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Abstract: The interaction between Be4+ and hydrogen atom is studied using the three-body classical
trajectory Monte Carlo method (CTMC) and the quasiclassical trajectory Monte Carlo method of
Kirschbaum and Wilets (QTMC-KW). We present total cross sections for target ionization, target
excitation, and charge exchange to the projectile bound states. Calculations are carried out in the
projectile energy range between 10 and 1000 keV/au, relevant to the interest of fusion research when
the target hydrogen atom is in the ground state. Our results are compared with previous theoretical
results. We found that the classical treatment describes reasonably well the cross sections for various
final channels. Moreover, we show that the calculations by the QTMC-KW model significantly
improve the obtained cross sections.
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1. Introduction

The currently used energy production methods will not be able to satisfy the energy needs of
humanity in the long run. One of the best solutions in the future would be the implementation of fusion
power plants. Beryllium is typically considered as the armor material for plasma facing components
(PFCs) of fusion devices and it is the first wall of the international thermonuclear experimental reactor
(ITER) [1]. Chemical and physical erosion of the first wall releases beryllium atoms and several
molecular species, which eventually lead to the presence of fully-stripped beryllium ions in the plasma
core. Beryllium is attractive as a plasma facing reactor material because of its low atomic number (i.e.,
low potential for radiative plasma power losses), excellent gettering properties concerning oxygen
(unavoidably present in any fusion plasma), and adequate thermo-mechanical and erosion properties
when exposed to plasma energy and particle fluxes. The inelastic collision processes between Beq+

ions and H are particularly important when energetic neutral hydrogen is injected into the plasma
for heating and diagnostic purposes [2]. Therefore, the accurate description and knowledge of these
interactions are extremely important for fusion research.

The calculation of cross section in collision Be4+ and hydrogen atom for ionization, charge
exchange and excitation channels have been studied studied using different theoretical approaches
such as:

i. Atomic-orbital close-coupling (AOCC) [3,4]
ii. Adiabatic superpromotion model [5]
iii. The molecular orbital expansion of the solution of the time-dependent Schrodinger equation [6]
iv. Symmetric Eikonal approximation [7]
v. Classical methods [8]

In the last two decades, there has been a great revival of the classical trajectory Monte Carlo
(CTMC) calculations applied in atomic collisions involving three or more particles. This approximation
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is useful in treating atomic collisions where the quantum mechanical ones become very complicated or
unfeasible [8]. One of the advantages of the CTMC method is that many-body interactions are exactly
taken into account during the collisions on a classical level. The CTMC method is a non-perturbative
method, where classical equations of motions are solved numerically [9–11]. The quasiclassical
trajectory Monte Carlo method of Kirschbaum and Wilets model represents one step further towards a
better description of the classical atomic collisions. In particular, it is desirable to have a method that
consistently treats electron transfer and ionization as well as multiplicities and combinations of these
processes. For atoms, a necessary condition for stability is that the electrons are not allowed to collapse
to the symmetry point, i.e., to the nucleus. The effective potential enforcing this condition is motivated
by the Heisenberg uncertainty principle rp ≥ ξH}, where r and p are the distance and momentum
of an electron with respect to a nucleus and ξH is a constant. This condition is equivalent to the de
Broglie description of the hydrogen atom. In addition, the Pauli constraint classically means that any
two electrons having the same spins cannot occupy the same volume of phase space. We effect this
by requiring that ri jpi j ≥ ξP, where

→
r i j, is the relative position and

→
p i j, is the relative momentum of

the ith and jth identical electrons, respectively, and ξP is another dimensionless constant which must
be determined.

Up to now, the QTMC-KW [12] has been applied to a variety of problems [13]. The method and its
extensions [14–18] use momentum-dependent effective potentials in a Hamiltonian model to stabilize
realistic atomic and molecular structures, which would otherwise autoionize classically. In this work,
the interaction between Be4+ and ground state hydrogen atom is studied using the three-body CTMC
and QTMC-KW in the projectile energy range between 10 and 1000 keV/au.

2. Theory

2.1. CTMC Method

In the present work, the CTMC simulations were made in the three-body approximation. The three
particles (p; projectile, e; electron, T; target) are characterized by their masses and charges. For the
description of the interaction among the particles, Coulomb potential is used. Figure 1 shows the
relative position vectors of the three-body collision system.

