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Abstract: In this paper, the harmonic oscillator problem in Stochastic Electrodynamics is revisited.
Using the exact shape of the Lorentz damping term prevents run-away effects. After introducing a
cut-off in the stochastic power spectrum and regularizing the stochastic force, all relevant integrals
are dominated by resonance effects only and results are derived that stem from those in the quantum
ground state. For an orbit with specific position and momentum at an initial time, the average energy
and the average rate of energy change are evaluated, which stem with each other. Resonance effects
are highlighted along the way. An outlook on the hydrogen ground state problem is provided.
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1. Introduction

Quantum mechanics (QM) is a statistical theory, which does no less and no more than provide
the Born probabilities for the outcomes of experiments. Though many interpretations have been put
forward and various ontologies have been sought within the quantum theory, a deep analysis of the
dynamics of a quantum measurement in a rich enough, but solvable, model has strengthened the
case that QM provides no more than statistics. It is even capable of being connected to individual
measurements, thus addressing the celebrated “measurement problem” [1,2]. However, in this
philosophy, QM does not provide a framework to describe individual systems in detail.

In practice, in each single experiment, something occurs inside the apparatus which triggers the
specific outcome for its pointer. It is our thesis that we do not have a theory for such events. The theory
can not be QM, which provides only the statistics of outcomes; it is not classical electrodynamics, nor
any other known theory. Nature produces individual events “every day, the whole day”, and we are
still lacking a theory for these. The challenge to find this theory is as large as it was to find special
relativity and quantum mechanics in the early 1900s.

The theory of Stochastic Electrodynamics (SED) is a bold and attractive attempt to describe nature
at a deeper level than by quantum theory, aiming to capture individual events. As such, it is an attempt
to provide a sub-quantum mechanics. SED is a theory for classical particles embedded in a classical
electromagnetic vacuum, with the intensity of its modes being compatible with the quantum zero-point
spectrum. In particular, each vacuum mode is a plane wave with energy 1

2 h̄ω, where Planck’s constant
sets the energy scale of the fluctuation spectrum and appears as a new constant of nature. The SED
theory has been well-developed; the reader is referred to the books [3,4]. Before addressing deeper
questions, one, first, has to demonstrate that SED explains various properties of QM at the statistical
level. This has been shown, on general grounds, within a certain flow of arguments [3,4]. Hence,
specific cases are required to support the derivation and for gaining deeper insights. Progress has
been made for harmonic oscillators [5–11], where a proper ground state emerges. Several phenomena
related to oscillators have been explained as well, such as van der Waals forces, the Casimir effect,
and the Unruh effect. Additionally, the leading logarithm of the Lamb shift between the hydrogen 1s
and 2p states, has emerged in the harmonic oscillator and the hydrogen problems; however, the finite
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part is not in agreement for the harmonic oscillator problem, and it has not been worked out for the
hydrogen problem.

In a recent publication, we considered the hydrogen ground state in SED [12]. To lay the basis for
a possible reformulation of that problem, we revisit, here, the harmonic oscillator problem, paying
special attention to the prevention of peculiarities related to damping and ultraviolet divergences.
We outline the problem in Section 2 and consider the average dynamical properties in Section 3.
In Section 4, we consider the average progression from a general initial condition. We conclude with a
summary.

2. The Basis of SED

The harmonic oscillator problem for an electron in SED is set by the stochastic differential equation

mr̈ = −mω2r− eE + mτ
...r , τ =

2e2

3mc2 =
2α

3
h̄

mc2 = 6.266 10−24 s, (1)

where (in Gaussian units) α ≈ 1/137 is the fine-structure constant. We study this problem on both
space and time scales, inspired by the Kepler problem for the hydrogen atom [12]. Hence, we consider
a typical frequency ω1 and typical deviation r1 =

