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Abstract: Because of the continuing advances in developing lasers in the far-ultraviolet and x-ray
ranges, studies of the behavior of atoms under a high-frequency laser field are of theoretical and
practical interest. In the present paper, we review various analytical results obtained by the method
of separating rapid and slow subsystems for various polarizations of the laser field. Specifically, we
review the corresponding analytical results both in terms of the quantum description of the phenomena
involved and in terms of the classical description of the phenomena involved. We point out that,
for the classical description of hydrogen atoms in a high-frequency laser field, there are interesting
celestial analogies. We discuss hidden symmetries of these physical systems, the advantages of this
analytical method, and the connection between these results and the transition to chaos.

Keywords: atoms in a high-frequency laser field; separation of rapid and slow subsystems; celestial
analogies; hidden symmetries

1. Introduction

Because of the continuing advances in developing lasers in the far-ultraviolet and x-ray ranges,
studies of the behavior of atoms under a high-frequency laser field are of theoretical and practical
interest. The “high-frequency” means that the laser frequencyω is much greater than any of the atomic
transition frequenciesωn’n:

ω >>ωn’n (1)

In the present paper we review various analytical results obtained by the method of separating rapid
and slow subsystems. Specifically, in Section 2 we review the corresponding analytical results in frames
of the quantum description of the phenomena involved. In Section 2 we follow papers [1,2]. In Section 3
we review the corresponding analytical results in frames of the classical description of the phenomena
involved. In Section 3 we follow papers [3,4]. In Conclusions, we discuss the advantages of applying
the method of separating rapid and slow subsystems to the physical systems under consideration.
We emphasize the rich physics behind the corresponding phenomena.

2. Quantum Hydrogen Atoms in a High-Frequency Laser Field

It is well-known [5,6] that, for quantum systems in a monochromatic field, it is convenient to
use the formalism of quasienergy states. The problem of finding such states of the hydrogen-like
atom/ion in a linearly polarized high-frequency laser field was first considered by Ritus [5]. He found
quasienergies for the states of the principal quantum number n = 1 and n = 2, for which the perturbation
operator U is diagonal in the basis of the spherical wave functions (i.e., the wave functions of the
unperturbed atom in the spherical quantization).

Papers [7,8] stated, without any proof, that for states of n > 2, the perturbation operator U couples
the substates of l and l ± 2, where l is the orbital momentum quantum number. In paper [8], the study
of the quasienergies for n > 2 was based on the approximate analogy with the problem of finding
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energies for the hydrogen molecular ion H2
+. Based on the energies for H2

+ from paper [9], for n > 2,
the author of paper [8] found “corrections” to the quasienergies from paper [5] due to the coupling of
the substates of l and l ± 2. However, in a later paper [10], where the authors used the dependence of
the energies for H2

+ on the internuclear distance R from paper [11], they obtained the result that in the
limit R→∞ coincides with the quasienergies from paper [5], which contradicts paper [8].

Thus, it remained unclear whether the perturbation U couples the substates of l and l ± 2 at fixed
n. To answer this question, one should have directly calculated matrix elements of the perturbation
between the substates of l and l ± 2 at fixed n. This was accomplished in paper [1], where the authors
demonstrated that these matrix elements are zeros. This meant that, in reality, the perturbation operator
U does not couple the substates of l and l ± 2 for any n, so that the expression for quasienergies from
paper [5] is not limited by n = 1 and n = 2 (as asserted in paper [5]), but is in fact valid for any n.
The diagonality of the perturbation operator U in the basis of the spherical wave functions allowed
easily calculating the splitting of any spectral line of a hydrogenic atom/ion under the high-frequency
laser field. This was the main, fundamental result of paper [1].

Under condition (1), the laser field represents the rapid subsystem, while the hydrogenic atom/ion
represents a slow subsystem. The powerful method of separating rapid and slow subsystems allows
us to obtain accurate analytical results for such systems. For implementing this method for particular
physical systems, there can be some interesting nuances or versions. It is instructive to see how this
method was implemented in paper [1], whose results we present below.

The Schrödinger equation for ahydrogen-like atom/ion in a laser field (of the amplitude E0)
described by the vector-potential A(t) = A0sinωt, where A0 = (0, 0, −cE0/ω), has the following form
(here and below the atomic units h̄ = me = e = 1 are used):

i∂Ψ/∂t = [H0 + V(t)]Ψ, H0 = p2/2 − Z/r + A0
2/(2c), V(t) = − (A0p/c)sinωt − [A0

2/(2c)]cos2ωt (2)

Here, Z is the nuclear charge and r is the distance of the electron from the nucleus. The notation
A0p stands for the scalar product (also known as the dot-product) of these two vectors. The term
A0

2/(2c) is the average vibrational energy of the free electron in the laser field.
We seek the solution of Equation (2) in the form

Ψ(t) = exp[−iα(t)] Φ, α(t) = [A0p/(ωc)]cosωt − [A0
2/(8ωc2)]sin2ωt (3)

Substituting Equation (3) in Equation (2), we obtain the following equation:

i∂Φ/∂t = H1Φ, H1 = exp[iα(t)]H0 exp[−iα(t)] = H0 + i[α, H0] + (i2/2)[α, [α, H0]] + . . . = H1,stat + H1,osc (4)

