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Abstract: The theoretical analysis of four fundamental laser-assisted non-linear scattering processes are
summarized in this review. Our attention is focused on Thomson, Compton, Møller and Mott scattering
in the presence of intense electromagnetic radiation. Depending on the phenomena under considerations,
we model the laser field as a single laser pulse of ultrashort duration (for Thomson and Compton
scattering) or non-monochromatic trains of pulses (for Møller and Mott scattering).
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1. Introduction

Scattering theory is the part of theoretical physics in which interactions of particles and waves
are investigated at remote times and large distances, as compared with typical time and size scales of
probed systems. For this reason, scattering theory is the most effective and, in many cases, the only
method of analyzing such diverse systems as the micro-world or the whole universe. Not surprisingly,
the investigation of scattering phenomena has been playing a central role in physics since the end of
the nineteenth century, starting from the Rayleigh’s explanation of why the sky is blue, up to modern
medical applications of computerized tomography, the very recent discovery of the Higgs particle and the
detection of gravitational waves. A general analysis of quantum and classical scattering phenomena can
be found in numerous textbooks. Among them, we refer the reader to Refs. [1–5].

Scattering processes played a fundamental role in the development of science from the theoretical
and experimental points of view. For instance, it was the analysis of alpha particle collisions with thin
metallic sheets that allowed Rutherford to discover the atomic nucleus. In 1912, the Austrian physicist
V. F. Hess detected an ionizing radiation, the intensity of which increased with altitude. It seemed to
originate beyond the atmosphere upper boundaries (for a detailed historical perspective, we refer the
reader to Refs. [6,7]). Those particular rays, more penetrating than γ radiation, were initially named
ultra-rays and are now known as cosmic rays [8]. For his work in this field, Hess was awarded the
Nobel Prize in physics in 1936, which he shared with C. D. Anderson (discoverer of the positron) [9].
However, the nature and origin of those rays was subject of great controversy. It was first assumed that the
ultra-radiation was of electromagnetic origin (photons) due to its unique ability to penetrate matter (see
Compton’s article on this subject [10]). On the other hand, W. Bothe and W. Kolhörster [11], by making
simultaneous measurements in a stack of multiple detectors, found evidence that cosmic rays behave
in certain aspects as very energetic charged particles [7,10]. In that case, the magnetic field surrounding
our planet would have a considerable effect on the trajectories followed by the radiation. Namely, IT
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would be expected to observe a higher radiation intensity near the Earth’s poles than in the vicinity of the
equator (the so-called latitude effect). This was experimentally demonstrated by J. Clay, who compared the
intensity of cosmic rays measured at the island of Java and in northern Europe, and was later confirmed
by several scientific expeditions around the globe [10]. Hence, it became commonly accepted that the
conspicuous ultra-rays and the well-known β-radiation share, in principle, the same nature. It is not
surprising that the stopping mechanism of relativistic electrons became a central topic in the early 1930s;
the understanding of cosmic rays and their interaction with matter and its constituents was a focus of the
scientific research. Furthermore, the stopping process of less-energetic electrons was of great interest in
the studies of radioactivity and the ultimate composition of matter [12,13]. Note that only a few years
earlier, in 1928, Dirac had published his prominent equation, which determines the evolution of quantum
particles (or antiparticles) from a relativistic perspective. This, in turn, provided an invaluable tool for
the early research in relativistic quantum mechanics. Since the discovery of the electron by J. J. Thomson
and the atomic nucleus by Rutherford, it was clear that the stopping process should be reduced to two
fundamental events: relativistic electron scattering by nuclei and by other electrons present in matter.
To this end, the application of the recently formulated Dirac equation was necessary. It was Sir Nevill
Francis Mott [14] who in 1929 addressed the first problem in the article “The scattering of fast electrons by
atomic nuclei”, where he presented his celebrated scattering formula. The second problem was analyzed
by the Danish physicist Christian Møller [15,16] during 1931–1932, who also derived a scattering formula
for the relativistic collision of two electrons.

Another phenomenon of fundamental importance for the understanding of classical electromagnetism
and the rising quantum theory was electron scattering by electromagnetic fields. This was first analyzed by
J. J. Thomson [17], following the discovery of his charged corpuscles, now known as electrons. He considered
a charged particle in the presence of an oscillating electromagnetic field. According to classical mechanics,
such particle should be subject to time-dependent forces leading to its acceleration. This, in turn, would
cause the emission of a secondary radiation with the exact same frequency as the incident one. Thomson’s
point of view was vastly accepted among the scientific community at that time. However, increasing
experimental evidence concerning the scattering of γ- or hard X-rays by electrons pointed out a consistent
deviation from classical predictions (see the discussion in Ref. [18]). The application of quantum theory to
this particular problem came in 1923 with A. H. Compton’s article “A quantum theory of the scattering
of X-rays by light elements” [19]. In this article, besides the novel theoretical approach to scattering, the
author presented compelling experimental evidence supporting his theory.