√
h̄/mω1 such that mω2

1r2
1 = h̄ω1. This leads us to

define the adimensional (“ad”) time, distance, and adimensional charge β,

tad = ω1t, r(t) = r1rad(tad), β =

√
2α

3
h̄ω1

mc2 > 0. (2)

Noting that the dimension of E satisfies E(t) = ω2
1

√
2h̄/3c3 Ead(tad), we arrive at the field term

eE(t)
mω2

1r1
= βEad(tad). (3)

Defining ω0 = ω/ω1 and dropping the index “ad”, we derive the adimensional equation of motion

r̈ = −ω2
0r− βE + β2...r . (4)

Though β and ω0 are dimensionless, the combination ωτc → ω0β2 makes β2 appear to have the
dimension of time.

In the hydrogen problem, with a nucleus of charge Ze one would have ω2
0r→ r/r3. Furthermore,

h̄ω1 = Ze2/r1 = Z2α2mc2 implies that ω1 = Z2α2mc2/h̄ and r1 = h̄/Zαmc, and

β =

√
2
3

α3/2Z ≈ Z
1965

. (5)

We consider a time window, during which the orbit remains, for many revolutions, in the plane of the
temporary orbit; which is possible due to the small value of β.

Statistics of the Stochastic Electric Field

The stochastic electric field E contains polarization indices. It is handy not to be bothered by this
technical complication. In our present units, where Ead(tad) =

√
(3/2)(c3/h̄) E(t)/ω2

1, we will keep
the explicit factor

√
3/2 after E(t) is expressed in tad. Hence, in adimensional units, its spectrum can

equally well be presented by the stochastic Gaussian field with the properties [13]

E(t) =
∫ ∞

−∞

√
Dω Eωe−iωt, Dω =

dω

2π
|ω|3e−|ω|τc , E−ω = E∗ω, 〈EωEω′〉 = δ(ω + ω′). (6)
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Its correlator correctly represents the statistics of the EM field:

CEE(t− s) = 〈E(t)E(s)〉 = 1× CEE(t− s),

CEE(t− s) = <
∫ ∞

−∞

dω

2π
|ω|3e−iω(t−s)−|ω|τc =

3
2
× 4

π
< 1
(t− s + iτc)4 . (7)

Notice the factor of (
√

3/2 )2. This notation and outcome can be verified from the
frequency-discretization derived in [12]. It is expected that the cutoff τc can be taken to zero at
the end. In the hydrogen problem, the small value of τc = α2Z2 corresponds, in physical units, to the
short Compton time h̄/mc2.

With E = −∂tA, the correlation function of the vector potential A follows from CEE = ∂t∂sCAA, as

CAA(t− s) =
1
π
< −1
(t− s + iτc)2 . (8)

At the end of Section 4, we will consider the primitive C of A, and its correlation function

A = Ċ, E = −C̈, 〈C(t)C(s)〉 = 1× CCC(t− s),

CCC(t− s) = <
∫ ∞

−∞

dω

2π(|ω|+ ωco)
e−iω(t−s)−|ω|τc = − 1

π
< log[ωco(t− s + iτc)]−

γE
π

, (9)

where ωco ∼ α3 log 1/α is an adimensional low-frequency cut-off, anticipated below (51), and γE is
Euler’s constant.

3. The Harmonic Oscillator in SED and Its Steady State

The harmonic oscillator problem in SED has been studied by many leaders in the field; see, for
example, [5–11], it is also discussed, at length, in the book [3]. This is typically done by taking,
in frequency integrals, the contributions from resonances and not bothering much about high- or
low-frequency peculiarities. It is our purpose to clarify where regularizations are needed and which
form they should have, in order to derive these physically relevant results in a proper fashion.