Figure 1. The relative position vectors of the particles involved in 3-body collisions.
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The Hamiltonian equation for the three particles can be written as:
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and

Vcoul =
ZpZe∣∣∣∣→r p −

→
r e

∣∣∣∣ + ZeZT∣∣∣∣→r e −
→
r T

∣∣∣∣ +
ZpZT∣∣∣∣→r p −

→
r T

∣∣∣∣ (3)

where T and Vcoul are total kinetic energy and the potential energy term.
→
r ,
→
p , Z, and m are the

position vector, momentum vector, the charge and the mass of the corresponding particles, respectively.
The equations of motion taking into account the Hamiltonian mechanics is given as follows:

.
→

Pe = −
δH

δ
→
r e

= −
ZpZe∣∣∣∣→r p −
→
r e

∣∣∣∣3
(
→
r p −
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r e

)
+

ZeZT∣∣∣∣→r e −
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r T

∣∣∣∣3
(
→
r e −

→
r T

)
(4)

.
→

PT = −
δH

δ
→
r T

= −
ZpZT∣∣∣∣→r p −
→
r T

∣∣∣∣3
(
→
r p −

→
r T

)
−

ZeZT∣∣∣∣→r e −
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r T
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(
→
r e −

→
r T

)
(5)

.
→

Pp = −
δHFMD

δ
→
r p

=
ZpZe∣∣∣∣→r p −
→
r e

∣∣∣∣3
(
→
r p −

→
r e

)
+

ZpZT∣∣∣∣→r p −
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r T

∣∣∣∣3
(
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r p −
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r T

)
(6)

Introducing the relative position vectors
→

A =
→
r e −

→
r T,

→

B =
→
r T −

→
r p and

→

C =
→
r p −
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r e, in such a

way that
→

A +
→

B +
→

C =
→

0 as well as the definition of N = 1
m , the Equations (4)–(6) are reduced to the

following:

..
→

A =


NeZpZe∣∣∣∣∣→A +

→

B
∣∣∣∣∣3 +

(Ne + NT)ZeZT∣∣∣∣∣→A∣∣∣∣∣3

→

A +


NeZpZe∣∣∣∣∣→A +

→

B
∣∣∣∣∣3 −

NTZpZT∣∣∣∣∣→B ∣∣∣∣∣3

→

B (7)

..
→

B =


NpZpZe∣∣∣∣∣→A +

→

B
∣∣∣∣∣3 −

NTZeZT∣∣∣∣∣→A∣∣∣∣∣3

→

A +


(
NT + Np

)
ZpZT∣∣∣∣∣→B ∣∣∣∣∣3 +

NpZpZe∣∣∣∣∣→A +
→

B
∣∣∣∣∣3

→

B (8)

The initial conditions of the collisions system, i.e., the coordinates and the velocities of the internal
motion of (T,e) atomic system and the relative projectile and atomic center-of-mass motion were
selected randomly. Equations (7) and (8) were integrated considering the time as an independent
variable by the standard Runge–Kutta method for a given set of initial conditions as described by
Tőkési and Kövér [19].

The total cross-sections were computed with the following formula:

σ =
2πbmax

TN

∑
j

b(i)j (9)

The statistical uncertainty of the cross sections is given by:

∆σ = σ

TN − T(i)
N

TNT(i)
N


1
2

(10)

where TN is the total number of trajectories calculated for impact parameters less than bmax, T(i)
N is

the number of trajectories that satisfy the criteria for the corresponding final channels (ionization,
excitation, charge exchange) and bj

(i) is the actual impact parameter for the trajectory corresponding to
ionization, excitation or charge exchange processes.
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In the CTMC calculations, the energy level E of an electron after the excitation is determined
simply by calculating its binding energy U = −E. A classical principal quantum number is assigned
according to:

nc = ZTZe

(µTe

2U

)1/2
(11)

where µTe is the reduced mass of the target nucleus and the target electron. The classical values of nc
are “quantized” to a specific level n [20] if they satisfy the relation:

[(n− 1)(n− 1/2)n]1/3
≤ nc ≤ [(n + 1)(n + 1/2)n]1/3 (12)

The classical orbital angular momentum is defined by

lc =

√
me

[(
x

.
y− y

.
x
)2
+

(
x

.
z− z

.
x
)2
+

(
y

.
z− z

.
y
)2

]
, (13)

where x, y, and z are the Cartesian coordinates of the electron relative to the nucleus. Since lc is
uniformly distributed for a given n level [21], the quantal statistical weights are reproduced by choosing
bin sizes such that

l ≤
n
nc

lc ≤ l + 1, (14)

where l is the quantum-mechanical orbital-angular-momentum. The choice of bins in classical
microcanonical ensemble nC and lC by a principle of proportionality of classical and quantal weights is
discussed in detail by Becker and Mackellar [20].

