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Abstract: The question of stability of a given quantum system made up of charged particles is of
fundamental interest in atomic, molecular, and nuclear physics. In this work, the stability for the
negatively charged positronium (Ps)-like ions or the three-body system (Ze+, e−, e−) with Yukawa
potentials is studied using correlated exponential wavefunctions based on the Ritz variational method.
We obtained the critical screening parameter µC as a function of the continuously varied nuclear
charge Z, the critical nuclear charge ZC as a function of the screening parameter µ, and the ionization
energies in terms of the screening parameter µ and Z. The critical nuclear charge for the bare Coulomb
system (Ze+, e−, e−) obtained using 700-term correlated exponential wavefunctions is in accord with
the reported results. The ionization energy, µC, and ZC for the Yukawa system (Ze+, e−, e−) exhibit
interesting behaviors. The present study describes the possible nonexistence of Borromean binding
as well as Efimov states. The possible existence of quasi-bound resonances states for the negatively
charged screened Ps-like ions is briefly discussed.

Keywords: critical stability; critical nuclear charge; critical screening parameter; Yukawa
potentials; Debye potentials; positronium negative ion; exponentially correlated wavefunctions;
variational method

1. Introduction

Despite the fact that the stability of few-body Coulomb systems is an old topic of research [1–6]
and several review articles on this problem are available in the literature [1–15], this problem is still
a fascinating topic of research and is of fundamental interest in several areas of physics such as atomic,
molecular, and nuclear physics [8–15]. This paper deals with an investigation on the stability of
three-body Coulomb systems, made up of two electrons and a particle of charge Z having the mass of
a positron, with continuously varying Z and interacting with Yukawa potentials [16] or the Debye
potentials [17]. We define such three-body system as (Ze+, e−, e−). For Z = 1, the system is known as
the positronium (Ps) negative ion. So, the system (Ze+, e−, e−) can also be considered as the negative
Ps ionic systems for continuously varying Z with values less than or equals to 1. Mills first reported
observation for this positronic system in the laboratory [18]. Theoretical studies and experimental
activities for the Ps negative ion have been summarized in the recent articles [19–25]. Due to importance
of the study of stability for various physical systems, e.g., positronic atoms, antimatter compounds,
and charged excitons in semiconductors [7], and due to the importance of the stability of few-charge
Coulomb systems with the influence of external environments [26–31], it is relevant to search for the
stability of the negatively charged Ps ionic systems with or without influence of external environments.
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The main interest of this work aims to the precise determination of the critical nuclear charge
ZC and the critical screening parameter µC for the bare Coulomb system (Ze+, e−, e−) and the Yukawa
systems (Ze+, e−, e−). The critical charge ZC denotes a cut-off for which the system under study does
not support any bound state for Z < ZC, but supports at least one bound state for Z ≥ ZC. The critical
parameter µC also indicates cut-off points those are responsible for the determination of bound states,
quasi-bound states [32], or Borromean states [33–35]. Suppose the critical screening µC admits two
values µL (the lower critical screening parameter) and µU (the upper critical screening parameter) for
a given Z, the proposed three-body Yukawa system supports bound states for µL ≤ µ ≤ µU, subject to
the condition that its two-body subsystem (Ze+, e−) (or the Ps like system) is stable for µL ≤ µ ≤ µU.
Such a system represents the quasi-bound states (i.e., the energy levels lying above the respective
two-body subsystem for µ ≤ µL) subject to the criteria that the system (Ze+, e−) is bound for µ ≤ µL,
and also represents the Borromean states for µ ≥ µU if the system (Ze+, e−) is unstable for µ ≥ µU. It is
to be noted that the quasi-bound states indicate the existence of shape resonances [31].

For the bare Coulomb case, the critical nuclear charge for the two-electron (Z, e−, e−) ions has
been studied recently using the variational method [10,11,15] and the Lagrange Mesh method [12],
among these calculations, the best variational result for ZC has been reported so far by Estienne et al. [10].
Kais and Shi [1] obtained the value ZC for the (Ze+, e−, e−) ion using the finite-size scaling method for
quantum systems based on the variational method. Here we estimate ZC for the (Ze+, e−, e−) ions using
correlated exponential wavefunctions. Moini [11] reported the value of ZC for the (Ze+, e−, e−) ions
using the Hylleraas-type basis functions. Our prediction is in good agreement with the value reported
by Kais and Shi [1]. Except the results of Kais et al. [1] and Moini [11], to the best of our knowledge,
there are no other results available in the literature for the values of ZC for the (Ze+, e−, e−) ions.