Arguably, one of the most important inventions in the second half of the 20th century was the
laser. Early laser systems provided a unique source of monochromatic and coherent electromagnetic
radiation. For this reason, in the 1960s, one can observe a revival in fundamental investigations concerning
electron scattering processes (Thomson, Compton, Mott and Møller scattering) in the presence of light
fields. Those early works focused predominantly on the influence of the electromagnetic radiation on
scattering cross-sections, and the possibility of photon absorption (or emission) by the electron. Later
on, the high light intensities generated by lasers made it necessary to divide the scattering events as
linear (simultaneous absorption of single photons) or non-linear (simultaneous absorption of multiple
photons) phenomena. Note that many of the theoretical analyses developed during the period of 1960–2000
considered long-in-time laser pulses, and the monochromatic (or quasi-monochromatic) plane-wave field
approximation was commonly used. However, since the invention of the chirped-pulse amplification (CPA)
technique by D. Strickland and G. Mourou [20] (they, together with A. Ashkin, shared the Nobel Prize
in physics in 2018 [21]), it became possible to obtain ultraintense laser pulses of ultrashort duration.
For this reason, in the previous decade, the non-linear electron scattering assisted by ultrashort light pulses
received considerable attention.
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It is the aim of the present review to give a theoretical (and historical) perspective of the fundamental
electron scattering process in the presence of intense electromagnetic radiation. We present the results,
previously obtained by some of us, for the laser-assisted Thomson, Compton, Møller and Mott scattering.
Depending on the problem under consideration, two types of laser fields are considered: single ultrashort
and finite light pulses, or infinite trains of temporally-shaped pulses. Special emphasis is put on the
calculation of the corresponding probability amplitudes and the analysis of quantum resonances (when
they are present). We also review the generalized Klein–Nishina formula for arbitrary shape of the laser
pulses in the context of the Compton process.

This article is divided as follows. In Section 2, we analyze the classical and quantum evolution of
electrons in the electromagnetic field. While Section 2.1 refers to the solution of the Newton-Lorentz
equations and the identification of three independent invariants of motion (which fully define the behavior
of the electron in the laser pulse), Section 2.2 presents the so-called relativistic Volkov states [22], i.e., the
solutions of the Dirac equation in the electromagnetic field. The results obtained there are used to study
the laser-assisted Thomson, Compton, Møller and Mott scattering (Sections 3, 4, 5, and 6, respectively).
In Section 4, we present a scaling law between Thomson and Compton frequencies of emitted radiation, for
which the classical and quantum energy distributions coincide. This was previously done in Refs. [23–26].
Furthermore, the generalization of the Klein–Nishina formula for arbitrary laser pulses [27] is also
presented there. For more information about the scattering phenomena for less general laser fields,
we refer the reader to the 2009 review [28].

Throughout this paper, we use the metric gµν = diag[1,−1,−1,−1] such that the scalar product
between two arbitrary four-vectors a and b is a · b = aµbµ = a0b0 − a · b. The slashed notation is also
used, i.e., /a = γµaµ, where γµ are the Dirac gamma matrices. Furthermore, the tensor σµν is defined
with respect to the commutator among those matrices, namely σµν = i

2 [γµ, γν]. For our calculations and
formulas we use units where h̄ = 1, c is the speed of light, me and e = −|e| are the electron mass and
charge, respectively.

2. Relativistic Free-Particles in the Laser Field

This section is devoted to the analysis of the temporal evolution of a relativistic, free-particle in a laser
field. While the first part concerns a purely classical treatment, the second part is devoted to its quantum
counterpart. In scattering theory it is assumed that, in the remote past and far future, the interacting
particles are in free states. Hence, to study the light-assisted scattering phenomena, it is necessary to
determine the behaviour of those free-states in the presence of electromagnetic radiation. Once the general
properties and notation for such states are established, the laser-assisted scattering processes will be
considered. Even though the phenomena presented in this section have been thoroughly analyzed (see,
e.g., Refs. [29–32] for the classical treatment, and Refs. [33–36] for the quantum description), we make here
a short overview of the most important results and methods.

2.1. Classical Solution

We are interested in analyzing the classical interaction of an electron with a finite-in-time laser pulse
defined by the vector potential A(x, t) [32]. The oscillating magnetic and electric fields describing the
pulse are given by B(x, t) = ∇× A(x, t) and E(x, t) = −∂t A(x, t), respectively. The light field propagates
along the direction n = S(x, t)/|S(x, t)| where S(x, t) = E(x, t)×B(x, t)/µ0 is the Poynting vector and
µ0 is the permeability of free space. Furthermore, the electric and magnetic fields fulfill the relations
B(x, t) = n × E(x, t)/c or E(x, t) = cB(x, t) × n, where c is the speed of light. In the following, we
assume that the plane-wave field approximation is valid, meaning that A(x, t) depends on the spatial and
temporal coordinates only through the phase φ = ωt− k · x ≡ k · x = kµxµ, where (xµ) = (ct, x) is the
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space-time four vector, (kµ) = (ω/c, k) = k0(1, n) = k0n is the wave four-vector, ω relates to the frequency
of oscillations, and k0 = ω/c is the wavenumber. It is also assumed that the laser pulse is finite and
vanishes outside the interval φ ∈]0, 2π[. For this reason, we define the vector potential A(x, t) ≡ A(φ) as