2.2. QTMC-KW Method

For the more accurate classical simulation results, we must also consider the constrains of
Heisenberg and Pauli principles. This approach was proposed by Kirschbaum and Wilets (KW) [12]
in the dominant of the fermion molecular dynamic model (FMD). They added effective potentials,
VH and VP, motivated by the Heisenberg and Pauli principles, to the pure Coulomb inter-particle
potentials describing the atom. Thus,

HFMD = H0 + VH + VP (15)

where H0 is the usual Hamiltonian containing the total kinetic energy of all bodies and Coulomb
potential terms between all pairs of electrons and between the nucleus and electrons, respectively. The
extra terms are

VH =
∑

n=a,b

N∑
i=1

f (rni , pni; ξH , αH) (16)

and

Vp =
N∑

i=1

N∑
j=i+1

f
(
ri j , pi j; ξp , αp

)
δsi,s j (17)

where a and b denote the nuclei, while i and j index the electrons. Also, rαβ = rβ − rα and relative
momenta are:

pαβ =
mαpβ −mβpα

mα + mβ
(18)

and δsi,s j = 1 if the spins of the ith and jth electrons are the same and δsi,s j = 0 if they are different.
The constraining potentials are chosen of the form

f (rλν , pλν; ξ , α) =
ξ

4αr2
λνµλν

exp
{
α

[
1−

( rλνpλν
ξ

)4
]}

(19)
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In this work, in the case of hydrogen as a one electron target we just take into account the
Heisenberg constrain and the parameters universally used αH = 4 and ξH = 0.9428, respectively. Also,
the Heisenberg potential between electron electron and both target and projectile nucleus is as follows:

f
(
→
r pe ,

→

Ppe; εH , αH

)
=

ξH
2

4αH
→
r

2
peµpe

exp

αH

1−

→
r pe
→

Ppe

ξH


4

 (20)

f
(
→
r Te ,

→

PTe; εH , αH

)
=

ξH
2

4αH
→
r

2
TeµTe

exp

αH

1−
→r Te

→

PTe

ξH


4

 (21)

According to Figure 1, the equations of motion taking into account the Hamiltonian mechanics
besides the extra potential is given by:
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..
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3. Results and Discussion

To study the collision between Be4+ and hydrogen atoms, we used both the standard three-body
classical trajectory Monte Carlo and quasiclassical trajectory Monte Carlo method of Kirschbaum and
Wilets methods. We performed a classical simulation with an ensemble of 1×106 primary trajectories for
each energy. The calculations are carried out in the projectile energy range between 10 and 1000 keV/au,
relevant to the interest of the fusion research when the target hydrogen atom is in the ground state.
We estimate uncertainties in our calculation of 0.6% obtained by the standard statistical error in σ
(see Equation (10)). Furthermore, we note that, according to our knowledge, this is the first time to
present cross section data using the QTMC-KW method for the Be4+ + H(1s) system.

3.1. Ionization

For the illustration of the ionization channel, defined by Equation (24), Figure 2 shows typical
trajectories in the y–z coordinate system (a) and y position as a function of time (b) for three bodies
(projectile, electron, and target) in the lab frame, respectively. The trajectories were obtained at
900 keV/au projectile impact.

Be4+ + H(1s)→ Be4++ H+ + e- (24)

Figure 2. (a) Trajectories in the y-z lab frame, (b) y position as a function of time for the electron
(red line), projectile (green line) and target (blue line) for ionization channel and for Be4+ with E =

900 keV/au.

Figure 3 shows the ionization cross section obtained by both the CTMC and QTMC-KW methods
as a function of projectile energy in the energy range between 10 and 1000 keV/au. The results of
the present CTMC models are compared with the previous results. Our results with CTMC method
match the data of Olson [9] for the entire energy range. At the same time, our results show lower cross
section data than that obtained by Krstic and Radmilovic [5] for lower projectile energies. Applying
the effective potentials, VH, to mimic the Heisenberg principles in our simulations, the cross section
data are a little increased compared to the standard CTMC results.

3.2. Charge Exchange (CX)

The accurate knowledge of the charge exchange cross sections in fusion plasma is very important.
For example, the charge exchange recombination spectroscopy (CXRS) measurements using Be4+

provide a high-quality determination of the plasma parameters. The quality of such concentration
measurements relies on the accuracy of the charge exchange cross sections.
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Figure 3. Cross section for ionization of H(1s) by Be4+ as a function of projectile energy. CTMC (red
solid line), QTMC-KW (blue solid line), Reference [5] (dash line), Reference [9] (•).

