
atoms

Article

Effect of the Ions on the Electron Collision Operator
through Electronic Trajectory Modification

Yasmina Ben Nana 1, Fethi Khelfaoui 1,2, Said Douis 1,2, Eshrat Sadeghzadeh Lari 3 and
Mohammed Tayeb Meftah 1,2,*

1 Laboratoire de Recherche de Physique des Plasmas et Surfaces (LRPPS), UKMO, Ouargla 30000, Algerie
2 Département de Physique, Faculté de Mathématiques et Sciences de la matière, Université Kasdi-Merbah,

Ouargla 30000, Algerie
3 Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
* Correspondence: meftah.tayeb@univ-ouargla.dz

Received: 14 June 2019; Accepted: 14 August 2019; Published: 16 August 2019
����������
�������

Abstract: We investigate the ion effect on the broadening of the spectral line profile by the free
electrons collisions with the emitters in plasmas. We only considered the weak collisions’ contribution.
This effect has a consequence on the trajectories of the free electrons through the electric microfield
created by the ions of the plasma. Thanks to the Meijer’s functions, the calculation of the electronic
Stark broadening is precisely established.
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1. Introduction

One source of the broadening of the line profiles in plasmas results from the collisions among
emitters (neutral atoms or ions) and the other particles of the plasma. The line shape analysis
relies on measurable macroscopic plasma parameters such as inventory of chemical species and
their temperatures and number densities. In this paper, the term collisions refer to the interactions
between the plasma constituents or particles (neutrals and charged particles). This means that
the broadening of the line profile is caused by the various types of interactions between emitting
atoms and perturbers (electrons or ions of the plasma). As is known, the Stark line broadening
results from the contributions of both the plasma electrons and ions through their interactions with
the emitter. Using an old theory, the ion contribution to Stark broadening was widely investigated
for lines emitted by hydrogen, hydrogen-like ions and helium neutrals [1–6]. The commolyn used
approximation in this investigation is the classical path approximation for electrons [1,3]. Other often
used approximations in plasma emission spectroscopy are the impact approximation for the treatment
of the emitter–electron interactions and the quasi-static approximation for that the emitter–ion
interactions [1]. These approximations are useful to establish the influence of these particles on the
emitted line profile in the plasmas. Following this description, the quasi-static approximation and the
impact approximation are separately treated to have the spectral line profiles. However, bhow would
the line profile be affected if we considered the colliding electron with the emitting atom as moving
under the influence of the ion electric microfield? This microfield prevents the free colliding electron
from following a straight trajectory. Another approximation we need in our paper is the semi-classical
dipolar electric one [7,8]. It is an acceptable approximation because it shows a good agreement
compared to numerous experiments [9,10]. In this work, we deal with helium plasma by considering
three approximations: impact approximation for the electrons, quasi-static approximation for the ions
and the electric dipolar approximation. The contribution of our investigation is the dependency of
the collision operator on the ion microfield. We notice here that Djurović et al [11] used the effects
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of the microfield distribution on collision operator. Thus, our work starts by giving the principal
theoretical elements of the spectral line profile in Section 2. Section 3 is devoted to give our theoretical
investigation to derive the collision operator. The conclusion is presented in Section 4.

2. Spectral Line Theory

The foundations of the spectral line shape theory can be found in the works of Baranger, Griem
and collaborators [1–7,12,13] as well as more recently in the work of Kogan, Lisitsa and collaborators [8].
Using the experimental results in [9,10,14], theoretical improvements, including the ions dynamics [5,15]
and the electron broadening [7,16,17], were accomplished. In the present paper, we focus on the theory
of the line broadening caused by the electron collisions in the impact regime. During the collision
between the free electron and the emitter, we consider the effect of the static ion electric microfield on
the electron trajectory. Thus, the spectral line profile is given by the following expression

