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Abstract: In fluid turbulence, intermittency is the emergence of non-Gaussian tails in the distribution
of velocity increments in small space and/or time scales. Intermittence is thus expected to gradually
disappear as one moves from small to large scales. Here we study the turbulent-like intermittency
effect experimentally observed in the distribution of intensity fluctuations in a disordered
continuous-wave-pumped erbium-doped-based random fiber laser with specially-designed random
fiber Bragg gratings. The intermittency effect is investigated as a crossover in the distribution of
intensity increments from a heavy-tailed distribution (for short time scales), to a Gaussian distribution
(for large time scales). The results are theoretically supported by a hierarchical stochastic model that
incorporates Kolmogorov’s theory of turbulence. In particular, the discrete version of the hierachical
model allows a general direct interpretation of the number of relevant scales in the photonic hierarchy
as the order of the transitions induced by the non-linearities in the medium. Our results thus provide
further statistical evidence for the interpretation of the turbulence-like emission previously observed
in this system.
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1. Introduction

The basic components of a conventional laser are an optical gain medium and an optical
cavity. In such a laser, light can be generated by optically or electrically pumping the gain medium,
where spontaneous emission occurs as a consequence of external excitation. The cavity, normally
formed by mirrors, defines spatial modes and provides radiation feedback to the gain medium. Then,
due to stimulated emission, light is amplified in the optical modes defined by the laser cavity. Above a
certain pumping threshold, the overall gain of such photonic system overcomes its overall losses and
laser radiation can be produced as a bright directional output beam. On the other hand, a random
laser (RL) is a system which provides laser-like radiation but doesn’t rely on fixed mirrors, or a cavity,
to provide optical feedback. This is achieved by exploring a multiple scattering mechanism, usually
incorporated in the gain medium itself, which extends to the optical path of photons created by
spontaneous emission inside the gain medium. This leads to an enhanced amplification of the emitted
light due to stimulated emission, in a process called amplified spontaneous emission. As a result of
the predominantly multimode character of the radiation emitted by a RL, its coherence properties
are poorer than for a conventional laser. Besides this, there is strictly no light beam produced, as in
a conventional laser. However, the intensity of the light coming out of a RL is still high, and these
optical characteristics are useful for a myriad of applications. In imaging, the low spatial coherence
results in the production of speckle patterns with lower visibility, and RLs can be used for producing

Atoms 2019, 7, 43; doi:10.3390/atoms7020043 www.mdpi.com/journal/atoms

http://www.mdpi.com/journal/atoms
http://www.mdpi.com
http://www.mdpi.com/2218-2004/7/2/43?type=check_update&version=1
http://dx.doi.org/10.3390/atoms7020043
http://www.mdpi.com/journal/atoms


Atoms 2019, 7, 43 2 of 12

smoother images [1]. The low temporal coherence makes RLs attractive for applications in optical
coherence tomography, since for this imaging technique the shorter the light source coherence length,
the better [2]. In diagnostics, the morphological change of a healthy, non scattering tissue, for example
due to neoplasia, can lead to a tissue roughness capable of scattering light, and thus monitoring RL
action in tissues can be an indication of several diseases [3].

From the point of view of basic science, photonics-based devices and processes have been
exploited as important platforms for the observation of complex phenomena, such as turbulence [4]
and spin glass [5,6], which have counterparts in natural events. Turbulence in photonics has been
observed, for instance, in a Raman fiber laser [7] with a 770 m long highly dispersive fiber at 1550 nm,
placed between two custom-designed fiber Bragg gratings (FBG) acting as the cavity mirrors. More
recently, a turbulence-like hierarchy phenomenon has been demonstrated in a random fiber laser
(RFL) [8], which differs from a conventional fiber laser in that the feedback is not provided by two
static mirrors or two FBG but, instead, it arises from the multiple scattering of photons in a disordered
medium. It thus forms an open complex disordered nonlinear system, which in the presence of gain
leads to laser emission [9].