A(φ) = − 1
ω

∫ φ

0
dϕ E(ϕ) (1)

for 0 < φ < 2π and A(φ) = 0 otherwise. Note that, if Tp is the duration of the pulse, then ω = 2π/Tp.
Let us now consider an electron of four momentum (pµ) = (p0, p) and velocity v = cp/p0

interacting with the laser field described above. Its temporal evolution, from the perspective of classical
electrodynamics, is determined by the relativistic Newton-Lorentz equation of motion

dp
dt

= eE(φ) + ev×B(φ). (2)

For our further purposes, it is convenient to write the magnetic component of the above expression in
terms of p, p0, and E(φ). In doing so, we obtain

dp
dt

= ω

[
1− p · n

p0

]
dp
dφ

= e
[

1− p · n
p0

]
E(φ) + e

p · E(φ)
p0 n . (3)

According to Equation (3), the laser field acts differently along its direction of propagation and the
plane perpendicular to it. Hence, it is natural to introduce the parallel and perpendicular components of
the electron momentum with respect to n, defined as p‖ = p · n and p⊥ = p− p‖n, respectively. With this
in mind, we write now the Newton-Lorentz equation as

dp
dφ

=
1
ω

eE(φ) + 1
ω(p0 − p‖)

[
eE(φ) · p⊥

]
n. (4)

Equation (4), together with appropriate initial conditions, contains all information necessary to
determine the evolution of the electron in the laser field. However, it is worth mentioning that its
validity is restricted by the plane-wave-front approximation for the laser field. In the following, we
demonstrate that such equation leads to three independent invariants of motion which characterize the
free-particle dynamics.

1. First, we analyze the parallel component of momentum with respect to n. From Equation (4), it is
evident that p‖ satisfies the differential equation,

dp‖

dφ
=

eE(φ) · p⊥

ω(p0 − p‖)
. (5)

Hence, using the on-mass-shell relation for the electron four-momentum, pµ pµ = (p0)2 − p2 = m2
ec2,

we obtain that
dp0

dφ
=

(p⊥ + p‖n)
p0 · dp

dφ
=

eE(φ) · p⊥

ω(p0 − p‖)
. (6)

By comparing Equations (5) and (6), we conclude that p0 − p‖ is a conserved quantity during the
interaction with the laser pulse, meaning that

d
dφ

(p0 − p‖) = 0. (7)



Atoms 2019, 7, 34 5 of 36

Therefore, the first invariant of motion, I1, is defined as

I1 = p0 − p‖. (8)

2. From the Newton-Lorentz equation (Equation (4)), the perpendicular component of momentum p⊥

obeys the relation,
dp⊥

dφ
=

eE(φ)
ω

. (9)

According to Equation (1), it is also possible to write the above relation in terms of the vector potential.
In doing so, we obtain the second invariant of motion,

I2 = p⊥ + eA(φ), (10)

which means that the canonical momentum of the electron, in the direction perpendicular to the laser
field propagation, is conserved. It is worth mentioning that I2, as a vector, implicitly defines two
independent relations. Thus, the three invariants are already determined by the set {I1, I2}.

In the following, we analyze the consequences derived from the invariants of motion defined
above. Let us start by assuming that a free charged particle with initial momentum pi interacts with
the electromagnetic radiation at φ = 0, i.e., p(φ = 0) = pi. According to I2 in Equation (10), after the
laser pulse is over, the perpendicular momentum p⊥f ≡ p⊥(2π) satisfies p⊥f + eA(2π) = p⊥i + eA(0).
The vector potential vanishes at φ = 0 and φ = 2π, thus p⊥f must be equal to p⊥i . Additionally, and taking
into account that the four-momentum is on the mass shell, the invariant I1 in Equation (8) implies that
p‖i = p‖f and, therefore, pi = pf. In other words, the invariants of motion derived from the Newton-Lorentz
equation result in the electron being neither accelerated nor decelerated by the action of the laser pulse, if
treated in the plane-wave-front approximation. This is the so-called Lawson-Woodward theorem of no
acceleration [37,38]. For our further purposes, we write another invariant by noting that the equation

d
dφ

[1
2
(p⊥)2 − p‖(p0 − p‖)

]
= 0, (11)

is always satisfied. Hence, we define the “third” invariant in the following way,

I3 = p‖(p0 − p‖)− 1
2
(p⊥)2. (12)

As one can check, the relation I2
1 + 2I3 = m2

ec2 is fulfilled, which means that I1 and I3 define the rest
mass of the particle [32].