I(ω) = Re(1/π)
∫

W(F)dF ∑
β,β′ ,α,α′

~dα,β

<< αβ|[iω− iωαβ + i~d~F/h̄−Φ(F)]−1|α′β′ >> ~d∗α′β′ (1)

where F is the time-averaged intensity of the electric microfield created by the ions of the system. F
is considered obeying to the microfield distribution W(F) [18–20]. α, α′ are the upper states and β, β′

are the lower states involved in the transition under consideration. Φ(F) is the collision operator
depending on the ions electric microfield F, as shown in next section. In our work, we consider only
the broadening of the line profile caused by the collision of the free electrons with the atomic emitters.
For simplicity, natural line broadening as well as Doppler and ionic Stark broadenings are ignored
in this work. If the plasma is quasi-fully-ionized, the free electrons must be sensitive to the electric
microfield created by the ions. Their trajectories are not straight lines and are given approximatively by

−→r (t) = −→ρ +
−→
V t +

e
2m
−→
F t2 (2)

such that
−→
F is the electric microfield created by the ions of the plasma (we neglect others sources of

force acting on the free electron), whereas m is the electron mass. ρ, ~V are are the initial conditions,
which are, respectively, the impact parameter and the velocity of the free electron. Below, we show
that the maximum value of ρ is the radius of the Debye sphere.

3. Electron Collision Operator

To have the broadening formula of the line profile by the electron collisions, we have considered
that the effect of the electric field resulting from the free electrons has no effect on the colliding electron
trajectory. This assumption is related to the fact that the electrons are very light and then moving with
high velocities giving a very fluctuating electric field. Thus, we have considered only the effect of the
electric field created by the ions on the collision between the colliding electron and an emitting atom.

Now, we write the expression that gives the broadening φα [2] corresponding to a state “a”
(the sub-states are α, “a” is the upper state of the studied transition from the lower state “b” with
sub-states β for example)

φα = −Re 〈α|Φa |α〉 = −N
∫

V f (V)d~V
∫

2πρdρ.Re〈α|(S− 1)|α〉 (3)

where f (V) is the well known Maxwell probability density of the velocity

f (V) = (
m

2πkT
)3/2 exp(−mV2

2kT
) (4)
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and [2]

〈α| (S− 1) |α〉 = − e4

3h̄2 ∑
σ,α′
〈α| Rσ

∣∣α′〉 〈α′∣∣ Rσ |α〉

+∞∫
−∞

du1

u1∫
−∞

du2 exp iωαα′(u1 − u2)
−→
E (u1).

−→
E (u2) (5)

where S is S-matrix and R is the position operator of the bounded electron of the helium atom and the
subscript (σ is its standard component) and

−→
E (u) is the electric field created by the colliding electron

at time u on the emitting atom given by the following expression (expressed in CGS units)

−→
E (u) = −e

−→ρ +
−→
V u− e

−→
F

2m u2(
ρ2 + V2u2 − e

−→
F

m (−→ρ +
−→
V u)u2 + e2F2

4m2 u4
)3/2 (6)

Using Equation (6) and the substitution

ui =
ρ

V

√
2xi; zαα′ = ωαα′

ρ

V

√
2; 〈α|Rσ|α′〉 = Rα,α′

σ (7)

Equation (5) becomes

〈α| (S− 1) |α〉 = − 2e4

3h̄2V2ρ2 ∑
σ,α′

Rα,α′
σ Rα′ ,α

σ

+∞∫
−∞

dx1

x1∫
−∞

(1 + 2x1x2 +
(

eFρ

mV2

)2
x2

1x2
2) exp [izαα′(x1 − x2)] dx2(

1 + 2x2
1 +

(
eFρ

mV2

)2
x4

1

)3/2 (
1 + 2x2

2 +
(

eFρ

mV2

)2
x4

2

)3/2 (8)

When we carry out the average on the impact parameter ρ and the velocity V of the electron,
the last formula gives the effect of the colliding electrons on the broadening of the line profile emitted
by the plasma.