In Kolmogorov’s statistical approach to fluid turbulence, two concepts stand out: energy cascade
and intermittency [10]. The energy cascade is the mechanism by which energy is transferred from large
to small scales, thus creating a dynamical hierarchy. On the other hand, intermittency is the tendency
of the distribution of velocity increments to develop heavy non-Gaussian tails. The intermittency
effects are expected to fade away as we move from small to large scales. Here we complement our
previous work on the hierarchical structure of the photonic turbulent regime observed in this RFL [8]
by investigating the intermittency properties. In the photonic context, intermittency is characterized
by the emergence of non-Gaussian tails in the distribution of increments of intensity in output spectra
separated by short time scales. In this work, we show that intermittency gradually disappears as
larger time separations between spectra are considered, yielding in this case a non-turbulent state
with Gaussian distribution of intensity increments for large time scales. Our experimental results are
theoretically supported by a hierarchical stochastic model that incorporates Kolmogorov’s theory of
turbulence. In particular, by means of a discrete version of the hierarchical model we provide a general
direct interpretation for the number of relevant scales in the photonic hierarchy as the order of the
transitions induced by the non-linearities in the medium.

The RFL employed in this work is based on a specially-designed random FBG inscribed in an
erbium (Er)-doped optical fiber, which is pumped by a continuous wave (CW) semiconductor laser.
Thanks to the huge amount of emission spectra recorded—150,000—in the situations well below,
near and well above threshold, this system could be characterized in detail and used to demonstrate
photonic spin-glass behavior and Lévy-like statistics [11,12].

2. Results

2.1. Experimental Results

A home-assembled CW semiconductor pump laser operating at 1480 nm delivering up to 150 mW
was used as optical pump for the Er-RFL, a polarization-maintaining Er-doped fiber (CorActive, peak
absorption 28 dB/m @ 1530 nm, NA = 0.25, mode field diameter 5.7 µm), in which the randomly
distributed phase error grating was written [13], which acted as the scatterers. Using this procedure,
improved randomness was achieved due to the very high number of scatterers (�1000) implemented.
For the present work, a fiber length of 30 cm was used and the measured threshold at 1480 nm CW
pump was Pth = (16.30± 0.05) mW. Output powers of ∼1–2 mW were obtained for input powers
∼50–70 mW, a comfortable range for the measurements. The resolution-limited (by our instrument)
Er-RFL linewidth was 0.2 nm. However, the number of longitudinal modes in the Er-RFL, measured
using a speckle contrast technique, was found to be ∼200, thus demonstrating the longitudinal
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multimode character of the Er-RFL system [12]. The system Er-doped fiber plus CW pump laser was
assembled along with input/output couplers to collect and analyze the emitted light.

The experimental observation of turbulent behavior in the Er-RFL system was obtained from the
measurement of the output intensity fluctuations in a sequence of 150,000 emission spectra collected
for three values of the excitation power P, namely below, near, and above the laser threshold [8].
The spectra for each excitation power were acquired with integration time τ = 100 ms.

Figure 1 displays the linewidth narrowing (blue) and emitted intensity (red) as a function of
normalized excitation power P/Pth , from which the RFL threshold can be clearly identified [11,12].
It is important to remark that the intensity fluctuations of the RFL system do not follow the pattern
of those of the semiconductor pump laser, as evidenced from the comparative measurements of the
standard deviation of maximum intensity for the pump laser and RFL, reported in [11,12]. Indeed,
at excitation powers above the threshold the standard deviation (normalized by the average value of
the maximum intensity) of the pump laser remained always close to zero, whereas that of the RFL
reached values up to ∼0.8 [11,12].

Figure 1. Linewidth narrowing (blue) and emitted intensity (red) of the random fiber laser (RFL)
system as a function of normalized excitation power P/Pth. The evident change of behavior in both
measurements identifies the RFL threshold. The measured threshold value was Pth = (16.30 ±
0.05) mW [11,12].

We display in Figure 2 a sample of 500 emission spectra (out of the whole set of 150,000 spectra)
at each excitation power below [(a) P/Pth = 0.72], near [(a) P/Pth = 0.99], and above [(a) P/Pth = 2.92]
the RFL threshold [11,12].