In Equation (4), [α, H0] and [α, [α, H0]] are commutators. H1,stat and H1,osc are the stationary (i.e.,
averaged over the laser field period 2π/ω) and oscillatory parts of the Hamiltonian H1. Under the
condition (1), i.e., since the laser field is the rapid subsystem, the primary contribution to the solution
of Equation (4) originates from the stationary part H1,stat. According to the second line of Equation (4),
H1,stat can be represented in the following form:

H1,stat = H0 + γV1 + γ2V2 + . . . , γ = E0
2/(2ω2)2, V1 = Z(1 − 3cos2θ)/r3, V2 = 3Z(−3 + 30cos2θ − 35cos4θ)/(4r5) (5)

where θ is the polar angle of the atomic electron, the z-axis being parallel to the laser field.
Assuming γ << 1, we will use the perturbation theory for finding the eigenvalues and the

eigenfunctions of the Hamiltonian H1,stat. It is important to emphasize the following counterintuitive
fact: since the unperturbed system is degenerate, then according to paper [12], the linear (with respect
to γ) corrections to the eigenfunctions will originate not only from the term γV1 but also from the
term γ2V2.
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It is easy to see that the radial part of the matrix element <nlm|V1|nl’m>, where l’ = l − 2, reduces
to the following type of the integral:

J =

∞∫
0

zr exp(−z)Qk+s
r(z)Qk

p(z)dz, (s > 0), (6)

where Qn
m(z) are the Laguerre polynomials. According to the textbook [13], for <nlm|V1|nl’m> with

l’ = l − 2 one gets J = 0, so that <nlm|V1|nl’m> = 0. This means that the spherical eigenfunctions ϕnlm
of the unperturbed Hamiltonian H0 turn out to be the correct eigenfunctions of the zeroth order of
the truncated perturbed Hamiltonian H0 + γV1. Therefore, according to paper [12], the eigenvalues
Fnλ and the eigenfunctions χnλ of the Hamiltonian H1,stat within the accuracy of the terms ~γ are
expressed as follows:

Fnλ = En
(0) + γ < nλ|V1|nλ >, En

(0) = −Z2/(2n2) + E0
2/(2ω)2, χnλ = ϕnλ + γ

∑
j

< j|V1|nλ > ϕj/(En
(0)
− Ej

(0))+
(7)

+γ
∑
µ,λ
{
∑
j
< nµ|V1|j >< j|V1|nλ > ϕnµ/[(En

(0)
− Ej

(0))(< nλ|V1|nλ > − < nµ|V1|nµ >)]

++ < nµ|V1|nλ > ϕnµ/(< nλ|V1|nλ > − < nµ|V1|nµ >)
} (8)

In Equation (8), λ = (l, m), µ = (l”, m”), j = (n’, l’, m’), n’ , n.
Substituting V1 from Equation (5) in Equation (8), we obtain the following for l > 0:

Fnlm = −Z2/(2n2) + E0
2/(2ω)2 + (Z4E0

2/ω4)[3m2
− l(l + 1)]/[n3(2l + 3)(l + 1)(2l + 1)l(2l − 1)] (9)

For finding Fnlm (i.e., for l = 0), instead of the formula for V1 from Equation (5), we use the
following expression:

V1 = Z[1 − 3cos2θ + ε(4cos2θ − 1)]rε −3,|ε| << 1 (10)

The expression for V1 from Equation (10) corresponds to the quasi-Coulomb nuclear potential
−Zrε −1. This trick allows removing the uncertainty that would otherwise arise while calculating
matrix elements of the operator V1 in the basis of the eigenfunctions ϕn00. For completeness we note
that a similar uncertainty arises while calculating matrix elements <nlm|V2|n’l’m>; in this case one
should use the expression

V2 = 3Z{−3 + 30cos2θ − 35cos4θ + ε[4 − 46cos2θ +(176/3) cos4θ] ]} /(4r5 −ε) (11)

corresponding to the quasi-Coulomb nuclear potential −Zrε −1.
After calculating the necessary matrix elements by using the potential V1 from Equation (10) and

then setting ε = 0, we obtain the following result for the energy Fn00 (i.e., for l = 0):

Fn00 = −Z2/(2n2) + E0
2/(2ω)2 + Z4E0

2/(3n3ω4) (12)

It is worth noting that the above rigorously calculated result for Fn00 can be also formally obtained
from the right side of Equation (9) in the following three steps:

(1) set m = 0;
(2) cancel out l(l + 1) in the numerator and denominator;
(3) set l = 0
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Thus, the expression for quasienergies from paper [5] is not limited by n = 1 and n = 2 (as asserted
in paper [5]). The above proves that they are actually applicable for any n.