We construct now the trajectories x(φ) followed by the electron, initially located at the position xi, in
the light field. Let us also assume that the initial momentum of the particle, before the interaction with the
laser pulse starts, is pi = p⊥i + p‖i n. From the invariant I2 we have that

p⊥(φ) = p⊥i − eA(φ), (13)

and, by making use of I1 and I3, we find that the parallel component p‖(φ) is given by

p‖(φ) = p‖i +
[p⊥(φ)]2 − (p⊥i )

2

2(p0
i − p‖i )

= p‖i +
[p⊥i − eA(φ)]2 − (p⊥i )

2

2(p0
i − p‖i )

. (14)
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In our calculations, we have considered the independent variable as the phase of the laser field φ.
Therefore, our aim is to represent the position of the particle as a function of such variable, namely, we
want to calculate x(φ). To this end, we use

d
dt

=
ω(p0 − p‖)

p0
d

dφ
, (15)

which directly implies that
dx(φ)

dφ
=

c
ω(p0 − p‖)

p(φ). (16)

In other words, the perpendicular and parallel components of the “velocity” of the electron (as a
function of φ) are given explicitly by

x′⊥(φ) ≡ dx⊥(φ)
dφ

=
c

ω(p0 − p‖)
[p⊥i − eA(φ)], (17)

x′‖(φ) ≡ dx‖(φ)
dφ

=
c

ω(p0 − p‖)

[
p‖i −

2eA(φ) · p⊥i − e2 A2(φ)

2(p0
i − p‖i )

]
, (18)

where the “primes” denote the derivative d/dφ. Finally, according to Equations (17) and (18), we find
that the classical trajectory described by the electron in a finite-in-time laser pulse is

x⊥(φ) = x⊥i +
c

ω(p0 − p‖)

[
p⊥i φ− e

∫ φ

0
dφ′ A(φ′)

]
, (19)

x‖(φ) = x‖i +
c

ω(p0 − p‖)

[
p‖i φ− 1

2(p0
i − p‖i )

∫ φ

0
dφ′

[
2eA(φ′) · p⊥i − e2 A2(φ′)

]]
. (20)

For the classical scattering, we define the space-time four vector as x(φ) = (ct(φ), x(φ)), with
x(φ) = x⊥(φ) + nx‖(φ). For the sake of completeness, we also present here the equations defining the
“acceleration” with respect to the phase, i.e.,

x′′⊥ ≡ d2x⊥

dφ2 = − ec
ω(p0 − p‖)

dA(φ)

dφ
, (21)

x′′‖ ≡ d2x‖

dφ2 =
ce

ω(p0 − p‖)2
(eA(φ)− p⊥i ) ·

dA(φ)

dφ
. (22)

These formulas are used in Section 3 when we analyze the Thomson scattering. Note that the
treatment developed in this section comes from the fully relativistic analysis of the electron dynamics in
the laser field.

2.2. Quantum Solution

From a quantum perspective, we consider now the temporal evolution of a charged, relativistic
particle of four-momentum pµ in the laser field. In our notation, the wave function describing such
particle (or antiparticle) is represented by the bispinor ψ

(β)
pλ (x) where β = ± labels the positive and

negative energy solutions of the Dirac equation, and λ = ± determines the spin degrees of freedom.
The electromagnetic radiation is defined by the four-vector potential Aµ(φ) = (0, A(φ)). As we consider
an arbitrary polarization of the laser field, the most general form of such potential is
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A(φ) = A0[ε1 f1(φ) + ε2 f2(φ)] ≡ −
µmec

e
[ε1 f1(φ) + ε2 f2(φ)]. (23)

Here, we have introduced two arbitrary shape functions with continuous second derivatives f j(φ),
j = 1, 2, the amplitude of the vector potential A0, the relativistically invariant parameter µ = |e|A0/mec,
and two orthonormal polarization four-vectors ε

µ
j = (0, εj) such that ε

µ
i ε jµ = −δij and kµε jµ = 0. Note

that, as the laser field is a propagating transverse wave, the relations k · A = kµ Aµ = 0 and k2 = k · k = 0

always hold. The bispinor ψ
(+)
pλ (x) describing an electron (particle) of momentum p interacting with the

electromagnetic radiation satisfies the Dirac equation in the laser field, namely,(
i/∂ − e /A−mec

)
ψ
(+)
pλ (x) = 0 (24)

and it is known as the Volkov solution (VS) [22]. To find an analytical expression for ψ
(+)
pλ (x), Equation (24)

has to be solved explicitly. As mentioned in Ref. [34], the VS for plane waves can be found by a variety
of methods, including algebraic procedures, decoupling of the spinor’s components in the Majorana
representation, etc. (see [34] and references therein). The construction of a suitable operator which
transforms the free-particle solutions into Volkov states [28], or the solution of a quadratic form of the
Dirac equation (see, e.g., [33,35,36]) for arbitrary laser fields have also been considered. For the sake
of completeness, we outline here the general procedure presented in [33,35,36] (for the solution of the
Klein-Gordon equation in the laser field and its extension to the Dirac equation, see also Ref. [39]). The first
step in obtaining the VS is to define a bispinor Φ(+)

pλ (x) with the ansatz

ψ
(+)
pλ (x) =

(
i/∂ − e /A + mec

)
Φ(+)

pλ (x). (25)