The spectra were obtained using a spectrometer with a liquid-N2 cooled infrared CCD camera
providing a nominal 0.2 nm resolution at 1530.0 nm. We comment that the spectra peak at 1540.0 nm.
It is noticeable that the intensity fluctuations below and above the threshold behave quite differently
from those around the threshold. In particular, the special value P/Pth = 2.92 was chosen for the
analysis in this work, since in this regime the RFL system presents the coexistence of photonic turbulent
and spin glass behaviors [8,14].
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Figure 2. Plots of 500 emission spectra at each excitation power below [(a) P/Pth = 0.72],
near [(b) P/Pth = 0.99], and above [(c) P/Pth = 2.92] the RFL threshold [11,12]. Intensity fluctuations
are quite more intense near the threshold, if compared to those observed below and above. The value
P/Pth = 2.92 was chosen for the present analysis.

2.2. Theoretical Background

Our basic hypothesis is that the probability distribution of the experimental signal (see below)
is a Gaussian at a local level (in time), with a slowly fluctuating variance ε. This means that we can write
the signal’s local equilibrium distribution as a conditional Gaussian: P(x|ε) = exp(−x2/2ε)/

√
2πε .

The marginal distribution P(x) is then obtained by compounding this local Gaussian with a background
distribution f (ε) of the fluctuating variance, thus

P(x) =
∫ ∞

0
P(x|ε) f (ε)dε, (1)

with f (ε) being determined by the underlying turbulent dynamics. There are two universality
classes of such models [15,16]: In one class P(x) has a power-law tail and in the other it shows a
stretched-exponential behavior. Our experimental data is well fitted using the stretched-exponential
class, and so we restrict the discussion to this case.

In fluid turbulence, the relevant statistical quantities (the signal) are the velocity increments
between two points in the flow. By analogy, in photonic turbulence we may consider intensity
increments between successive optical spectra,

δIατ(k) ≡ Iα+τ(k)− Iα(k), (2)

with τ = 1 (shortest separation time scale between the spectra α = 1, ..., Ns) and k denotes the
wavelength index. Thus, the object of our statistical analysis is the intensity increments between RL
emission spectra α and α + τ, always measured for the same wavelengths k in the spectra α and α + τ.
In the prelasing regime (P/Pth < 1), in which nonlinearities are irrelevant, the intensity increments
are statistically independent and the probability distribution for a given wavelength, P(δIτ), τ = 1,
is a Gaussian. In contrast, when the excitation power is increased beyond the threshold, it has been
shown in [8] that nonlinearities give rise to a turbulent emission in which the Gaussian form of the
intensity increments distribution remains valid only at a local level, with a slowly fluctuating variance
ετ , for τ = 1. Therefore, the local conditional distribution at the shortest time scale, τ = 1, can be
written for P/Pth > 1 as

P(δI1|ε1) =
e−(δI1)

2/2ε1
√

2πε1
. (3)
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As pointed out above, in the statistical description of turbulence the non-Gaussian global form
of P(δI1) can be obtained by compounding the above local Gaussian P(δI1|ε1) with a background
distribution of variance fluctuations f (ε1). Therefore, we may rewrite Equation (1) as

P(δI1) =
∫ ∞

0
P(δI1|ε1) f (ε1)dε1. (4)

The complex dynamics (intermittency) of the turbulent state is thus captured by the background
density f (ε1) and deriving it from a suitable statistical model is our next step.

2.2.1. Stochastic Model (H-Theory)

One important feature of the hierarchical multiscale theory of complex systems, the H-Theory [15,16],
is that it allows to obtain an exact expression for the background density f (ε1) from the stationary
solution of a set of stochastic differential equations that incorporates Kolmogorov’s hypothesis of
turbulent cascades [15,16],

dε(i)(t) = −γi

(
ε(i) − ε(i−1)

)
dt + κi

√
ε(i)ε(i−1)dW(i)(t), (5)

for i = 1, ..., N, where N denotes the number of relevant intensity fluctuation time scales
in the background variables. In our notation, the N-th hierarchy is assigned to the shortest
time scale τ = 1, that is, ε(i=N) ↔ ετ=1. The variable ε(i) represents the fluctuating
variance parameter at the respective scale in the hierarchy, with ε(0) as the largest-scale average,
γi and κi denote positive constants, and dW(i) are independent Wiener processes. The first term in
Equation (5) describes the deterministic coupling between adjacent scales, which leads to the relaxation
towards ε(0), whilst the second term accounts for the non-linear couplings with the background
variables at all scales, setting the ultimate source of intermittency. We remark that the form of
these equations is dictated by the invariance under the scale transformation ε(i) → ζε(i), along with
the positivity requirement ε(i)(t) ≥ 0, ∀t, and some constraints on the moments of the stationary
distribution [15,16].