To make Equation (8) easy to use, we have the next expansion

exp[izαα′(x1 − x2)] = cos(zαα′x1) cos(zαα′x2) + sin(zαα′x1) sin(zαα′x2)

+i [sin(zαα′x1) cos(zα′x2)− cos(zαα′x1) sin(zαα′x2)] (9)

and we use the fact that the scattered electron is subjected to a force not very different from mV2/ρ,
which is itself equal to the electric force eF (m is the electron mass). Therefore, the real part of
Equation (8) (responsible to the broadening by the electron collision) is given by

Re 〈α| (S− 1) |α〉 = − e4

3h̄2V2 ∑
σ,α′

Rα,α′
σ Rα′ ,α

σ

+∞∫
−∞

dx1

+∞∫
−∞

dx2[(cos(zαα′x1) cos(zαα′x2))

1 + 2x1x2 +
(

eFρ

mV2

)2
x2

1x2
2

ρ2
(
1 + x2

1
)3 (1 + x2

2
)3

 (10)

+ (sin(zαα′x1) sin(zαα′x2))

1 + 2x1x2 +
(

eFρ

mV2

)2
x2

1x2
2

ρ2
(
1 + x2

1
)3 (1 + x2

2
)3

]
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The last equation can be transformed to

Re〈α|(S− 1)|α〉 = − 4e4

3ρ2V2h̄2 ∑
σ,α′

Rα,α′
σ Rα′ ,α

σ I1(zαα′)

− 8e4

3ρ2V2h̄2 ∑
σ,α′

Rα,α′
σ Rα′ ,α

σ I2(zαα′)−
4e4( eFρ

mV2 )
2

3ρ2V2h̄2 ∑
σ,α′

Rα,α′
σ Rα′ ,α

σ I3(zαα′) (11)

where

I1(zαα′) = (

+∞∫
0

dx2
cos(zαα′x2)

(1 + x2
2)

3
)2

I2(zαα′) = (
∂

∂zαα′

+∞∫
0

dx2
cos(zαα′x2)

(1 + x2
2)

3
)2 (12)

I3(zαα′) = (
∂2

∂z2
αα′

+∞∫
0

dx2
cos(zαα′x2)

(1 + x2
2)

3
)2

Using equation (3.771-2) from [21]

∞∫
0

cos(zy)

(1 + y2)
3 dy =

√
π

2

(
1
2

)5/2
z5/2

αα′ K5/2(zαα′) (13)

we find that Equation (10), in Energy/Length2 unit, can be written as

Re 〈α| S− 1 |α〉 = ∑
σ,α′

Rα′ ,α
σ Rα,α′

σ ( f1(zαα′) + f2(zαα′) + f3(zαα′)) (14)

where

f1(z) = −
πe4

96ρ2V2h̄

[
z5/2K5/2(z)

]2
(15)

f2(z) = −
πe4

48ρ2V2h̄

[
∂

∂z
z5/2K5/2(z)

]2
(16)

f3(z) = −
πe4

96ρ2V6h̄

(
eFρ

m

)2 [ ∂2

∂z2 z5/2K5/2(z)
]2

(17)

Performing the average of Equation (14) over the impact parameter ρ and the velocity V by
using the Maxwell probability density, we get the diagonal matrix element of the collision operator as
the following

φα = ∑
σ,α′

Rα,α′
σ Rα′ ,α

σ (φα,α′
1 + φα,α′

2 + φα,α′
3 ) (18)

where (by using Equations (3), (4) and (15)–(18))

φα,α′
1 = −2π2e4

96h̄
4πN(

m
2πkT

)3/2
∫ ∞

0
VdV exp(−mV2

2kT
)
∫ zmax

zmin

dz
z

z5K5/2(z)2 (19)
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φα,α′
2 = −2

2π2e4

96h̄
4πN(

m
2πkT

)3/2
∫ ∞

0
VdV exp(−mV2

2kT
)∫ zmax

zmin

dz
z
(

d
dz

(z5/2K5/2(z)))2 (20)