For the validity of the above results, it is necessary that the characteristic value of the splitting of
the energy level of the principal quantum number n, determined by Equations (9) and (12), significantly
exceeded the energy shift ∆nlm caused by the term H1,osc in Equation (4). By limiting ourselves by the
term in H1,osc, containing the small parameter γ in the lowest degree (i.e., by the term proportional to
γ1/2/ω) in the high-frequency limit defined by Equation (1), we obtain the following relation (see [14]):

∆nlm = −ZE0
(2)/(2ω6)

∑
n,n
| < nlm|r−2 cos θ|nlm > |2(En

(0)
− En

(0)) (13)

that serves for finding the lower limit of validity with respect to the laser frequencyω.
The above results were obtained for a linearly-polarized high-frequency laser field. A more

general case where the high-frequency laser field is elliptically-polarized was considered in paper [2].
The vector-potential of the laser electric field was chosen in the form

A(t) = A0(1 + ζ2)(cosωt, ζsinωt, 0), A0 = −cE0/ω (14)

where ζ is the ellipticity degree. For the quasi-Coulomb nuclear potential −Zrε −1, the analog of the
γV1 from Equation (5), denoted below as V, now can be represented as follows

V = [Z/(2c2)](ε + 1)<B2>/r3+ε, |ε| << 1 (15)

In Equation (15), vector B(t) is the solution of the equation

dB(t)/dt = A(t) (16)

and has the zero time average. The notation < . . . > stands for the average over the period of the laser
field.

Substituting Equation (14) in Equation (15) and using the spherical coordinates, in paper [2] it
was found the following:

V(ζ2) = −[ZE0
2/(8ω4r3+ε)]{(1 − 3cos2θ) − 2ε cos2θ + [3(1 − ζ2)/(1 + ζ2)]sin2θ cos2ϕ} (17)

In paper [15], it was shown that

∞∫
0

r−s Rnl(r)Rnl(r)r
2dr = 0, s = 2, 3, 4, . . . , l− l + 1 (18)

where Rnl(r) are the radial wave functions of the hydrogenic atom/ion. Therefore, the matrix elements
of the operator V(ζ2) satisfy the following relation:

<nlm|V(ζ2)|nl’m’> = 0, l’ = l ± 2 (19)

For a particular case of the circular polarization (ζ2 = 1), the term containing cos2ϕ in Equation (17)
is absent. Therefore, for the case of the circular polarization, due to the relation (19), the spherical
eigenfunctions ϕnlm are the correct eigenfunctions of the zero order for the perturbed Hamiltonian
(as it was the case for the linear polarization of the laser field). The following energy eigenvalues
correspond to these eigenfunctions:

Fnlm = −Z2/(2n2) + E0
2/(2ω)2 + <nlm|V|nlm> (20)
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<nlm|V|nlm> = − [Z4E0
2/(2ω4)][3m2

− l(l + 1)]/[n3(2l + 3)(l + 1)(2l + 1)l(2l − 1)], l > 0, (21)

<nlm|V|nlm> = − Z4E0
2/(6n3ω4), l = 0 (22)

(In Equation (22), we corrected a misprint from the corresponding expression in Equation (10)
from paper [2].) Just as in the case of the linear polarization of the laser field, the result presented in
Equation (22) can be obtained from the right side of Equation (21) in the following three steps:

(1) set m = 0;
(2) cancel out l(l + 1) in the numerator and denominator;
(3) set l = 0

So, the expression for quasienergies from paper [5] for the circular polarization of the laser field
is not limited by n = 1 and n = 2 (as asserted in paper [5]). The above proves that they are actually
applicable for any n—just as it was in the case of the linear polarization of the laser field.

Now, we are coming back to the situation where the ellipticity degree of the laser field is arbitrary.
When ζ2 , 1, the term containing cos2ϕ in Equation (17) will couple the states ϕnlm and ϕnlm’ (l > 0, m’
= m − 2). However, the state ϕn00 would not be coupled by this term, and the state ϕn10 would not be
coupled by this term either. Therefore, the energy eigenvalues for these two states do not depend on
the ellipticity degree ζ, and are still given by Equations (21) and (22).

For finding the eigenvalues of the energy for the other states in the general case of ζ2 , 1, one
should solve the corresponding secular equation. For the states ϕnl1 and ϕnl−1 (l = 1, 2), the secular
equation is a quadratic one, yielding the following two energy eigenvalues Fns (s = 1, 2):

Fns = −Z2/(2n2) + E0
2/(2ω)2 + + {Z4E0

2/[2ω4n3(2l + 3)(2l + 1)(2l − 1)]}[(l2 + l − 3)/(l + 1) + (−1)s+1(3/2)(1 − ζ2)/(1 + ζ2)] (23)

where l = 1, 2; s = 1, 2. The corresponding eigenfunctions are

ϕns = 2 −1/2[(−1)s+1ϕnl1 + ϕnl−1], l = 1, 2; s = 1, 2 (24)

For the states ϕnl0, ϕnl2, and ϕnl−2 (l = 2, 3), the secular equation is a cubic one, yielding the
following three energy eigenvalues Fnp (p = 1, 2, 3)

Fn1 = −Z2/(2n2) + E0
2/(2ω)2 + V22, Fnp = −Z2/(2n2) + E0

2/(2ω)2 + (1/2){V11 + V22 + (−1)p[(V11 − V22)2 + 8V12
2]1/2, p = 2, 3, (25)

where
V11 = Z4E0

2/[(2ω4n3(2l + 3)(2l + 1)(2l − 1)] (26)