Under the assumption of large time scales separation, γN � γN−1 � . . . � γ1, we write the
density f (ε1) ≡ fN(ε

(N)) at the shortest scale as

fN(ε
(N)) =

∫ N−1

∏
i=1

dε(i) f (ε(N)|ε(N−1))... f (ε(1)|ε(0)), (6)

where the conditional probability distribution f (ε(i)|ε(i−1)) arises from the stationary solution of
Equation (5) in the form of a gamma density,

f (ε(i)|ε(i−1)) =
(βi/ε(i−1))

βi

Γ(βi)
(ε(i))βi−1e−βiε

(i)/ε(i−1)
, (7)

with βi = 2γi/κ2
i . Remarkably, the multiple integral in Equation (6) has an analytical representation in

terms of a Meijer G-function [17] which, with the use of the notation f (ε1) ≡ fN(ε
(N)), is expressed as

f (ε1) =
ω

ε(0)Γ(β)
GN,0

0,N

(
−

β− 1

∣∣∣∣ωε1

ε(0)

)
, (8)

where ω = ∏N
j=1 βj and we have introduced the vector notation β ≡ (β1, . . . , βN) and Γ(a) ≡ ∏N

j=1 Γ(aj).
Since the first lower index of the Meijer G-function in Equation (8) is null, the parameters in the top row
are not present, as indicated by the dash.
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Finally, by substituting Equation (3) into the superposition integral (4), we obtain

P(δI1) =
1√
2π

∫ ∞

0
exp

[
− (δI1)

2

2ε1

]
ε−1/2

1 f (ε1)dε1, (9)

which, by using Equation (8), allows the distribution of intensity increments at the shortest scale τ = 1
to be obtained explicitly,

P(δI1) =
ω1/2

√
2πε(0)Γ(β)

GN+1,0
0,N+1

(
−

β− 1/2, 0

∣∣∣∣ω(δI1)
2

2ε(0)

)
. (10)

We remark that the large-δI1 asymptotic limit of Equation (10) has the form of a heavy-tailed
modified stretched exponential [17],

P(δI1) ∼ (δI1)
2θexp

{
−(N + 1)[ω(δI1)

2/2ε(0)]1/(N+1)
}

, (11)

where θ = (∑N
i=1 βi − N)/(N + 1), thus displaying important deviations from the Gaussian density,

as expected for the photonic turbulent behavior of the short-scale distribution of intensity increments.
We also comment that when the empirical data contains some internal structure indicating the

presence of clusters of statistically independent samples, it is sometimes useful to employ a more
general family of distributions given by a discrete statistical mixture of multiscale distributions,

P(δI1) =
n

∑
j=1

pjPj(δI1), (12)

where the statistical weights pj satisfy ∑n
j=1 pj = 1 and each Pj(δI1) is obtained from Equation (10)

for the same number N of hierarchy scales and a specific set of internal parameters. In particular,
in Reference [8] we apply the statistical mixture of two components (n = 2 in Equation (12)) to
successfully explain all experimental results related to the turbulent laser emission in the RFL system.

2.2.2. Discrete Hierarquical Model

Although the dynamical stochastic model described above allows for a clear connection with fluid
turbulence, it does not provide a direct interpretation of the discrete parameter N, i.e., the number of
levels or relevant scales in the model hierarchy. In other words, it is not always clear which structure
should play the role of the turbulent eddies in the complex dynamical system described by the H-theory,
particularly in the photonic context. In order to address this issue, we introduce below a discrete model
that makes direct contact with the central limit theorem (CLT) and provides a simple interpretation for
the number N of hierarchical levels present in H-theory. A related approach, albeit restricted to the
cases N = 0 and N = 1 of a two-dimensional random walk, can be found in Reference [18].