As ψ
(+)
pλ (x) satisfies the Dirac equation in the laser field (Equation (24)), Φ(+)

pλ (x) is the solution to the
second-order differential equation [(

/̂p − e /A
)2
−m2

ec2
]
Φ(+)

pλ (x) = 0, (26)

where p̂ = i∂ is the momentum operator. By using the properties of the gamma matrices (see Ref. [33]) we
note that /̂p/̂p = p̂2, /A /A = A2 and γµγν = gµν − iσµν, i.e.,

/̂p /A + /A/̂p = p̂ · A + A · p̂− iσµν( p̂µ Aν + Aµ p̂ν). (27)

With this in mind, Equation (26) can be recast as follows,[(
p̂− eA

)2
+ eiσµν( p̂µ Aν + Aµ p̂ν)−m2

ec2
]
Φ(+)

pλ (x) = 0. (28)

As σµν is antisymmetric (σµν = −σνµ), and introducing the electromagnetic tensor Fµν = ∂µ Aν −
∂ν Aµ [36], we obtain [(

p̂− eA
)2
− e

2
σµνFµν −m2

ec2
]
Φ(+)

pλ (x) = 0. (29)

Note that, once the analytical form of Φ(+)
pλ (x) is found, the Volkov states can be directly obtained.

To this end, the ansatz
Φ(+)

pλ (x) = ξ(k · x)χ(+)
pλ (x) (30)
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is considered [36]. Here, ξ(k · x) is an unknown function to be determined and χ
(+)
pλ (x) = exp [−ip · x]u(+)

pλ

is the free-particle, positive-energy solution of the Dirac equation. The normalized bispinors u(+)
pλ satisfy

(/p −mec)u(+)
pλ = 0, (31)

with ū(+)
pλ · u

(+)
pλ′ = δλλ′ and ū(+)

pλ = [u(+)
pλ ]†γ0. By inserting Equation (30) into Equation (29), one arrives at

a linear differential equation satisfied by ξ(k · x). According to Refs. [33,36], such equation has the form

dξ(φ)

dφ
=

i
2k · p

[(
p− eA

)2
− ie/k /A′ −m2

ec2
]
ξ(φ), (32)

where the fact that σµνFµν = 2i/k /A′ with A′ ≡ A′(φ) = dA(φ)/dφ, has been taken into account.
The solution to Equation (32) is easily found, leading to

ξ(φ) = exp
[
− i

2k · p

∫ φ

0
dϕ
(

2eA · p− e2 A2 + ie/k /A′
)]

= exp
( e/k /A

2p · k

)
exp

[
− i

2k · p

∫ φ

0
dϕ
(

2eA · p− e2 A2
)]

. (33)

The first exponential factor can be expanded in powers of γ. As can be shown, for any integer n > 1
the terms (/k /A)n vanish [35,36] and, therefore, we obtain

ξ(φ) =
(

1 +
e/k /A
2p · k

)
exp

[
− i

2k · p

∫ φ

0
dϕ
(

2eA · p− e2 A2
)]

. (34)

Finally, by using Equations (30) and (34), the Volkov solution, normalized in the quantization volume
V, is given by

ψ
(+)
pλ (x) =

√
mec
Vp0

(
1− e /A/k

2p · k

)
e−iS(+)

p (x)u(+)
pλ , (35)

where the function S(+)
p (x), defined as

S(+)
p (x) = p · x +

∫ k·x

0
dφ
[ ep · A(φ)

p · k − e2 A2(φ)

2p · k

]
, (36)

has been introduced.
By following a similar procedure, it can be shown that the Volkov-type solution for positive or

negative energies has the general form [34]

ψ
(β)
pλ (x) =

√
mec
Vp0

(
1− β

e /A/k
2p · k

)
e−iβS(β)

p (x)u(β)
pλ , (37)

with

S(β)
p (x) = p · x−

∫ k·x

0
dφ
[
− β

ep · A(φ)

p · k +
e2 A2(φ)

2p · k

]
. (38)

Of special importance for the derivations presented in this review are the so-called Volkov currents,
which are defined as

[j(ββ)
p′λ′ ,pλ]

µ = ψ̄
(β)
p′λ′(x)γµψ

(β)
pλ (x), (39)
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where the bar indicates the Dirac adjoint, i.e., ψ̄
(β)
p′λ′(x) = [ψ

(β)
p′λ′(x)]†γ0. Our main interests concern the

scattering of electrons in the laser field, thus the quantity of interest ia the four-vector [j(++)
p′λ′ ,pλ]

µ.