V22 = − Z4E0
2[12 − l(l + 1)]/[(2ω4n3(2l + 3)(2l + 1)(2l − 1) l(l + 1)] (27)

V12 = [3Z4E0
2/(4ω4)][(1 − ζ2)/(1 + ζ2)]{(l − 1)(l + 2)/[l(l + 1)]}/[n3(2l + 3)(2l + 1)(2l − 1)] (28)

The corresponding eigenfunctions are as follows

ϕn1 = 2 −1/2[(−1)s+1ϕnl2 − ϕnl−2], ϕnp = a(p)ϕnl0 + b(p)(ϕnl2 + ϕnl−2), p = 2, 3 (29)

where

a(p) = 2 −1/2{1 + (−1)p+1(V22 − V11)/[(V11 − V22)2 + 8V12
2]1/2}1/2, b(p) = [(−1)p/2]{1 + (−1)p(V22 − V11)/[(V11 − V22)2 + 8V12

2]1/2}1/2 (30)

In summary, expressions (9), (12), (20)–(30) determine the splitting of hydrogenic spectral lines in
the high-frequency laser field. The intensities of the split components can be calculated by using the
well-known expressions (e.g., from book [16]) for the matrix elements
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|<nlm|r −2cosθ|n’l’m>|2 in the spherical coordinates. In particular, the allowance of the terms ~γ
in Equation (8) would lead to the appearance of the forbidden components (of intensities ~γ2) in the
spectra of hydrogenic lines. In general, the observation of the splitting of the spectrum of a hydrogenic
line in two different polarizations, allows determining the following three physical quantitites:

(1) the polarization of the vector-potential A(t);
(2) the ellipticity degree ζ;
(3) the amplitude E0 of the laser field (for the known laser frequencyω).

This is possible because, for the known laser frequency ω, the splitting of a hydrogenic line
depends on two parameters: the amplitude E0 of the laser field and the ellipticity degree ζ. Therefore,
the experimental splitting in two different polarizations would provide two equations for determining
the two unknown quantities—E0 and ζ.

3. Classical (Rydberg) Hydrogen Atoms in a High-Frequency Laser Field: Celestial Analogies

We consider the situation where the laser frequency ω is much greater than the Kepler frequency
ωK = mee4/(n3h̄3) of the highly excited (Rydberg) hydrogen atom.

ω >>ωK (31)

Here, me and e are the electron mass and charge, respectively; n >> 1 is the principal quantum
number. Under the condition (31), the laser field constitutes the fast subsystem, while the Rydberg
atom constitutes the slow subsystem.

The Kapitza’s method of splitting the motion into “fast” and “slow” variables and introducing the
concept of an effective potential for the slow subsystem, in its standard form [17–19], is not applicable
for the case of a spatially uniform amplitude f of the oscillatory force f(xα) cos ωt, as mentioned in
Chapter 1. A generalization of the Kapitza’s effective potential for a spatially uniform force amplitude f,
has been provided by Nadezhdin and Oks [3] and is presented below.

We consider a particle in a static potential U(xα) and under the force f(xα) cosωt. We seek the
solution of the equation of the motion

md2(xα)/dt2 = −dU/dxα + fα cosωt (32)

in the form
xα(t) = Xα(t) + ξα(t) (33)

and expand the right side in powers of the rapid oscillations ξα

md2(Xα)/dt2 + md2(ξα)/dt2 = −dU/dXα − ξα d2U/dXαdXβ − (1/2) ξβξγ d3U/dXαdXβdXγ + [fα(X) + ξβ dfα/dXβ]cosωt (34)

Here and below, the summation over repeated subscripts is understood.
For the oscillatory terms, it is sufficient to write

md2(ξα)/dt2 = fα(X) cosωt (35)

so that
ξα = − [fα/(mω2)] cosωt (36)

Substituting Equation (36) in Equation (34) and averaging over the period 2π/ω, we obtain the
equation for the averaged motion X(t)

md2(Xα)/dt2 = −dU/dXα − [1/(4m2ω4)] fβfγ d3U/dXαdXβdXγ − [1/(2mω2)] fβ dfα/dXβ (37)
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For a spatially uniform force f, the term proportional to 1/ω2 in Equation (37) vanishes, so that it
becomes important to take into account the term proportional to 1/ω4. As a result, the equation for the
averaged motion takes the form

md2(Xα)/dt2 = −d/dXα {U + [fβfγ/(4m2ω4) ]d2U/dXβdXγ} (38)

Thus, in this situation we deal with the effective potential

Ueff = U + [fβfγ/(4m2ω4) ]d2U/dXβdXγ (39)

Oks, Davis, and Uzer [4] applied the effective potential from Equation (39) to the case of a Rydberg
hydrogen atom in an elliptically-polarized high-frequency laser field:

E(t) = exε0cosωt + eyµε0sinωt (40)

where µ is the ellipticity degree. The peak field ε0 in expression (40) is connected with the time-average
of the electric field as follows:

<E2(t)> = <{ε0
2cos2ωt + µ2ε0

2sin2ωt}> = ε0
2(1+ µ2)/2 (41)