We start by defining X as a random variable, with {Xi}i=1,...,M denoting a set of M independent
realizations of X. We also define the random variable Z via Zi ≡ Xi − 〈X〉, and let YM = ∑M

i=1 Zi. Then,
the characteristic functions of YM and Z are related as follows:

ΦYM (k; M) = 〈eikYM 〉 = 〈eikZ〉M = [ΦZ(k; M)]M . (13)

In the standard form of the CLT, we consider M to be a large number, so that

ΦYM (k; M) =

[
1− k2

2M2 σ2
X + · · ·

]M

' exp

(
−

k2σ2
X

2M

)
, (14)

where σX is the root-mean-square deviation of X. This characteristic function implies that YM is also
Gaussian distributed, as expected from the CLT.
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Let us now consider that M is a discrete random variable with probability PM. In this case,
we may define a weighted averaged characteristic function,

χY(k) =
∞

∑
M=0

PMΦYM (k; M). (15)

Below we proceed by selecting PM from particular stationary solutions of well-known discrete
stochastic processes. From these results, we will be able to make contact with the H-theory and the
associated interpretation of the number of hierarchy scales N in the case of photonic turbulence in the
RFL system.

(i) Poisson process (N = 0)
The Poisson process is described by the following master Equation [19],

ṖM(t) = γ[PM−1(t)− PM(t)], (16)

which represents an interaction-free evolution in discrete space, with ṖM(t) ≡ dPM/dt and γ a positive
parameter. The solution is given by

PM =
M̄M

M!
e−M̄, (17)

where M̄ = γt and the characteristic function is given by χY(k) = exp [M̄ (ΦZ(k)− 1)]. If we rescale
Z → Z/

√
M̄ and take M̄→ ∞, we recover the expected result of the CLT, χY(k)→ exp(−k2/2σ2

X).
(ii) Pauli process (N = 1)
The master equation of the Pauli process is defined as [19]

ṖM(t) = ζM+1PM+1(t) + γM−1PM−1(t)− (ζM + γM)PM(t), (18)

where ζM = aM and γM = b(M + 1), with a, b being positive constants. The Pauli process contains
dipole transitions [19], and its stationary solution reads PM = (1− u)uM, where u = b/a = M̄/(1+ M̄)

and M̄ = ∑∞
M=0 MPM. The characteristic function is

χY(k) = [1− M̄ (ΦZ(k)− 1)]−1 . (19)

Following the steps as in the previous case, if we rescale Z → Z/
√

M̄ and take M̄→ ∞, we obtain

χY(k) =

(
1 +

k2

2σ2
X

)−1

. (20)

The corresponding distribution for the variable Y is thus

P(y) =
σX√
2π

G2,0
0,2

(
−

1/2, 0

∣∣∣∣σ2
Xy2

2

)
, (21)

which is a particular case of Equation (10).
(iii) Negative binomial process (N = 1)
The negative binomial process is a generalization of the Pauli process that allows for the presence

of bunches in the evolution of PM [19]. In this case, the stationary solution is

PM =

(
M + ν− 1

M

)
aM

(1 + a)M+ν
, (22)
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where a = M̄/ν and the parameter ν is the number of degrees of freedom. Notice that the binomial
coefficient counts the number of partitions of M among ν states. The characteristic function reads

χY(k) =
[

1− M̄
ν

(ΦZ(k)− 1)
]−ν

. (23)

If we now rescale Z → Z/
√

M̄ and take M̄→ ∞, we obtain

χY(k) =

(
1 +

k2

2σ2
X

)−ν

. (24)

The corresponding distribution for the variable Y is

P(y) =
ν1/2σX√
2πΓ(ν)

G2,0
0,2

(
−

ν− 1/2, 0

∣∣∣∣νσ2
Xy2

2

)
, (25)

which is also a particular case of Equation (10). Notice that for ν = 1 we recover the results
of the Pauli process.