The stability of few-body systems with Yukawa potentials or Debye potentials are also of great
interest due to its extreme importance in determining several features in atomic, nuclear, and molecular
physics, such as the Borromean states, Efimov effects, quasi-bound states, critical screening parameter,
critical nuclear charge, etc. It is important to mention here that, despite the same mathematical form,
the Yukawa potentials are of interest to the nuclear physicists and the Debye potentials are of interest to
the plasma physicists. Recently, Montgomery et al. [14] and Sen et al. [13] studied the critical stability
for one- and two-electron Yukawa systems with varying nuclear charge. We also presented the critical
nuclear charge and critical screening parameter for the (Z, e−, e−) ions with Yukawa potentials and
varying Z [15]. Ho studied the doubly excited resonance states for the (Ze+, e−, e−) ions with screened
Coulomb potentials and varying Z [30]. In this study, we also present the critical nuclear charge as
a function of Z, the critical nuclear charge as a function of screening parameter, the ionization energy
in terms of screening parameter, and Z for the Yukawa system (Ze+, e−, e−) with varying Z using
the correlated exponential wavefunctions based on Ritz variational principle. The convergence and
stability of the present calculations are examined respectively with increasing number of terms in the
wavefunctions and with different choices for nonlinear variational parameters in the wavefunctions.
Atomic units (a.u.) are used throughout.

2. Calculations

One needs to solve the Schrödinger equation to obtain the ground state energy E(Z,µ) variationally
for the proposed Yukawa atoms. The Hamiltonian H(Z,µ) and wavefunction Ψ for the Yukawa system
(Ze+, e−, e−) can be written as

H(Z,µ)Ψ(µ) = E(Z,µ)Ψ(µ) (1)

H(Z,µ) = −
1
2
∇

2
1 −

1
2
∇

2
2 −

1
2
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[
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r31
+
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Ψ(µ) = (1 + Ô12)

NP∑
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Pi(µ) exp(−αir31 − βir32 − γir21) (3)
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The Hamiltonian H(Z,µ) and wavefunction Ψ for a one-electron (Ze+, e−) ion are as follows

H(Z,µ) = −∇2
−Z

exp(−µr)
r

(4)

Ψ(µ) =

NQ∑
i=1

Qi
(
µ) ri−1 exp(−δr) (5)

The parameter µ (units of a−1
0 ) is known as the Yukawa parameter or the Debye parameter which

has to be set zero for the bare Coulomb systems. δ, αi, βi, and γi are the nonlinear variational parameters.
We select the parameters αi, βi, and γi by means of the following pseudorandom relations presented in
matrix notation [

αi βi γi
]T

=
[ 〈〈

k
√

2/2
〉〉

A
〈〈

k
√

3/2
〉〉

B
〈〈

k
√

5/2
〉〉

C
]T

(6)

where k = i(i + 1) and δ, A, B, and C are chosen randomly by the trial and error method. The notation
〈〈x〉〉 denotes the fractional part of a real number x. Pi(µ) and Qi(µ) are linear coefficients. and NQ
indicates the number of terms in wavefunctions (3) and (5), respectively. Ô12 is the permutation
operator for the two identical particles 1 and 2 representing the electrons. We calculate the upper
bound to the true energy based on the Ritz variational principle.

3. Results and Discussion

The ground state energies E(Z, 0) for Z ≥ ZC obtained from this calculation for the bare Coulomb
systems (Ze+, e−, e−) and (Ze+, e−) are presented in Table 1. Table 1 also presents the systematic shift
in energy eigenvalues with decreasing Z up to the neighborhood of ZC. The ground state energy for
Z = 1, that is, for the positronium negative ion is taken from our earlier work [36]. The critical nuclear
charge obtained from this calculation is ZC = 0.921802443 which is in good agreement with the results
ZC = 0.92180245 reported by Kais and Shi [1], and is in agreement up to 5 decimal places with the
results ZC = 0.92180704 reported by Moini [11]. There are no other results in the literature to compare
our prediction for the ground state energies for the bare Coulomb system (Ze+, e−, e−) and (Ze+, e−).
However, the ground state energies presented in Table 1 are convergent and stable up to quoted digits.

Table 1. The ground state energies E(Z, 0) for (Ze+, e−, e−) using 700-term exponential basis functions
for selected values of Z along with the available data and threshold energy. a Reference [36].