Let the stochastic field and the particle position have the frequency representation

E(t) =
∫ ∞

−∞

√
Dω Eωe−iωt, r(t) =

∫ ∞

−∞

√
Dω rωe−iωt. (10)

The equation of motion in time and frequency read, respectively,

r̈ = −ω2
0r− βE + D, −ω2rω = −ω2

0rω − βEω + Dω. (11)

The damping term, if taken from Equation (4), would be Dω ≈ iβ2ω3rω. Fortunately, it has been
derived, from first principles, in Equation (3.110) of [3]. In our notation, this exact result reads

D(t) =
∫ t

−∞
ds ṙ(s)D(t− s) =

∫ ∞

0
du ṙ(t− u)D(u), D(u) = − β2

π

∫ ∞

−∞
dω′ ω′2e−iω′u−|ω′ |τc , (12)

where we assumed a similar exponential cut-off exp(−|ω′|τc) as in the stochastic spectrum.
This structure is a truncated convolution, so that it still leads to a product in Fourier space.
With (ṙ)ω = −iωrω, one gets

D(t) =
∫ ∞

−∞

√
Dω Dωe−iωt, Dω = ω2Dωrω, (13)
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with the function Dω, not to be confused with Dω or the integration measure Dω of Equation (6),
given by

Dω = − iω
ω2

∫ ∞

0
du ei(ω+i0)uD(u) =

β2

πω

∫ ∞

−∞
dω′

ω′2e−|ω
′ |τc

ω′ −ω− i0
=

2β2

π

∫ ∞

0
dω′

ω′2e−ω′τc

ω′2 − (ω + i0)2

=
2β2

πτc

∫ ∞

0
dx

x2e−x

x2 − (ωτc + i0)2 = iβ2ωe−|ω|τc +
2β2

πτc
PV

∫ ∞

0
dx

x2e−x

x2 −ω2τ2
c

, (14)

where PV denotes the principal value. Transforming to the time domain, this yields

D(u) ≡
∫ ∞

−∞

dω

2π
e−iωu iωDω = θ(u)D(u), (15)

where θ is the Heaviside step function. Indeed, for u < 0, the contour can be closed in the upper
half of the complex ω plane, where iωDω is analytic, as is evident from the middle expression in the
first line of (14). Hence, D(u) = 0 for u < 0. Likewise, for u > 0, the contour can be closed in the
lower half-plane, yielding D(u) = D(u). This explains the causality relation D(t− s) = 0 for s > t.
After replacing D → D in Equation (12) for D(t), we may extend the s and u integrals from −∞ to ∞.

For small ωτc, the last expression in (14) yields

Dω ≈ δm + iβ2ω, δm =
2β2

πτc
. (16)

The δm term corresponds to a mass renormalization, due to the presence of the electromagnetic
field modes. In the units of the hydrogen problem, δme/me = δm = 4α/3π = 0.0031, independent
of Z (as it should). The term iβ2ω corresponds to the Lorentz damping term D ≈ β2...r in (11).
This approximation is known to have run-away solutions r ∼ exp t/β2, artifacts that are absent in our
exact treatment. For large |ω|τc, one finds that the mass renormalization drops out and, instead, we
have that Dω → −(4β2/πτc)/(ωτc)2 becomes negligible.

The solution of the inhomogeneous equation of motion (11) now reads

rω = βGω Eω, Dω = βω2GωDωEω, Gω =
1

ω2 −ω2
0 + ω2Dω

. (17)

The poles of Gω determine the complex eigenfrequencies. They follow from

ω2(1 + Dω) = ω2
0. (18)

Contrary to the approximation (16), which formally allows Dω ∼ −1 at a large imaginary ω = i|ω|
with |ω| ∼ (1 + δm)/β2 + β2ω2

0, the exact function Dω is small for all real and complex ω, so there
appear no such spurious eigenvalues and run-away solutions ∼ exp(t/β2) in the exact treatment.
As expected on physical grounds, there are only solutions near ±ω0. For small β and δm, they read

ω± = ±ω0 − iγ, ω0 = (1− 1
2

δm)ω0, γ ≈ 1
2

β2ω2
0, δm ≈

2β2

πτc
, (19)

with the approximations giving the leading terms in β2.