We are now in position to state the general result for N arbitrary as follows. Consider a stochastic
process with stationary distribution given by

P(N)
M =

1
M!Γ(ν)

G1,N
N,1

(
1− ν

M

∣∣∣∣a
)

, (26)

where M̄ = aν̄ and ν̄ = ∏j νj. The integer parameter N gives the order of the transitions induced by

the interactions described by the evolution of P(N)
M (t). In other words, there exists a non-vanishing

coupling between P(N)
M±N(t) and P(N)

M (t) in the master equation. Observe that for N = 0 (no correlations)
and N = 1 (dipole transitions) we recover the Poisson and negative binomial distributions, respectively.
The corresponding distribution for the variable Y can be expressed as

PN(y) =
ν̄1/2σX√
2πΓ(ν)

GN+1,0
0,N+1

(
−

ν− 1/2, 0

∣∣∣∣ ν̄σ2
Xy2

2

)
, (27)

which reproduces the exact stationary solution (10) of H-theory.
We can now interpret the parameter N in the H-theory description of photonic turbulence.

In this context, if we consider YM to be a sum of M independent sources that contribute to the observed
intensity increments and admit that M is proportional to the number of photons contributing to the
photonic turbulent emission, then N might be understood as giving the order of the transitions induced
by the non-linearities in the medium. Therefore, for the conventional coherent light of a laser one has
N = 0, which implies a Gaussian distribution for the intensity increments. On the other hand, we may
assign N = 1 for chaotic light and N ≥ 1 for generic turbulent emission, which implies Equation (10)
for the corresponding intensity increments distribution, in agreement with the results on the RFL
photonic turbulent state reported in [8].

2.3. Intermittency in RFL Turbulent Emission

In fluid turbulence, intermittency is usually explained as being caused by fluctuations in the
energy transfer rates or energy fluxes between adjacent scales and its detailed description is one of the
goals of current research. A universal feature of intermittence is that its effect vanishes monotonically
as we move from small to large scales. We shall verify this universal property in the RFL photonic
turbulent state presented below.
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We start the analysis by generating a matrix from the large dataset of intensity measurements
{Iα(k)} at the excitation power P/Pth = 2.92, for α = 1, ..., Ns (= 150,000) output spectra replicas (matrix
rows) and 512 wavelengths indexed by k in the interval [1489.0 nm, 1591.4 nm] (matrix columns).
We then perform a subtraction of replicas (rows) separated by τ units of time. In other words, we work
with one intensity dataset for each wavelength indexed by k (i.e., for each column of the matrix),
and also calculate the average over replicas (rows) for each k. In this procedure (see also Materials and
Methods), each new matrix generated as above contains (150,000 − τ) rows and 512 columns. We then
perform the calculation of the distribution of the variable

xατ(k) =
δIατ(k)

[∑α δI2
ατ(k)]1/2

, (28)

for each given choice of τ measured at the wavelength 1539.8 nm around the peak emission (value of k
corresponding to the matrix column 254).

Plots of such distributions are shown in Figure 3 [(a,b) P(x1); (c,d) P(x2) and (e) P(x5000)].
In all cases, we notice an excellent agreement between the theoretical and experimental results for all
values of τ. By applying the numerical procedure described above (see also Materials and Methods),
we obtain a statistical mixture, defined as P(xτ) = pτ P1(xτ) + (1− pτ)P2(xτ), where Pj(xτ) is given

by (10) with fitting parameters Nτ , β
(j)
τ and ε

(0,j)
τ . For the separation time τ = 1 between the RFL

emission spectra, the distributions P(x1) [(a)] and f (ε1) [(b)] with the best fit parameters N1 = 6,
p1 = 0.30, β

(1)
1 = 8.53, β

(2)
1 = 6.47, ε

(0,1)
1 = 0.16 and ε

(0,2)
1 = 1.36. On the other hand, for τ = 2,

the plots of P(x2) [(c)] and f (ε2) [(d)], obtained for N2 = 5, p2 = 0.27, β
(1)
2 = 5.73, β

(2)
2 = 6.07,

ε
(0,1)
2 = 0.18 and ε

(0,2)
2 = 1.31. Remarkably, the results for a large separation in time (τ = 5000) [(e)]

display the Gaussian profile of P(x5000) (N = 0), in analogy to the nonturbulent pattern observed
from the velocity increments of rather distant points in a turbulent fluid.