On the other hand, one can define an effective amplitude E0 through

<E2(t)> = E0
2/2 (42)

By equating the right sides of Equations (41) and (42), one obtains the following relation between
E0 and ε0

ε0 = E0/(1+ µ2)
1
2 (43)

By applying the effective potential from Equation (39) to the case of the high-frequency elliptically
polarized laser field from Equation (40), Oks, Davis, and Uzer [4] found the following effective potential:

Ueff = −e2/r + (γ/r3){(1+ µ2) − 3sin2θ[1 − (1− µ2)sin2ϕ]} (44)

where
γ = (e4ε0

2)/(4m2ω4) (45)

θ is the polar angle, and ϕ is the azimuthal angle of the radius vector of the electron (the z-axis is
chosen to be perpendicular to the polarization plane).

In the particular case where the high-frequency laser field is circularly polarized (µ = 1), the effective
potential from Equation (44) simplifies to

Ueff(r, θ) = − e2/r + (γ/r3)(3 cos2θ − 1) (46)

For this case of the circular polarization, by using Equation (43) with µ = 1, formula (45) for γ can
be also expressed through the time-average square of the laser field as follows:

γ = (e4E0
2)/(8m2ω4) (47)

The effective potential given in Equation (46) has the following remarkable feature: it is identical
to the potential of a satellite orbiting a prolate planet. The motion of this satellite has been completely
investigated in celestial mechanics (see, e.g., book [20], Section 10.4). It turns out that not only does the
ellipse precesses in its plane with some frequency fe << Ω, but the plane of orbit precesses as well with
frequency fp ~ fe.
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The precessions above are found via canonical perturbation theory and by employing action-angle
formulation (see, e.g., book [21]). In this situation the effective potential from Equation (31) can be
represented in the form of the following perturbation Hamiltonian

∆H = C(3cos2θ − 1)/r3, C = k2(I3 − I1)/(2M0), k = GM0m (48)

where m is the mass of the satellite, M0 is the mass of the a prolate planet mass, and I3 and I1 are
the principal moments of inertia, I1 being the moment of inertia with respect to the axis of symmetry.
The time average of the perturbation Hamiltonian is

< ∆H >= [m2k2(I3 − I1)/(2M0M3τ)]

2π∫
0

(1 + ε cos Ψ)(3 cos2 θ− 1)dΨ (49)

where ε is the eccentricity of the satellite orbit, M is the magnitude of the total angular momentum, τ is
the period, and Ψ is the angle of the radius-vector in the orbital plane relative to the periapsis. We use
the relation

3cos2θ − 1 = [(1/2) − (3/2)cos2i)] − {(3/2)sin2i cos[2(Ψ +ω)]} (50)

where i is the angle between the unperturbed plane of orbit and the equatorial plane of the planet (the
angle of inclination). Employing Equation (50), we find

<∆H> = πm2k2(I3 − I1)(1 − 3cos2i)/(2M0M3τ).. (51)

We relate the variable i to the action angle variables J1 and J2 as

J1/J2 = cosi, J1 = Jϕ = 2πMz (52)

where Mz is the constant value of angular momentum about the polar axis,

J2 = Jϕ + Jθ = 2πM (53)

Here, M is the magnitude of the total angular momentum, and

J3 = πk[(2m/(−E)]
1
2 (54)

where k is the constant from the expression for the unperturbed gravitational potential

V(r) = −k/r (55)

and corresponds to e2 in the atomic problem.
The orbit undergoes two precessions, as follows. Because of the smallness of the perturbation, the

precession of the orbital plane around the polar axis shows up as a secular change in Ω.

<dΩ/dt>τ/(2π) = [∂(∆H)/∂J1]τ/(2π) = [τ/(2πM)] ∂(∆H)/∂(cosi) (56)

Therefore, it follows that the frequency of precession of the orbital plane around the polar axis is
given by

fp = − (3/2)(I3 − I1)cosi/[M0a2(1 − ε2)2] (57)

where we have made use of the expression

M2 = mka(1 − ε2) (58)
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(Here, a is the semi-major axis.)
The second one is the precession of the periapsis of the elliptical orbit in the plane of orbit. It is

given by
<dω/dt>τ/(2π) ≡ [∂(∆H)/∂J2]τ/(2π) = [τ/(2π)]∂(∆H)/∂M (59)

Upon taking the derivatives, we find

fe = 3(I3 − I1)(5cos2i − 1)/[4M0a2(1 − ε2)2] (60)

The averaged Hamiltonian <∆H> from Equation (51) does not depend on the angular variables of
the spherical coordinate system. Consequently, the action variables J1, J2, J3 are conserved with respect
to the averaged motion. The major semi-axis a and the eccentricity ε0 of the orbit are the following
functions of J1, J2, J3

a = J3
2/(4π2mk), ε = [(1 − (J2/J3)2)]

1
2 (61)

Therefore, there is no secular change in either a or ε. Physically this means that the shape and size
of this precessing ellipse, when averaged over the orbital period, will not change in time.