The Steady State

We now get, from (6) and (17), the steady value

〈r2(t)〉 = 3β2
∫

Dω |Gω |2 = β2
∫ ∞

−∞

dω

2π

|ω3|e−|ω|τc

(ω2 −ω2
0)

2 + (β2ω3)2
, (20)
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where the first expression can be verified from the frequency-discretization of [13]. The integral is
finite for τc → 0 and dominated by the narrow resonance region around ω0, with the result

〈r2(t)〉 = 3
2ω0

. (21)

Likewise,

〈ṙ2(t)〉 = 3β2
∫

Dω ω2|Gω |2 = 3β2
∫ ∞

−∞

dω

2π

|ω5|e−|ω|τc

|ω2 −ω2
0 + ω2Dω |2

. (22)

There is a similar resonance around ω ≈ ω0, yielding 〈ṙ2(t)〉 = 3
2 ω0 and E0 = 1

2 〈ṙ2(t)〉+ 1
2 ω2

0〈r2(t)〉 =
3
2 ω0, which is the ground state energy of the 3d quantum oscillator. However, the large ω limit is only
suppressed by the exponential. To evaluate its contribution to the leading order, ω2

0 can be set to zero,
while Dω ∼ −(β2/τc)/(ωτc)2 can be neglected. The remaining integral in (26) is trivial, and brings

〈ṙ2(t)〉 = 3
2

ω0 +
3β2

πτ2
c
=

3
2

ω0 + 3β2CAA(0). (23)

For ω0 = 0, this result follows immediately from the free-particle solution (ṙ)ω = βAω/(1 + Dω),
leading to ṙ(t) ≈ βA(t) and 〈ṙ2(t)〉 ≈ 3β2CAA(0). The large term β2CAA(0) ∼ 1/αZ2 comes from
large frequencies ∼ 1/τc, which are cut off—but not enough—by the factor exp(−|ω|τc).

To further suppress the large ω contributions, we propose to subtract the free propagator G0
ω,

G0
ω =

1
ω2 + ω2D

, Gω = Gω − G0
ω ≡

1
ω2 −ω2

0 + ω2D
− 1

ω2 + ω2D
= Gω ×ω2

0G0
ω. (24)

The expression rω = GωEω can be written as rω = GωEω, with the renormalized stochastic field

Eω → Eω = G−1
ω (Gω − G0

ω)Eω = (G0 −1
ω − G−1

ω )G0
ωEω = ω2

0G0
ωEω =

ω2
0

ω2(1 + Dω)
Eω. (25)

Now, the extra factor (ω0/ω)4|1 + Dω |2 assures enough suppression of the large ω contributions,
so that the resonance at ω0 is dominant. This yields to the leading order

〈ṙ2(t)〉 = 3β2
∫

Dω ω2|Gω |2 =
3
2

ω0. (26)

In the new expression for the position fluctuations,

〈r2(t)〉 = 3β2
∫

Dω |Gω |2 =
3

2ω0
+ β2φ, (27)

the correction φ inherits the logarithmic divergency at ω = 0 from the free particle. This, likely,
is addressed by accounting for soft photon emission, leading to a small β2 log 1/β ∼ α3 log 1/α

“Lamb” correction.
The average energy now agrees, to leading order, with that of the ground state of the QM oscillator,

E =
3
2

ω0. (28)

4. Average Progression of a Specific Orbit

Following specific orbits in time reveals the structure of the dynamics. Due to the stochastic force,
this can only be done numerically. The idea to look at the average progression of a collection of orbits,
starting at some initial time at a general initial position and speed, was put forward, by de la Peña [14]
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and Puthoff [15], for the hydrogen problem. Our numerical results [13,16] motivated us to revisit
this average progression of a set of orbits [12]. To understand better what happens in this approach,
we derive it, here, for the harmonic oscillator.