3. Thomson Scattering

Indisputably, J. J. Thomson greatly influenced the development of classical physics, electromagnetism
and atomic theory at the beginning of the 20th century (see, e.g., Ref. [40]). His most notable contributions
include the discovery of the electron (corpuscle), the calculation of its charge-to-mass ratio e/me and the
analysis of scattering of charged particles in the presence of electromagnetic radiation (Thomson scattering).
However, as pointed out in the historical reviews [18,41], Thomson’s concept of electromagnetic fields
was rather peculiar: while obeying the Maxwell equations, the fields propagated along well-defined paths
given by “Faraday tubes” extending between electric charges. This point of view, the discrete nature
of radiation, could explain why only few atoms or molecules in a macroscopic gas sample react when
excited by X-rays [41]. On the other hand, the pulses traveling along Faraday lines would, in principle, be
scattered by electrons [18]. In Ref. [17], Thomson analyzed the emission of X-rays from cathode-ray tubes
and the observation of “secondary Röntgen radiation”. In a cathode-ray tube, electrons are accelerated to
very large velocities before being suddenly stopped. This, in turn, creates primary Röntgen rays, which
are fast oscillations of electromagnetic fields. If the primary radiation encounters additional electrons (free
or bound to atoms or molecules), their acceleration would lead to the emission of secondary rays [17].
In Thomson’s (classical) approach, the frequency of both the incident and emitted radiation should be
exactly the same [19] (see the discussion about Compton scattering in Section 4).

In the period 1949–1967, the non-linear Thomson (and Compton) scattering in intense electromagnetic
radiation received renewed attention, starting with the pioneering work of Sen Gupta [42–45]. In those
references, the author analyzed the harmonic emission (i.e., the emission of photons with frequencies
which are integer multiples of the driving one), the generation of “white radiation” caused by the
radiation reaction, etc. Already in the early 1960s, Vachaspati [46] anticipated the emission of a second
harmonic by considering the dynamics of a charged particle in the oscillating electric and magnetic fields
of low-frequency. Eberly and Sleeper [47] considered the motion of an electron, originally at rest, in a
finite-in-time light pulse by making use of the Hamilton–Jacobi equations. According to them, the mass
shift experienced by the particle is of classical nature and it is present in Thomson scattering. This shift
was already predicted for the Compton process by Brown and Kibble in their prominent 1964 paper [39].
(For a more detailed account of the theoretical advances in Thomson scattering up to the late 1960s, we
refer the reader to the early review by Eberly [48]). However, the problem of identifying an appropriate
frame of reference to carry out the calculations and to relate such results to what is detected in the
laboratory subsisted up to 1970, when Sarachik and Schappert [49] referred to this particular subject.
The authors considered the harmonic emission in the R (rest, in average) frame and how it relates to the
L (laboratory) frame. More than 20 years later, Varró and Ehlotzky [50] considered a particular case of
Thomson scattering: the electron was assumed to interact with the oscillating electromagnetic radiation
and a homogeneous magnetic field simultaneously. It was shown that resonance phenomena can take
place for given configurations.

Most of the early works about non-linear Thomson scattering in intense laser radiation were based on
the assumption that the electron is initially at rest. Nevertheless, in modern facilities, the laser pulses collide
with fast electrons. For this reason, Salamin and Faisal [51–53] extended the treatment of Sarachik et al. [49]
and Eberly [48] to account for the initial speed of the charged particles. Their analysis included several
possible collision geometries, i.e., the case of electrons co-propagating, counter-propagating or propagating
at right angles with respect to the laser field. In particular, the harmonic generation by linearly-polarized
and monochromatic laser fields in the L frame was presented in [53].
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In the last two decades, a renewed interest in the collision of relativistic electrons with laser fields
has been observed. This is due to the necessity of creating novel sources of short-in-time pulses of highly
energetic radiation [54,55]. In those references, Krafft and Krafft, Doyuran, and Rosenzweig reanalyzed
the Thomson head-on scattering and scattering at orthogonal geometries for pulsed and intense laser
fields. As they have shown, a non-constant envelope of the pulses may cause a broadening on the spectral
response, known as the ponderomotive broadening. Furthermore, Boca and Florescu [56] considered the
non-linear Thomson and Compton phenomena driven by a single non-monochromatic laser pulse of
defined temporal extension. Special attention was paid there to the comparison between quantum and
classical results and the limit in which both of them coincide. More recently, Huang et al. [57] determined
the effects of a Gaussian (or the so-called super-Gaussian) pulse envelope on the Thomson process.
In 2014, Krajewska and Kamiński [26] centered their attention on spin and polarization effects and how
they influence the Compton scattering as compared to its classical (spinless) counterpart. The authors
demonstrated that there exists a universal scaling law relating the energy spectra from both approaches.
Such scaling is applicable for driving laser pulses of arbitrarily-short duration and remains valid even
in the high-energy portion of the frequency distributions. However, it is restricted to the case when the
probability of spin-flipping is low. Note that a similar scaling law, applicable to monochromatic driving
fields or fields characterized by slowly-varying envelopes, was previously introduced by Heinzl et al. [23],
and was further developed by Seipt and Kämpfer [24,25].

