrum of
transitions from the isolated ground electronic state to the excited coupled diabatic or adiabatic states,
the energies and wave functions of the excited states needed to be determined using a coupled channel
calculus (QCC).

We distinguished two cases of the spectrum. In the neighborhood of an isolated diabatic state
potential curves’ crossing point, the transition difference potential curves of the excited adiabatic states
were monotonic in the first case and had a minimum and a maximum in the second case. In the first
case, based on the semi-classical analysis in Section 2.3, we concluded that a non-coherent adiabatic
approach was a satisfactory approximation of the coupled channel calculation. Based on the discussion
in Section 2.3, for the second case, we concluded that if the Massey parameter (Equation (35)) satisfied
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ξ << 0.1, a non-coherent diabatic approach was a correct description of the spectrum, and if ξ > 0.2,
a non-coherent adiabatic approach was justified. The potentials of the adiabatic electronic states are
often available in the literature but there is no data on the corresponding diabatic state potentials and
the spin–orbit mixing of these states. Assuming that the Landau–Zener approximation is valid in
the neighborhood where the adiabatic state potentials avoided crossing, the Massey parameter can
be written:

ξ =
∆a(Rc)

3/2

4}
∣∣∣∣ d2

dR2
∆a(R)

∣∣∣∣1/2

R = Rc

√
µ

2kBT
(39)

where ∆a(R) is the adiabatic state potentials difference, and the crossing point is defined via the
condition d

dR ∆a(R)R = Rc
= 0. If only the adiabatic state potential curves are available, by using

Equation (39), one can assess whether the non-coherent adiabatic approximation gives a satisfactory
theoretical simulation of the spectrum.

The semi-quantum approach is extensively studied in References [1,15,18], and in this paper,
we analyzed its applicability in coupled channel calculations. As discussed in References [1,15],
the semi-quantum approximation describes the vibrational structure of the molecular band well but
neglects the rotational structure. In the high-temperature, low-resolution spectra of molecules with
a larger reduced mass, such as K2, KCs, and Cs2, the rotational structure was not resolved and the
semi-quantum coupled channel approach had a very good agreement with the quantum coupled
channel calculation.

Due to the low computer time consumption, a semi-quantum approach was found to be an
appropriate tool for gas diagnostics. In our experimental study of a potassium and cesium vapor
mixture absorption spectrum, we used the semi-quantum method to determine the atom’s number
density and temperature. The alkali mixture investigated in this article was suitable for analyzing
the influence of the diabatic state SO coupling on the A–X transition spectrum. In the case of the K2

molecule, due to the small SO interaction, the Massey parameter was small with ξ = 0.0051, and the
non-coherent diabatic approximation described the spectrum well. In contrast, in the case of the Cs2

molecule, the SO interaction and the Massey parameter were large with ξ = 0.75, and the spectrum
could be calculated well using a non-coherent adiabatic approximation.

Low-resolution spectroscopy is applicable in the plasma diagnostics but can also be useful in
the study of some fundamental phenomena and processes in the alkali gas. The experimental and
theoretical methods presented here should also be applicable in the analysis of the SO interaction
influence on the A-X transition spectra in the case of other heteronuclear alkali molecules, such as
NaCs and RbCs.
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