Suppose that the orbit has reached, at time t = 0, a position r0 and speed v0, and has energy

E0 =
1
2

v2
0 +

1
2

ω2
0r2

0. (29)

The situation is described by adding a proper homogeneous solution to the previous inhomogeneous
one. The solution with r(0) = r0 and ṙ(0) = v0 reads, for t > 0,

r(t) = rc(t) + β
∫ √

Dω GωEωe−iωtrω(t), ṙ(t) = ṙc(t) + β
∫ √

Dω GωEωe−iωtvω(t),

rc(t) = e−γt(r0 cos ω0t +
v0 + γr0

ω0
sin ω0t), ṙc(t) = e−γt(v0 cos ω0t− (ω2

0 + γ2)r0 + γv0

ω0
sin ω0t),

rω(t) = 1− e−γt+iωt(cos ω0t +
γ− iω

ω0
sin ω0t), (30)

vω(t) = −iω + e−γt+iωt(iω cos ω0t +
ω2

0 + γ2 − iγω

ω0
sin ω0t),

where we have already inserted GωEω → GωEω = GωEω . As required, it holds that rω(0) = vω(0) = 0.
Now, the expectation value of r2 already involves an integral of the form

∫
Dω ω2|Gω |2, which, as we

saw in Equation (26), is neatly dominated by the resonances at ±ω0.
Now consider the “state” as the ensemble of orbits with these initial conditions, progressing

under all possible realizations of the stochastic field, with the appropriate weights. The average energy
of this state is calculated, as above, by

E = Ecl +
∫ ∞

−∞
Dω|ω2

0G0
ωGω |2 (

1
2
|vω |2 +

1
2

ω2
0 |rω |2). (31)

To leading order in β, the classical orbit shrinks due to the radiation,

Ecl = e−2γtE0, E0 =
1
2

v2
0 +

1
2

ω2
0r2

0. (32)

The frequency integrals are dominated by the resonances at ±ω0. We need the rule

∫ ∞

0

dω |ω|3e−|ω|τc

π

ω4
0

ω4|1 + Dω |2
a(ω) + b(ω) e±iωt

|ω2 −ω2
0 + ω2Dω |2

≈ ω0

4γ

[
a(ω0) + b(ω0 ± iγ) e±iω0t−γt], (33)

for functions a and b which are smooth around ω0. The first terms of rω and vω in Equation (30) yield,
in the integral (31), the steady state result again, while the absolute-squares of their second terms are
of the type a in (33). The cross-terms, finally, have one factor e−γt, but pick up another one because
they are of the b-type in (33). Putting this all together, the total energy reads, if we neglect the γ and δm

corrections (except in the exponent), as

E(t) = 3
2

ω0(1− e−2γt) + E0e−2γt, (34)

which shows equilibration towards the average energy (28). The rate of energy change,

Ė(t) = 2γ(
3
2

ω0 − E0)e−2γt, (35)
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exhibits that orbits with E0 > 3
2 ω0 have the tendency to lose energy, and orbits with E0 > 3

2 ω0 to
gain energy, again demonstrating the stability of the ground state. The adimensional characteristic
timescale is 1/(2γ) = 1/(2β2ω2

0), which reads 1/(2ω2τ) in the physical units of Equation (1).

4.1. Average Change of Energy of a Specific Orbit at Moderate Times

For the hydrogen problem, we have found numerical and analytical support for the thesis that
SED does not produce a proper stationary state, but instead leads to self-ionization. For analyzing
such cases, the best one can do is to evaluate the average rate of energy change of sets of specific orbits.
Let us, therefore, derive this here, in detail, for the harmonic oscillator, with the goal of confirming
Equation (35).