φα,α′
3 = − π2e4

96h̄ω2
pω2

αα′
4πN(

m
2πkT

)3/2(eF/m)2
∫ ∞

0

dV
V

exp(−mV2

2kT
)

∫ zmax

zmin
zdz(

d2

dz2 (z
5/2K5/2(z)))2 (21)

such that zmax,min are defined in Equation (6) for ρ taking the Debye length λD =
√
(kT/4πNee2)

and the thermal de Broglie wavelength λT = h/
√

2πmkT, respectively. It is worth mentioning that
our approach holds when the ratio zmin/zmax = λT/λD << 1 such that the quantal effects are
negligible. Otherwise, we must consider the Thomas–Fermi model for the emitter. In that case,
the colliding electron (the atom is the target), does not follow a straight trajectory as it moves in
the Thomas–Fermi potential created by the atom. In our investigation, we consider the condition
zmin/zmax = λT/λD << 1. This means that the colliding electron perturbs the atomic emitter by
the electric field it creates, but the emitter does not modify the electron trajectory. The only possible
force acting on the electron comes from the remaining free electrons and the static ions composing
the plasma.

If we introduce the plasma frequency ωp =
√

4πNe2/m and the thermal velocity vt =
√

2kT/m,
then zmax,min become

zmin =
h̄ωp
√

2π

kT
ω̄αα′

v
=

λT
λD

ω̄αα′

v
= Λ

ω̄αα′

v
; zmax =

ω̄αα′

v
(22)

where ω̄αα′ and v are dimensionless frequency and velocity (in units of the plasma frequency ωp and
thermal velocity vt). Therefore, we find

φα,α′
1 = − π

16
2π2e4

96h̄
4πN(

m
2πkT

)3/2 2kT
m∫ ∞

0
vdv exp(−v2)[F1(

ω̄αα′

v
)− F1(Λ

ω̄αα′

v
)] (23)

=
π2

768
e2

λTλ2
D

∫ ∞

0
vdv exp(−v2)[F1(

ω̄αα′

v
)− F1(Λ

ω̄αα′

v
)]

or with variable substitution in the integral

φα,α′
1 = −Aω̄2

αα′ [
∫ ∞

0
xdxe−ω̄2

αα′ x
2
F1(

1
x
)−Λ2

∫ ∞

0
ydye−Λ2ω̄2

αα′ y
2
F1(

1
y
)] (24)

where

F1(z) = 72Ei(1, 2z) + exp(−2z)(4z3 + 30z2 + 90z + 117) (25)

A =
π2

768
e2

λTλ2
D

(26)

and Ei(1, z) is the exponential integral function [21]. By using the abbreviation Ω2
αα′ = Λ2ω̄2

αα′ ,
Equation (24) becomes

φα,α′
1 = A(Q1(Ω2

αα′)−Q1(ω
2
αα′)) (27)
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Similarly, we write the second contribution given by Equation (20) as

φα,α′
2 = 2A(Q2(Ω2

αα′)−Q2(ω
2
αα′)) (28)

where Q1,2 are defined as

Q1,2(X2) = X2
∫ ∞

0
tdt exp(−X2t2)F1,2(

1
t
) (29)

and (F1 is defined above in Equation (25)),

F2(z) = exp(−2z)(9 + 18z + 14z2 + 4z3)

The third contribution (see Equation (21)) is

φα,α′
3 =

π

8
π2e4

96ω2
p h̄ω̂2 4πN(

m
2πkT

)3/2
(

eF
m

)2
(G(Ω2

αα′)− G(ω2
αα′))

= A(
(eF)2

2mkTω2
p
)

1
ω̂2 (G(Ω2

αα′)− G(ω2
αα′)) (30)

where
G(X2) =

∫ ∞

0

dt
t

exp(−X2t2)F3(
1
t
) (31)

and
F3(z) = exp(−2z)(3 + 6z + 4z2 + z4 + 2z5)