The approximate conservation of the shape and size of the precessing ellipse means that the square
of the angular momentum M2 is an approximately conserved quantity (to within the accuracy of terms
~E0

2). Physically this means that the averaged system has a higher symmetry than the geometrical symmetry,
which was axial symmetry. In other words, the system has an algebraic symmetry which is spherical.

Thus, not only does the unperturbed Hamiltonian H0 commute with M2 and Mz, but the perturbed
Hamiltonian H0 + V commutes (approximately) with M2 and Mz. This justifies the employment of the
non-degenerate classical perturbation theory in the previous section.

This also means that, in the quantum treatment of the corresponding atomic problem, the
perturbation V is diagonal (in the same approximation) in the basis of the spherical wave functions.
Consequently, due to the conservation of M2, the perturbed energies can be found as mean values of
the perturbation over the unperturbed motion. Following paper [4], we find the quantum corrections
to the energy levels in the quasiclassical formalism as follows.

The perturbation term in the effective potential is

∆U = [γ/r3][3cos2θ − 1] (62)

We average this expression over the period of the unperturbed motion

< ∆U >= [γ/τ]

2π∫
0

[3 cos2 θ− 1]r−3dt (63)

The angular momentum can be written as M = mr2dΨ/dt, where Ψ is the angle of the radius
vector in the orbital plane relative to the periapsis. Substituting the expression

dt = mr2M−1dΨ (64)

into Equation (63) for the effective potential, we arrive at the following

< ∆U >= [γm/(Mτ)]

2π∫
0

(3 cos2 θ− 1)r−1dΨ (65)

Using the relations

cosθ = sini cosΨ, r−1 = (1 + εcosΨ)p−1, p = M2(mk)−1 (66)
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where k = e2, we find

< ∆U >= [γm2/(M3τ)]
2π∫
0
(3 sin2 i cos2 Ψ − 1)(1 + ε cos Ψ)dΨ = [(γm2e2)/(M3τ)]2π[(3/2) sin2 i− 1] (67)

Substituting the expressions for the period

τ = 2πn3h̄3/(me4) (68)

into Equation (67), we obtain

<∆U> = [γm3e6][(3/2)sin2i − 1]/[M3h̄3n3] (69)

Transforming
[(3/2)sin2i − 1] = (1/2){[3(1 − cos2i) − 2]}, cosi = Mz/M (70)

and replacing

M = h̄(l +
1
2

), Mz = m0h̄ (71)

in Equation (67), we finally obtain the corrections to the energy levels

E1
nlm ≡ <∆U> = [(e10mE0

2)(8h̄6n3ω4)−1]{[(l +
1
2

)2
− 3m0

2][(l +
1
2

)−5]} (72)

We emphasize again that Equation (73) is valid for n,l >> 1. Hence, the energy levels are split, and
the degeneracy is partially removed. Because “m0,” the magnetic quantum number, is squared, terms
where the magnitude of m0 is the same, but the sign differs, will remain degenerate.

Paper [4] also studied the case where the ellipticity degree µ is arbitrary, but the Keplerian plane
and the plane of electromagnetic radiation are coincident. This means that Mz = M and that the polar
angle of the radius-vector does not vary in the course of time. In this case, the perturbed motion is
really only two-dimensional because all of the forces acting on the particle are confined to the plane.
The effective potential becomes

Ueff = −e2/r + (γ/r3)[(1 − 2 µ 2) − 3(1 − µ2)cosϕ] (73)

This problem is equivalent to a problem of celestial mechanics in which a satellite revolves in an
equatorial orbit about a slightly non-spherical planet. For this case the plane of orbit does not change
its orientation in the course of time. Therefore, the only precession that might occur is the precession of
the periapsis of the ellipse. Further details can be found in paper [4].

Now we proceed to the case of a hydrogen Rydberg atom in a linearly-polarized high-frequency
laser field E(t) = E0cosωt. For this case, by using the expression (39) for the effective potential as the
starting point, Nadezhdin and Oks [3] obtained

Ueff(r, θ) = − e2/r − (γ0/r3)(3 cos2θ − 1), γ0 = e4E0
2/(4me

2ω4) (74)

where θ is the polar angle, that is, the angle between the radius-vector r of the electron and the z-axis
chosen along the vector-amplitude E0 of the laser field.

It is remarkable that the effective potential from Equation (74) is mathematically equivalent to
the effective potential of a satellite moving around an oblate planet, such as, e.g., the Earth. Indeed,
because of this slightly flattened shape, the potential energy U(r) of a satellite in the gravitational field
of the Earth slightly differs from the potential energy U0(r) = GmM/r it would have if the Earth would
be a sphere. The perturbed potential energy U(r) can be approximately represented in the form

U(r, φ) = − (GmM/r)[1 − I2(R/r)2P2(sin φ)] (75)
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(Equation (75) is approximate because it represents only the first two terms of the expansion of
the potential energy in inverse powers of r.) Here, G = 6.6726 × 10−8 cm3/(s2 g) is the gravitational
constant (one of the fundamental constants of the nature); m and M are the masses of the satellite
and the Earth, respectively; I2 = −1.082 × 10−3 is a constant related to the slight difference between
the equatorial and polar diameters of the Earth; R = 6.378 × 108 cm is the equatorial radius of the
Earth; θ is the geographical latitude of the satellite at any point of its orbit; and P2(sin φ) is one of the
Legendre polynomials.