The change of energy is, by definition,

Ė = 〈(r̈ + ω2
0r) · ṙ〉 = Ėfield − Ėrad, Ėfield = −β〈E · ṙ〉, Ėrad = −〈D · ṙ〉. (36)

In the term Ėfield, the integrand diverges before regularization as ω3 exp(−|ω|τc) for large |ω|.
To regularize this, we need to insert two factors ω2

0G0
ω, corresponding to evaluating −β〈E · ṙ〉 with,

again, both its factors Eω replaced by Eω. For ṙ, this was already done—see Equation (30).

4.2. The Energy Gain Term

Taking the contributions from ω < 0 and ω > 0 together, we evaluate

Ėfield =
6γ

ω2
0

∫ ∞

0

dω

π
ω3e−ωτc |ω2

0G0
ω |2 <[−Gωvω(t)]. (37)

The propagator G has poles in the lower half plane, G ≈ 1/[(ω + ω0 + iγ)(ω−ω0 + iγ)]. For t > 0,
we can close the contour in the upper quarter plane, and integrate along the imaginary ω = iz axis

Ėfield =
6γ

ω2
0

∫ ∞

0

dz
π

z3 cos(zτc) |ω2
0G0

iz|
2 <[−Gizviz(t)] (38)

= 6γω2
0

∫ ∞

0

dz
π

cos zτc

z2 + ω2
0
[1− e−γt−zt(cos ω0t− ω0

z
sin ω0t)], (39)

where we skipped the γ ∼ β2 corrections in viz and in Giz ≈ −1/(z2 + ω2
0). Without needing the

cut-off term, which has become cos zτc here, we can express this as

Ėfield = 3γω0 − 6γω0e−γt
∫ ∞

0

dy
π

e−yω0t

y2 + 1
(cos ω0t− 1

y
sin ω0t). (40)

The sin ω0t term has a logarithmic singularity at y = 0. Averaging over one period, from t to t + P
with period P = 2π/ω0, this singularity drops out, yielding to leading order in γ

Ėfield = 3γω0 − 6γω0e−γt
∫ ∞

0

dy
π

e−yω0t

y2 + 1
1− e−2πy

2πy
(y2 − 1) cos ω0t− 2y sin ω0t

y2 + 1
. (41)

The integral decays at 1/ω0t, so that

Ėfield = 3γω0(1 +
2
π

e−γt

ω0t
cos ω0t)→ 3γω0 (42)

decays, in an algebraic and damped oscillatory fashion, to its ensemble average.
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4.3. The Energy Loss Term

For the energy loss by radiation, the contribution from the classical orbit with damping
Dc = β2...r c reads

Ė (cl)
rad = −Dc · ṙc = −β2...r c · ṙc = −β2 d

dt
(r̈c · ṙc) + β2 r̈2

c . (43)

Averaged over one period, this brings, for β� 1 and γ� ω0, the radiation damping effect

Ė (cl)
rad = −Dc · ṙc = β2 r̈2

c = β2ω4
0r2

c = β2ω2
0e−2γt(

1
2

v2
0 +

1
2

ω2
0r2

0) = 2γe−2γtE0, (44)

which depends on r0 and v0 only through E0. The fluctuation contribution to this takes the form

Ė (fl)rad = 6β2
∫ ∞

0
Dω|ω2

0G0
ωGω |2 <[−ω2Dωrω(t)v∗ω(t)]. (45)

With Dω = β2( π
2τc

+ iω) ∼ γ, this expression is formally of order γ2; however, the resonances
connected to contributions from many previous orbits, bring a factor, when summed, of the order
ω0/γ. The integral is dominated by the imaginary part of Dω. Indeed, this integral yields

Ė (fl)rad = 3γω0(1− e−2γt). (46)

4.4. The Energy Balance for a Specific Orbit

We see that the rate of energy gain from the stochastic field quickly goes to its steady value 3γω0,
while the fluctuation contribution to the energy radiation starts out as zero, and grows as 1− e−2γt.