In Ref. [58], Krajewska et al. further compared the radiation emission from Compton and Thomson
processes. This time their analysis focused on the global phase acquired by the probability amplitudes
during scattering. As they have shown, while the spectral response from both theories can be very similar
for certain parameters (when spin effects play no role and the frequency is below a characteristic Compton
emission cutoff), the classical and quantum phases of the probability amplitude may differ considerably.
This has important consequences for the synthesis of ultrashort pulses of highly energetic radiation.
Namely, it was demonstrated that the Compton process can lead to ultrashort pulses of radiation only
when quantum effects on the global phase are marginal.

In this section, we present the main formulas introduced in [26,58] in the context of the classical
analysis conducted in Section 2.1. For Thomson or Compton scattering and their application to the
generation of highly-energetic electromagnetic radiation, we refer the reader to the review [59] and the
articles [58,60].

Let us start by considering the Feynman diagram for the Thomson scattering, shown in Figure 1
(right). While the wiggly line corresponds to the scattered radiation (four-momentum K), the straight line
represents the electron in the laser field (four-momentum p). Contrary to Compton process, the particle
does not change its momentum during the scattering (cf. Figure 1, left) as the quantum recoil effects
are absent.
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Figure 1. Feynman diagrams representing the Compton (left) and Thomson (right) scattering processes
of electrons with initial four-momentum p. The final electron four-momentum is p′ and the emitted
photon four-momentum is K. All particles are on their mass shells. The difference between these two
processes is that for the classical Thomson scattering the electron final momentum is p′ = p, i.e., there is no
electron recoil.

In Section 2.1, we calculate the electron trajectory (Equations (19) and (20)) and its “acceleration” with
respect to the phase (Equations (21) and (22)) in an arbitrary electromagnetic field A(φ). From now on, we
assume that the particle travels with four-momentum p before the interaction with the laser pulse, defined
by Equation (23). The angular-frequency energy distribution is determined by the Thomson formula [61]

d3ETh

dωKd2ΩK
=

e2

4πε0c
|ATh|2, (40)

where ωK is the frequency of the radiation scattered in the solid angle d2ΩK , and ε0 is the electric
permittivity of free space. The classical amplitude ATh, calculated with respect to the phase φ, is given
by [26,58]

ATh =
1

2π

∫ 2π

0
Υ(φ) exp

(
i
ωK

ω
φ + i

ωK

c
[n− nK ] · x(φ)

)
dφ, (41)

with nK being the propagation direction of the emitted radiation, x(φ) the trajectory of the electron and
the function

Υ(φ) =
nK × [(nK − β(φ))× β′(φ)]

[1− nK · β(φ)]2
(42)

a partial amplitude. Here, we introduce the reduced velocity β(t) = (1/c)dx/dt, which, as a function of φ,
is given by

β(φ) =
x′

c
ω + n · x′ . (43)

As before, the “prime” refers to the derivative with respect to the phase, i.e., x′(φ) = dx/dφ. From
Equation (43), it follows directly that

β′ =
x′′
(

c
ω + n · x′

)
− x′(n · x′′)(

c
ω + n · x′

)2 . (44)

Equations (40)–(44) show that the angular-frequency distribution is determined when the functions
x(φ), x′(φ), and x′′(φ) are known. This is exactly the case, as they have been already presented in
Section 2.1 (Equations (17)–(22)).
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Sometimes, it is of interest to consider the polarization properties of the emitted radiation. For this
reason, we introduce two vectors εK,σ, each one describing a polarization state σ (σ = 1, 2). With this in mind,
we define the scalar partial amplitude Υσ(φ) as Υσ(φ) = ε∗K,σ · Υ(φ). Taking into account Equation (42), such
quantity can be written in a relativistically invariant form as [58]

Υinv
σ (φ) =

Υσ(φ)

K0 =
(εK,σ · x′′)(K · x′)− (εK,σ · x′)(K · x′′)

(K · x′)2 (45)

and the corresponding polarization-dependent Thomson amplitude is

Ainv
Th,σ =

1
2π

∫ 2π

0
Υinv

σ (φ)eiK·x(φ)dφ. (46)

Note that, in the previous expressions, x ≡ x(φ) is the four-position introduced in Section 2.1 and
εK,σ = (0, εK,σ). Finally, the polarization-independent frequency distribution is given by

d3ETh

dωKd2ΩK
= ∑

σ=1,2

d3ETh,σ

dωKd2ΩK
and

d3ETh,σ

dωKd2ΩK
= α

ω2
K

c2 |A
inv
Th,σ|

2, (47)

with α = e2/(4πε0c) being the fine-structure constant. The invariant formulation of the Thomson scattering
has many advantages. The most important one is that the probability amplitude can be calculated in an
arbitrary reference frame before being Lorentz-transformed to any other frame of interest.

As is clear in the next section, Compton and Thomson formulas predict, in general, different
frequencies of the emitted radiation. This is a consequence of the quantum recoil of the electron, present in
Compton’s theory, and the energy-momentum conservation relations. There is also another fundamental
difference between those two approaches: while the spin degrees of freedom are not accounted for in
the classical evolution of the electron, they play a fundamental role in the Dirac theory. Those two main
features lead to different classical and quantum predictions. However, as shown in Refs. [23–26], there
exists a scaling law between the Compton and Thomson frequencies, for which the energy distributions
are approximately equal. This is provided that spin effects do not play a role in the scattering dynamics
and that the frequency of the emitted radiation is below a quantum cutoff.