P2(sin φ)] = (3 sin2φ − 1)/2 (76)

For the potential energy from Equation (75), there exists an exact analytical solution for the satellite
motion. Details can be found, for example, in Section 1.7 of Beletsky’s book [22]. The following
outcome is similar, but not identical to the case discussed previously in this review, where a satellite
moves around a prolate planet.

The elliptical orbit of the satellite undergoes two types of the precession simultaneously, but
without changing its shape. The first one is the precession of the orbit in its plane. It occurs with the
angular frequency

Ωprecession in plane = (3I2/4)(R/p)2(1 − 5 cos2i)ωK (77)

where i is the inclination, that is, the angle between the plane of the satellite orbit and the equatorial
plane of the Earth. The quantity p in Equation (77), it is related to parameters of the unperturbed
elliptical orbit of the satellite as follows

p = 2 rmin rmax/(rmin + rmax) (78)

where rmin and rmax are, respectively, the minimum and maximum distances of the satellite from the
center of the Earth.

Interestingly enough, for i = 63.4 degrees, one gets 1 − 5 cos2i = 0, so that Ωprecession in plane

vanishes. This means that satellites lunched at this inclination do not undergo the precession in the
plane of the orbit.

The second simultaneous precession is the precession of the plane of the satellite orbit.
The precession frequency is

Ωprecession of plane = (3I2/2)(R/p)2 (cos i)ωK (79)

At i = 90 degrees, one gets Ωprecession of plane = 0. For such inclination, which corresponds to the
plane of orbit perpendicular to the Earth equator, there is no precession of the plane of orbit. These are
so-called polar satellites.

Thus, the fact that the Earth is slightly flattened, does not affect the elliptical shape of the satellite
orbit or the inclination of the orbit. It does result, generally, in two simultaneous precessions of the
orbit with frequencies given by Equations (77) and (79).

Taking into account that the geographical latitude φ in Equation (75) and the polar angle θ in
Equation (74) are related as φ = π/2 − θ (where π/2 is the 90 degrees angle expressed in radians), so that
sin2φ = cos2θ, and that the quantity I2 in Equation (75) is negative (so that I2 = − |I2|), Equation (75)
can be re-written in the form

U(r, θ) = − (GmM/r) − (GmM|I2|R2/r3)(3 cos2θ − 1)/2 (80)

The comparison of Equation (74) and (80) shows that the potential energy of the electron in a
hydrogen Rydberg atom under a high-frequency linearly polarized laser field is in fact mathematically
equivalent to the potential energy of a satellite around the oblate Earth. Indeed, if in Equation (80) one
would substitute GmM by e2 and |I2|R2 by 2γ/e2, one would obtain Equation (74).



Atoms 2019, 7, 83 12 of 15

Therefore, the motion of the electron in a hydrogen Rydberg atom under a high-frequency linearly
polarized laser field can be described in the same way as the motion of a satellite around the oblate
Earth. Namely, first of all, the shape of the elliptical orbit and the angle between the orbital plane
and the plane perpendicular to the laser field amplitude E0 would not be affected by the laser field:
they would remain the same in the course of time. The elliptical orbit of the electron undergoes
two precessions simultaneously: the elliptical orbit precesses in its own plane with the frequency
Ωprecession in plane and the plane of the orbit precesses around the laser field amplitude E0 with the
frequency Ωprecession of plane, both frequencies being proportional to E0

2.
There is an interesting fact about the conserved quantities for both of these physical systems (just

like in the case of the circular polarization of the laser field, discussed previously in this chapter). If the
motion of a particle is characterized by a potential energy that depends only on the magnitude r of
the radius-vector r of the particle, but not on the direction of vector r, then all directions in space are
equivalent for such a system: the system is said to have the spherical symmetry. As the consequence of
the spherical symmetry, the angular momentum vector M is conserved both by the magnitude and by
the direction for such a system. If a linearly polarized laser field applied to such an atomic system, then
there is no more the equivalence of all directions in space: the potential energy now depends not only
on the magnitude r of the radius-vector r but also on the angle θ between the vector r and the laser
field amplitude vector E0. The latter vector defines the preferred direction in space. Only all directions
in the plane perpendicular to the vector E0 remain equivalent: the symmetry of the system is said to be
reduced from spherical to axial. As a consequence, only the angular momentum projection Mz on the
vector E0 remains conserved.

Similarly, because the Earth is not a sphere but an oblate spheroid, the axis connecting the two
poles defines the preferred direction in space. Only the angular momentum projection Mz on this
direction remains conserved.

However, for the specific form of the potential energy dependence on r and θ, as in Equations (75)
and (80), in addition to the exact conservation the angular momentum projection Mz, there is also the
conservation of the square of the angular momentum M2. The latter quantity is proportional to the area of
the orbit. Therefore, the fact that the shape of the elliptical orbit is not affected by the perturbation
(by the laser field for the atomic system of by the spheroidness of the Earth in the case of the satellite)
signifies the conservation of M2.