Z (Ze+,e−,e−) (Ze+,e−)

1.0 −0.2620050702325 a
−0.2500000000000

0.98 −0.248636029841 −0.2401000000000
0.95 −0.229443708915 −0.2256250000000
0.93 −0.21726201089 −0.2162250000000
0.921803 −0.21243026065 −0.2124301927023
0.92180250 −0.21242996923 −0.2124299622516
0.92180245 −0.21242994009 −0.2124299392065
0.921802445 −0.21242993719 −0.2124299369020
0.921802444 −0.21242993659 −0.2124299364411
0.921802443 −0.21242993600 −0.2124299359802
0.9218024426 −0.21242993576 −0.2124299357958
0.9218024425 −0.21242993571 −0.2124299357497
0.9218024424 −0.21242993565 −0.2124299357037
0.921802442 −0.21242993543 −0.2124299355193
0.92180244 −0.21242993424 −0.2124299345975

The ground state energies E(Z,µ) for the Yukawa systems (Ze+, e−, e−) and (Ze+, e−) for different
values of Z and µ are presented in Table S1 of Supplementary Materials. The ionization energies (IEs)
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for different values Z as functions of the screening parameters are presented in Figures 1 and 2. It is
evident from the Figures 1 and 2 (and also from Table S1) that the µ dependence of IEs is non-monotonic.
With increasing µ, the IE for each Z starts to increase from zero at a lower critical µ (=µC = µL) up to
a maximum value at µ = µmax and then begins to decrease until again approaching zero at an upper
critical µ (=µC = µU). As mentioned in Section 1, here the critical µC assumes two values, one is the
lower critical screening parameter µL and other one is upper critical screening parameter µU. The µmax

in terms of Z is displayed in Table 2. The µmax increases up to a point between Z = 0.70 and Z = 0.66,
then starts to decrease with decreasing Z. The upper and lower critical values are presented in Figure 3
and Table 1. The upper and lower critical screening parameters meet at a point around Z = 0.14. This Z
value is the maximum value below which the Yukawa atoms or the Debye atoms do not support any
bound state for any given screening strength and is denoted here as the final critical charge ZFC.Atoms 2019, 7, x FOR PEER REVIEW 7 of 11 
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Table 2. The critical screening parameters for the negatively charged positronium (Ps)-like ions in
terms of the nuclear charge. The values of µmax, the highest peaks of ionization energies (IEs) (also see
Figures 1 and 2) as functions with respect to µ for different Z. The three values ZC1, ZC2, and ZC3 of the
critical nuclear charge ZC in terms of µ for the Yukawa system (Ze+, e−, e−) obtained from the fitting of
the values of µL and µU with a 5th degree polynomial.

Z
Critical Screening Parameter, µC(Z) Maximum Peak of IEs, µmax(Z) µ Critical Nuclear Charge, ZC(µ)

Lower µL Upper µU µmax ZC3 ZC2 ZC1

0.14 0.078 0.078 0.078 0.00 0.921802443
0.18 0.096 0.103 0.10 0.05 0.88479
0.22 0.113 0.128 0.12 0.07798 0.86032 0.14001
0.26 0.129 0.151 0.14 0.07815 0.86016 0.14040 0.14001
0.30 0.145 0.174 0.16 0.10 0.83862 0.18970 0.17500
0.34 0.161 0.198 0.18 0.12 0.81638 0.23648 0.20790
0.38 0.174 0.222 0.20 0.15 0.77627 0.31192 0.25823
0.42 0.186 0.246 0.22 0.16 0.76018 0.33942 0.27515
0.46 0.195 0.27 0.24 0.17 0.74198 0.36885 0.29264
0.50 0.202 0.294 0.25 0.18 0.72076 0.40109 0.30905
0.54 0.207 0.318 0.27 0.19 0.69466 0.44036 0.32601
0.58 0.208 0.342 0.28 0.20 0.65864 0.48474 0.34294
0.62 0.206 0.366 0.29 0.205 0.63067 0.51803 0.35140
0.66 0.199 0.39 0.30 0.20865 0.57632 0.57632 0.35757
0.70 0.190 0.414 0.30 0.25 0.42707
0.74 0.172 0.438 0.29 0.30 0.51025
0.78 0.147 0.461 0.28 0.35 0.59307
0.82 0.116 0.485 0.26 0.40 0.67642
0.86 0.078 0.508 0.22 0.45 0.76090
0.90 0.0313 0.532 0.17 0.50 0.84609