Figure 3. Distributions of intensity increments P(xτ) and background density f (ετ) for RFL emission
spectra separated by τ units of time that are (a,b) first neighbors (τ = 1), (c,d) second neighbors
(τ = 2), and (e) distant neighbors (τ = 5000). The theoretical results (red lines) adjust quite well to the
experimental data (squares), with the mixture components shown in green dashed lines.
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3. Discussion and Conclusions

The effect of intermittency (non-Gaussian tails in P(xτ)) is large for τ = 1 and τ = 2, and is
essentially irrelevant for τ = 5000 and τ = 0 (no intensity increments). Thus, for τ = 5000 and
τ = 0 the variable xατ(k) is Gaussian distributed, with no need to calculate P(xτ) from a superposition
integral such as Equation (4) (this situation corresponds to set N = 0 in the hierarchical model, in which
f (ε) in (1) is trivially given by a Dirac δ-function). For τ = 1 and τ = 2 intermittency effects are
important, with large deviations from the Gaussian behavior being clearly observed. Nevertheless,
the Gaussian form of the distribution of normalized intensity increments {xατ(k)} still remains valid
at a local level, with a slowing fluctuating variance ετ , so that the compound, or superposition integral,
actually applies. In this case, the complex dynamics (intermittency) of the photonic turbulent state
is captured by the background distribution f (ετ) and since it can be explicitly calculated from the
hierarchical model in the form of a Meijer-G function, Equation (8), we have obtained f (ετ), for τ = 1, 2,
directly from the experimental data and compared with the theoretical result. The excellent agreement
that was found is a good evidence of the consistency of the photonic turbulent phase in the RFL. Finally,
the values obtained for Nτ , which were N5000 = 0, N2 = 5 and N1 = 6, indicate that intermittency
is accompanied by an increase in the number of relevant scales in the hierarchy of the photonic
turbulent state.

Combining the experimental evidences obtained in our previous works on the hierarchical
structure of the photonic turbulence regime in RFL with the observation of the intermittency crossover
effect in the present work, we conclude that the validity of our hierarchical stochastic model appears
to stand on solid ground. The next logical step is to move towards non-equilibrium thermodynamics
and introduce a small external perturbation in the turbulent phase in order to observe the subsequent
relaxation of the system, which could be compared with the predictions of H-theory. Measurements of
the entropy production in the relaxation process would also be very interesting.

4. Methods

The numerical procedure consists in dividing the experimental series {xατ(k)}, for α = 1, ..., Ns

and k around the peak wavelength, into overlapping intervals of size M, with the definition [8] of an
estimator of the variance for each interval given by

ετ(γ) =
1
M

M

∑
α=1

[x(γ−α)τ − xγτ ]
2, (29)

where the local average reads

xγτ =
1
M

M

∑
α=1

x(γ−α)τ , (30)

with the intervals labeled as γ = M, ..., Ns. Therefore, for this choice of M a series {ετ(γ)}M of variance
values is generated, from which the empirical distribution f (ετ) can be calculated. The mean value
of such series is assigned to the parameter ε(0) of the photonic hierarchical model. This procedure
is actually similar to performing a running average process. Moreover, we associate each calculated
variance ετ(γ) with the value of the variable xατ at the middle of the respective interval, thus generating
an empirical conditional distribution P(xτ |ετ) in the form of a Gaussian function similar to Equation (3).
Next, we numerically compound P(xτ |ετ) and f (ετ), as indicated by a superposition integral such
as Equation (4), and obtain the empirical distribution P(xτ), τ = 1, 2, for this choice of the interval
size M. The procedure is then repeated for other choices of M, and we select the value of M that leads
to the best fit of the empirical distribution to the theoretical one in the form of a Meijer-G function
GN+1,0

0,N+1 similar to Equation (10), obtained from the hierarchical model for a given number N of relevant
time scales for the intensity fluctuations. Lastly, a new value of N is chosen and the whole process is
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repeated. At the end, we compare the distributions P(xτ) and select the optimal pair of values N and
M related to the best overall agreement between the theory results and the experimental data.
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