The three contributions in Equations (27), (28) and (30) of the amplitude of the collision operator
are expressed in closed form, because the integrals in Equations (28) and (30) are computed exactly
using the Meijer functions Gm,n

p,q (see Appendix A). The obtained results are then exact and reported for

certain plasma conditions (temperatures and densities) in Figures 1–3. We see that φα,α′
3 depends on

the electric microfield F, which means a deep correlation exists between the electron broadening and
the ionic stark effect. In our application (subsequent figures), we only replace F by the Hotsmark field
FHolts = 2.63eN2/3

e . However, for best results, we can keep the dependency of the collision operator on
the electric microfield F and average (with respect to one microfield distribution [18]) the ionic Stark
effect and the collision operator together.
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Figure 1. Amplitude of collision operator versus frequency separation in plasma frequency unit ω̄αα′

for Ne = 1014 cm−3 and 10,000 K. The amplitude is in π2 A/768 unit, where A is defined in the text
as Equation (26).
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Figure 2. Amplitude of collision operator versus frequency separation in plasma frequency unit ω̄αα′

for Ne = 1016 cm−3 and 15,000 K. The amplitude is in π2 A/768 unit, where A is defined in the text
as Equation (26).
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Figure 3. Amplitude of collision operator versus frequency separation in plasma frequency unit ω̄αα′

for Ne=1017cm−3 and a temperature 20,000K. The amplitude is in π2 A/768 unit, where A is defined in
the text as Equation (26).

To compare with our results, we write the Griem’s operator (in Energy/Length2 unit) as is defined
in [2]:

φα,α′
griem = −16π2e4

3h̄
N(

m
2πkT

)3/2 2kT
m

∫ ∞

0
vdv exp(−v2)∫ zmax

zmin

dz
z

[
z2(K0(z)2 + K1(z)2)

]
(32)

by integrating over z we obtain:

φα,α′
griem = −32π2e4

3h̄
N(

m
2πkT

)3/2 kT
m∫ ∞

0
vdv exp(−v2)(yK0(y)K1(y)− xK0(x)K1(x)) (33)
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where x = zmin, y = zmax are given in Equation (22). By using the same change of variables in the
above integrals in Equations (23) and (24), we find (ω = ω̄αα′ )

φgriem = 2π
√

2
e4

3h̄
N
( m

kT

)1/2
ω2[

G4,0
1,4

(
ω2
∣∣∣ − 1

2
−1,−1, 0, 0

)
−
(

λT
λD

)2
G4,0

1,4

((
λT
λD

)2
ω2

∣∣∣∣∣ − 1
2

−1,−1, 0, 0

)]

=

√
π

3
e2

λTλ2
D

ω2 (34)[
G4,0

1,4

(
ω2
∣∣∣ − 1

2
−1,−1, 0, 0

)
−
(

λT
λD

)2
G4,0

1,4

((
λT
λD

)2
ω2

∣∣∣∣∣ − 1
2

−1,−1, 0, 0

)]

=

√
π

3
768
π2 Aω2[

G4,0
1,4

(
ω2
∣∣∣ − 1

2
−1,−1, 0, 0

)
−
(

λT
λD

)2
G4,0

1,4

((
λT
λD

)2
ω2

∣∣∣∣∣ − 1
2

−1,−1, 0, 0

)]

where Gm,n
p,q are the Meijer function given in [21].

Figures 1–3 show the collision operator amplitude (φα,α′ = φα,α′
1 + φα,α′

2 + φα,α′
3 ) given

by Equation (18) in arbitrary unit in terms of frequency separation ω̄α,α′ (in plasma frequency
unit) for various electron densities and electron temperatures and for Holtsmark electric microfield
FHolts = 2.63eN2/3