0.53198 0.89999
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The phenomenon appears in Figures 1 and 2 can be explained from the fact that the binding of an
atomic system results from the competition of the Z-dependent attractive potential and Z-independent
electron-electron repulsive potential. For the case when the nuclear charge is larger than the critical
nuclear charge, the bare Coulomb system is bound as the force due to the attractive potential is
stronger than that of the repulsive potential. However, when Z decreases below the critical charge, the
three-particle bare Coulomb system becomes unbound as Z affects only the attractive part, and the
force due to the repulsive potential hence overtakes the attractive contribution. In the screening
environments, the strength of the interaction potential between any given pair of charged particles is
to be reduced due to the screening effect. The stability of such screened system or the Yukawa/Debye
system depends on the competition between the screened attractive potential and the screened repulsive
potential. Though the bare Coulomb system is unbound at certain Z < ZC, the Yukawa system is
bound for the values of µ in µL ≤ µ ≤ µU. For example, the bare Coulomb system for Z = 0.9 is
unbound, but when the screening effect is increased to µ ≥ µL = 0.0313, the system becomes bound
again. This situation suggests that the screening has a stronger effect on the repulsive part than on the
attractive part of the potential. As a result, the force due to the screened attractive potential overtakes
that of the screened repulsive potential, and the Yukawa system becomes bound with increasing
ionization energy as µ increases. When µ is increased further up to the value the screening parameter
around µ = 0.17 (for the case Z = 0.9), the ionization energy starts to decrease with increasing
screening parameter as both the attractive and repulsive potentials are reduced moderately, leading to
the decrease of the overall ionization energy. When µ is increased further to the values of screening
parameter larger than 0.532, the upper critical, the screening effect is so strong that the three-particle
system becomes unbound again, as demonstrated in Figures 1 and 2. When Z decreases further, the
lower critical screening parameter increases gradually up to the value Z around 0.58 and then begins
to decrease until Z approaches ZFC. The upper critical screening parameter decreases with decreasing
Z until Z approaches ZFC. Such phenomena are presented in Figure 3 and such features appear due
to the dominant nature of screening effects on attractive potentials, repulsive potential, or overall
potentials. The detailed explanation can be well-understood from our previous article [15].

The critical charge ZC for a given µ is also determined using a polynomial fitting based on the
technique prescribed in our recent work [15] and presented here in brief. First, we draw the horizontal
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lines for µ (say 0.1, 0.4, 0.5, etc.) in Figure 3. We estimate the critical Z from the intersections between
these horizontal lines and the two critical µC curves. For µ = 0.4 and 0.5, the place of intersection is
denoted as ZC1 for a given µ. The horizontal lines corresponding to Z = 0.1 or 0.15 would intersect the
two curves at three places, and we named them as (from left to right) ZC1, ZC2, and ZC3. The horizontal
line at Z = 0.05 crosses the line for critical µL curve at ZC3. The values of ZC1, ZC2, and ZC3 extracted
from the 5th degree polynomial fitting of the values of upper and lower critical screening parameters
are listed in Table 1 and depicted in Figure 4. From Figure 4, we can determine what are the values of
critical Z for a given µ. For the values of µ belong to the interval [0.0, 0.14], the system is bound for
Z > ZC3. For the values of µ ranging from 0.07815 to 0.20865, the system is bound when Z > ZC3 or
ZC1 < Z < ZC2. For 0.25 ≤ µ ≤ 0.532, the proposed three-body system remains bound for Z > ZC1.
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One may show interest in the possible phenomena occurred due to the Efimov [37,38] physics
(see the review in Reference [35] for details) while studying the bound states for two-body and
three-body systems interacting with Yukawa potentials. In this work, it is pertinent to discuss
Borromean biding as it is a known fact that the Efimov effect, since its discovery, impinges on several
phenomena such as induced long-range interactions, discrete scale invariance, and Borromean binding.
As stated earlier in Section 1, basic idea of the three-body Borromean binding states that the three-body
Yukawa system can be defined as Borromean when it supports bound states for a fixed range of
screening parameters (called the Borromean window) while none of their two-body subsystems are
bound in such a range of screening parameter. From the Table S1 (Supplementary Materials), it is
clear that the upper critical screening parameter for each Z is similar to the critical screening of the
respective two-body subsystem and so from this study, we can only find the range for the Borromean
binding [33,34] close to the upper critical screening parameter of the three-body Yukawa system under
study. However, the present calculations show that the Borromean window, if it existed for certain Z,
would be too narrow and very close to µU. Table S1 also shows there is no Borromean binding for the
region associated with µL. In other words,µ ≤ µL, the two-body Yukawa system, supports a bound
state while the three-body Yukawa system may support a quasi-bound state, and such a feature does
not fall into the Borromean binding criteria. However, as introduced in Section 1, from the quasi-bound
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states, one can determine the shape resonances for the screened positronium negative ionic systems
using approaches like the complex-coordinate rotation method [39].

It is also of interest to realize the mass effects on the critical screening. To do so, we compared
our results of the critical screening parameters for the negatively charged Ps-like (the system under
present study) and the negatively charged H-like ions [15] in Figure 5. Figure 5 indicates that the
critical screening parameters decrease to lower values for the decrease of nuclear mass from infinitely
heavy to the mass of a positron. However, such a shift to lower values becomes slow with decreasing
nuclear charge Z.
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results of Kais and Shi [1]. For the proposed systems, this paper suggests the possible nonexistence of
Borromean binding, as well as Efimov states. The possible existence of quasi-bound resonances is also
briefly discussed. We hope our findings will be a useful reference for future studies on this topic.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-2004/7/2/53/s1,
for representative data for the ground state energies of the one- and two-electron Yukawa systems.
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