Combining (42) with (44) and (46), the average rate of total energy change of the state starting at
t = 0 with energy E0 is to leading order in the small parameter γ ∼ β2

Ė = Ėfield − Ėrad = [3γω0]− [2γe−2γtE0 + 3γω0(1− e−2γt)] = 2γ(
3
2

ω0 − E0) e−2γt. (47)

This is in accordance with (35), derived from the time-dependent energy.

4.5. Renormalized Force in the Temporal Description

In order to avoid high-frequency peculiarities, we had to renormalize the noise—see Equation (25).
The renormalized equation of motion,

rω = β(Gω − G0
ω)Eω, (48)

implies G−1
ω rω = β(G0

ω
−1 − G−1

ω )G0
ωEω; that is to say

(ω2 −ω2
0 + ω2Dω)rω = βω2

0G0
ωEω =

βω2
0Eω

(1 + δm)ω2 (1 +O(β2)). (49)

In the time domain, this reads (dropping the O(β2) corrections)

r̈ = −ω2
0r− βω2

0C + D, (50)

where the stochastic potential C(t) is defined by C̈(t) = −E(t)/(1 + δm). It has covariance

〈C(t)C(s)〉 = 1× CCC(t− s), CCC(t− s) =
1

(1 + δm)2

∫ ∞

−∞

dω

2π

e−|ω|τc

|ω|+ ωco
eiω(t−s). (51)
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Here, we tentatively cut off the new divergency at ω = 0 by adding ωco into the denominator.
The equation of motion (50) follows from (11) by setting r → r + β2C and neglecting the induced
corrections to the small damping D.

5. Summary: Lessons from the Harmonic Oscillator Analysis

Equation (50) can be viewed as the motion of the particle in the stochastic potential V(r, t) = V(r+
βC(t)) = 1

2 ω2
0 [r + βC(t)]2. For the hydrogen problem, this approach was considered in Section 2.3.1

of [13]; the formulation in which was used as a check for our numerics.
The important lessons we learned for this harmonic oscillator problem were:

(1) The noise must be renormalized to suppress the dominance of high frequencies;
(2) the damping has to be treated non-perturbatively to set the width of the resonance window;
(3) the energy absorbed from the field quickly goes to its ensemble average; and
(4) the energy radiation contains effects from both the classical orbit and the stochastic field.

Though the latter is formally of order β4, it contributes to the leading β2 behavior due to the
resonances. It starts out at 0 and decays to its ensemble average over a few damping periods.

Notice, however, that if the regularization (24) (or 25)) is not adopted, the average kinetic energy
can become very large—see Equation (23). Such excessive behavior arises from energy injection by
high-frequency modes, a general aspect of SED, be it theoretical or numerical.

Noise renormalization is also important for the energy radiation rate. If one calculates the
fluctuating part of β2〈r̈(t)〉 by using the equation of motion (11), one observes a large term
β4〈E(t)2〉 = (6/π)β4/τ4

c ∼ 1/α2Z4, which does not disappear when one solves the same effect from
the same equation in an equivalent way; however, when employing the renormalized equation of
motion (50) it yields, at most (actually, not even), a logarithmic divergency, through β4〈C2(t)〉.

We hope that these insights will improve the understanding of other properties of SED;
in particular, for the hydrogen ground state. In that problem, it has been established that certain
fluctuation modes are secular (i.e., growing linearly in time). Clearly, this leads, formally, to corrections
which relatively quickly exceed the leading order effects. It appears that, at the linear level, these secular
terms can be absorbed in the unperturbed orbit by taking its angle in the plane of the orbit at a slightly
modified value, through φ → φ′ = φ + δφ. Working with this expression corresponds to taking the
effect to all orders. The non-secular fluctuations are bounded, as in the harmonic oscillator problem,
and will likely lose their correlation with φ′ quite quickly. It is yet to be investigated whether the above
lessons make the non-secular fluctuations well-behaved and, ideally, provide a regularization that
makes the hydrogen ground state problem in SED physically sound.
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