For completeness we note another physical system equivalent to the “satellite—spheroidal planet”
system. Namely, nuclei of heavy atoms can have either the shape of a prolate spheroid or the shape of
the oblate spheroid. So, the motion of the electron in a hydrogen Rydberg atom under a high-frequency
laser field of the linear or circular polarizations also has the analogy with the motion of the electron in
heavy hydrogenic ions.

It should be emphasized that there are hydrogenic atoms and ions where the negatively charged
particle orbiting the nucleus is not the electron, but the muon. Muonic atoms and ions are more sensitive
to the nuclear shape than the electronic atoms and ions. In particular, in paper [23] it was shown how
the shift of spectral lines of muonic hydrogenic ions can serve for the experimental determination of
the parameters of the nuclear shape (such as, for example, the parameter analogous to the constant I2

in Equation (75)).
The bottom line is that all the three above physical systems exhibit a higher than geometrical

symmetry. This is an important result in its own right.
It should be emphasized that, for the type of the potential energies given by Equations (74) or (80),

the square of the angular momentum M2 is conserved exactly. However, Equations (74) and (80) were
obtained by neglecting some corrections (much smaller than the second term in (74) or in (80). Since
Equations (74) and (80) are approximate, so is the conservation of M2. Nevertheless, any additional
quantity that is conserved (whether exactly or approximately) is physically important.
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4. Discussion and Conclusions

Let us discuss now the advantages of this analytical method. We considered a hydrogen atom in a
high frequency field

ω »ωkn (81)

where ωkn is an atomic transition frequency. In the standard time-dependent perturbation theory, the
transition probability can be written as (see, e.g., textbook [24])

(dE0)2/(h̄2ω2) ≡ωE
2/ω2 (82)

whereωE ≡ (dE0)/h̄ may be interpreted as the peak frequency of precession of the dipole moment of
the system. Since the atomic dipole moment can be estimated as d ~ n2h̄2/[me2], then

ωE ~ n2h̄E0/(me) (83)

Thus, we arrive at the small parameter employed by standard perturbation theory

εpt =ωE
2/ω2 « 1 (84)

In the advanced method of separating rapid and slow subsystems, the small parameter can be
found from the ratio of the energy correction to the unperturbed energy.

εour = ∆E/E(0), E(0) = me4/(2h̄2n2) (85)

Using the above results for ∆E, we find

∆E/E(0) ~ e6E0
2/(h̄4n4ω4) = εour (86)

or in atomic units
εour = E0

2/(n4ω4) ~ [ωE/(n4ω2)]2 ~ εpt
2[Ω/(nω)]2 (87)

where Ω = (En+1
(0)
− En

(0))/h̄ = n−3 is the Kepler frequency. Thus, for the high frequency case (Ω «ω),
even when the method of the standard perturbation theory is no longer applicable, i.e., when εpt ~ 1,
the advanced method of separating rapid and slow subsystems remains valid.

Finally, let us discuss the connection between the above results and the transition to chaos.
Multidimensional problems, like those presented above, play the crucial role in the fascinating
transition regime between classical and quantum mechanics. In this context, paper [4] addressed the
dynamics of Rydberg electrons placed in high-frequency circularly polarized and elliptically polarized
“laser” (microwave) fields. These problems were mapped onto problems well-known from celestial
mechanics, discovering approximate constants of the motion in the process. It was shown how the
dynamics of a Rydberg electron, whose orbital plane differs from the plane of polarization of circularly
polarized radiation, can be mapped on the problem of a satellite orbiting a prolate planet. Although
the angular momentum precesses, its magnitude is an approximate constant. Similarly, when the
electron’s orbit plane coincides with the plane of elliptically polarized microwaves, it moves like a
satellite orbiting a slightly non-spherical planet in its equatorial plane. In this case, the z-component of
the angular momentum emerges as a hidden symmetry.

The high-frequency case has received less attention than the low-frequency, resonant cases, and
therefore it was desirable to explore the implications of our results for chaos and ionization in these
systems. Paper [4] identified the precession frequency as one of the important parameters of the
dynamics, and one expects the onset of chaos when the precession frequency fe is of the order of the
Kepler frequency 1/n3. For example, for the case of the circular polarization, the transition to chaos
occurs at E0 ~ω2l2.
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Finally, it should be emphasized once again that, in this paper, we review only analytical results
on this subject, as has been stated already in the introduction. Papers that used numerical methods
to study this problem are beyond the scope of the present mini-review. Nevertheless, for illustrating
the accuracy of our analytical results, let us compare them with paper [25] where the authors used
numerical methods (finite-element and finite-difference grid methods) for solving the corresponding
Schrödinger equation for a hydrogen atom in the field of a circularly polarized high-frequency laser
radiation. The authors of paper [25] numerically calculated, in particular, the ground state energy E0

(in atomic units) for several values of some parameter a0 = (I/2)1/2/ω2, where I is the laser intensity (all
quantities being in atomic units). For example, for the laser frequencyω = 1.2 and a0 = 0.3, from our
Equations (20), (22) we obtain E0 = −0.4652, while the authors of paper [25] tabulated E0 = −0.4651.
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