Figure 4 shows typical classical trajectories for the charge exchange channel. The trajectory
calculations were performed at 900 keV/au impact energy. Furthermore, we have calculated the total
cross section of CX to the projectile bound state according to CTMC and QTMC-KW methods for
the process:

Be4+ + H(1s)→ Be3+(nl)+ H+ (25)

Figure 4. (a) Trajectories in the x-z projectile frame, (b) Trajectories in the y-z center-of-mass frame, (c) y
position as a function of time in the lab frame, (d) x position as a function of time in the projectile frame
for the electron (red line), projectile (green line) and target (blue line) for charge exchange channel for a
typical Be4+ with E = 900 keV/au.
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The comparisons were made with all available methods such as the solution of time-dependent
Schroedinger equations, molecular-orbital-close coupling (MOCC), and atomic-orbital-close coupling
(AOCC) calculations (see Figure 5).

Figure 5. Total cross section for charge exchange in Be4+ + H(1s) collision, as a function of the impact
energy. CTMC (solid red line), QTMC-KW (solid blue line), Reference [22] (dash line), Reference [23]
(-..-.. ), Reference [24] ( . . . ), Reference [6] (•), Reference [4] (N).

We found a significant improvement in the cross section using the QTMC-KW method compared
to the standard CTMC model. We also found excellent agreement between our QTMC-KW results and
the previous data by Qu et al. [4], Ludde et al. [22], Bransden et al. [23], and Harel et al. [24].

3.3. Excitation

In the following, we show cross sections for Be4+ induced 1s→ 2s and 1s→ 2p transitions in
atomic hydrogen by using CTMC and QTMC-KW methods. The excitation process is given as follows:

Be4+ + H(1s)→ Be4+ + H(n,l,m)* (26)

We considered the excitation of hydrogen atom by beryllium from 1s state to 2s and 2p excited
states. Hence, the hydrogen’s electron is then described by the quantum numbers n = 2 and l = 0,1
which corresponds to spherical (s) or polar (p) orbital-angular-momentum, respectively.

Figure 6a,b show the y position as a function of time and 3D trajectory in the lab frame, using the
CTMC method for three bodies (projectile, electron and target), respectively. These figures correspond
to a projectile with the energy of 900 keV/au.

Figure 6. (a) y position trajectory as a function of time in the lab frame, (b) 3D trajectory in the lab
frame for the electron (red line), projectile (green line) and target (blue line) for the excitation channel
1s→ 2s,2p and for Be4+ with E = 900 keV/au.
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Figure 7 shows the excitation cross section in Be+4 + H(1s) collisions as a function of projectile energy
for H(1s)→ H(2s) (see Figure 7a) and H(1s)→ H(2p) (see Figure 7b) transition states, respectively.
The comparisons were made with the corresponding results based on adiabatic superpromotion
model [5], symmetric Eikonal approximation [7] as well as AOCC calculations [25].

Figure 7. Cross section for the excitation of (a) nl = 2s and (b) nl = 2p hydrogen subshells in Be4+ +

H(1s).collision, as a function of the impact energy. CTMC (solid red line), QTMC-KW (solid blue line),
Reference [5] (dash line), Reference [25] (N), Reference [7] (•).

We note that, while in the previous works, the obtained excitation cross sections are from H(1s) to
H(n = 2), in this work we show cross sections into H(2s) and H(2p) subshells. As shown in Figure 7,
both CTMC and QTMC-KW methods are useful to describe the excitation cross section for H(1s) to
H(2s) transition state. Furthermore, using the QTMC-KW model it is seen that the cross sections
are shifted to higher values compared to the CTMC data. It is noticeable that the data obtained
by the QTMC-KW model are in good agreement with the data reported by the symmetric Eikonal
approximation results [7].

4. Conclusions

Cross sections for ionization, charge exchange, and low-level excitation channels were simulated
for a Be4++H(1s) collision system using the classical trajectory Monte Carlo method and quasiclassical
trajectory Monte Carlo method of Kirschbaum and Wilets. To increase the calculation’s accuracy, we
considered one million trajectories for each impact parameter. We estimate uncertainties of 0.6%.
We draw the conclusion that the classical treatment can describe the cross sections reasonably. Since
there is no experimental data for the mentioned collision system, we compared our results with the
previous literature based on other methods, such as AOCC, MOCC, adiabatic superpromotion model,
and Symmetric Eikonal approximation. We found that our calculations are in good agreement with
previous results.
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