e for our work and they were compared with Griem’s result. As we see, our curves
have the same shape as those of Griem but they are more realistic because we consider the possible
interaction between the electron and the electric microfield of the plasma during the collision between
this electron and the emitter atom. More importantly, the difference between our result and Griem’s
result is more pronounced for the weak frequency separations, as shown in Figures 1–3. We also
remark that, when the coupling parameter of plasma becomes strong, i.e., the ratio λth/λD is the
greatest, our collision operator is closest to the Griem values. Furthermore, we have studied the effect
of the upper limit of the impact parameter on the electron collision operator. We remark that, when the
upper limit is about the standard value ρmax = 0.7λD [7], our value of the electron collision operator is
greater than Griem’s (see Figure 4). This discrepancy decreases when the value of the upper limit ρmax

decreases too (see Figures 5 and 6).
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Figure 4. Amplitude of collision operator versus frequency separation in plasma frequency unit ω̄αα′

for Ne = 1017 cm−3 and a temperature 20,000 K. The amplitude is in π2 A/768 unit where A is defined
in the text as Equation (26) and ρmax = 0.7λD.
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Figure 5. Amplitude of collision operator versus frequency separation in plasma frequency unit ω̄αα′

for Ne = 1017 cm−3 and a temperature 20,000 K. The amplitude is in π2 A/768 unit where A is defined
in the text as Equation (26) and ρmax = 0.58λD.
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Figure 6. Amplitude of collision operator versus frequency separation in plasma frequency unit ω̄αα′

for Ne = 1017 cm−3 and a temperature 20,000 K. The amplitude is in π2 A/768 unit where A is defined
in the text as Equation (26) and ρmax = 0.5λD.

4. Conclusions

In this work, we have considered the weak collision contribution of the electron collision operator
to the spectral line profile broadening in helium plasma. By using the hypothesis that, during the
collision, the electron movement is governed by the microfield F created by the ions of the plasma as
well as the impact approximation for the electrons, we have computed the weak contribution of the
electron collision operator. We have expressed the result in term of the Meijer’s functions. We have
shown that the collision operator is a function of the ionic electric microfield F (see Equation (30)) and
we have compared it, for a fixed value of the ionic electric microfield, to Griem results. This work
gives then a best result for the collision operator and presents a deep relation between the electron
broadening and the ionic stark broadening F. A more interesting project to study is to include in this
work an external magnetic field in the movement in Equation (2) and to see how the spectral properties
of the emission are modified by the presence of the magnetic field in the plasma.
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Appendix A

To compute the integrals in Equations (29) and (31), we use the equivalent integrals [21]

∫ ∞

0

dt
t

exp(−A2t2 − 2
t
) =

1
2
√

π
G3,0

0,3

(
A2
∣∣∣ 0, 0,

1
2

)
(A1)∫ ∞

0

dt
t2 exp(−A2t2 − 2

t
) =

1
2
√

π
G3,0

0,3

(
A2
∣∣∣ 0,

1
2

, 1
)

(A2)∫ ∞

0

dt
t3 exp(−A2t2 − 2

t
) =

1
2
√

π
G3,0

0,3

(
A2
∣∣∣ 0, 1,

3
2

)
(A3)∫ ∞

0

dt
t5 exp(−A2t2 − 2

t
) =

1
2
√

π
G3,0

0,3

(
A2
∣∣∣ 0, 2,

5
2

)
(A4)∫ ∞

0

dt
t6 exp(−A2t2 − 2

t
) =

1
2
√

π
G3,0

0,3

(
A2
∣∣∣ 0,

5
2

, 3
)

(A5)∫ ∞

0
tdt exp(−A2t2 − 2

t
) =

1
2
√

π
G3,0

0,3

(
A2
∣∣∣− 1,−1

2
, 0
)

(A6)∫ ∞

0
dt exp(−A2t2 − 2

t
) =

1
2
√

π
G3,0

0,3

(
A2
∣∣∣− 1

2
, 0, 0

)
(A7)∫ ∞

0
tdt exp(−A2t2)Ei(1,

2
t
) =

1
4
√

π
G3,0

0,3

(
A2
∣∣∣− 1,−1,−1

2

)
(A8)

where Gm,n
p,q is the Meijer function.
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