4. Compton Scattering

The Compton process, which is the quantum counterpart of the Thomson scattering, was originally
analyzed by A. H. Compton [19] in a 1923 paper. (For a detailed account of the events leading to Compton’s
theory, we refer the reader to the historical review [18].) At the beginning of the 20th century, there was
great controversy about the scattering of highly energetic radiation by solid materials [18]. Experiments
carried out by D. C. H. Florance [62] and J. A. Gray [63,64] in the period 1910–1920 showed that the scattered
X- or γ-rays present a softening (increase in wavelength) depending on the detection angle (see Ref. [18]).
According to Thomson’s classical theory, the frequency of the emitted radiation should be, in principle,
exactly equal to the frequency of the incident one. Hence, the observed softening was initially attributed to
an angular separation of the wavelengths constituting the non-monochromatic incident beam by the action
of the scatterer (see [18] and references therein). However, in 1921, Compton indicated that the secondary
beam indeed presents “a real change in the character of the radiation” [65]. His explanation of this new
character relied on the existence of an angular-dependent fluorescence mechanism induced by the incident
beam; in such case, the emitted radiation could be softer than the incident one [18,65]. However, in 1923,
the author discarded the fluorescence hypothesis and introduced the ideas of radiation quanta in scattering
theory [19]. In contrast to the classical assumption that the energy of an electromagnetic wave is uniformly
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distributed over its wavefront, Compton suggested that the quantized unit “spends all of its energy and
momentum upon some particular electron” [19]. By using the conservation relations, he concluded that
not only would the electron experience a recoil, but also the scattered radiation should be characterized
by a lower frequency. Compton calculated the difference in wavelength between the secondary and
primary radiations as a function of the scattering angle. To corroborate his hypothesis, he measured the
spectrum of molybdenum radiation and the spectrum of the rays scattered by a solid target (constant
angle). The observed increase in wavelength was, indeed, very close to the one predicted by his theory.
To demonstrate the angular-dependence of this increment, he determined experimentally the properties of
scattered γ-rays at different angles. Again, the theoretical predictions were in good agreement with his
observations. The author concluded that, in fact, scattering of electrons by electromagnetic radiation is of
quantum nature. It is interesting to notice that Compton was not the only one working on the quantum
description of electron scattering by light. It seems that Debye, independently, also derived the scattering
formula [66]. However, the latter author agreed to give the credit of the discovery to Compton, due to
the compelling theoretical and experimental evidence he presented. (For this and many more interesting
historical remarks, we refer the reader to the book [18].) Finally, as it is argued there, the discovery of the
Compton scattering was fundamental for the acceptance of the quantum theory of light.

Since the invention of lasers in 1960 [67,68], the Compton process has entered a new phase of research.
With the availability of sources of coherent and strong radiation, new experimental and theoretical analyses
were possible. Already in 1963, Nikishov and Ritus proposed the use of laser fields to analyze the radiation
emitted by an electron in an electromagnetic plane wave, among other phenomena [69] (see also the recent
articles [23,70] and references therein). In an article published the following year, the same authors made
a distinction between two intensity-related regimes of the Compton process [71]: linear and non-linear
Compton scattering (LCS and NLCS, respectively) (see Ref. [72] for more details); when light fields of
relatively low intensity are considered, electron scattering by a single photon leads to the LCS; in contrast, at
large intensities, the probability of interaction with multiple photons, and subsequent emission of a single
one, becomes high. The last case corresponds to the NLCS [70,73]. Note, however, that most of the initial
investigations concerning the linear and non-linear Compton processes were based on the assumption of a
monochromatic plane wave of infinite duration, as pointed out in Refs. [70,73]. An important exception
worth mentioning here is the early work of Neville and Rohrlich [74], who considered in 1971 the scattering
of a spinless particle by a laser pulse of, in principle, finite duration [70]. Their treatment, based on the
perturbation theory of the S-matrix formalism, was developed in a mixed framework where the particle
experiences the influence of a strong, classical laser radiation while interacting with quantized modes
of the electromagnetic field [74] (see also [23,73]). This approach is known as the Furry picture [23,74].
More recently, Narozhnyĭ and Fofanov [75] analyzed, theoretically, the spectral properties of Compton
photons emitted in a head-on collision between relativistic electrons and finite-in-time, circularly-polarized
laser pulses. The authors were motivated by the rapid advance in laser systems already observed in the
1990s, which allowed the production of very short and intense light pulses. Under such circumstances,
the monochromatic plane wave approximation is no longer applicable and different theoretical tools had
to be developed [75]. In 2009, Boca and Florescu [73] studied the NLCS induced by non-monochromatic
laser pulses without the restrictive conditions imposed by Narozhnyĭ and Fofanov. This new treatment
allowed the investigation of electron scattering by very short (few cycle) laser pulses, and the influence of
the carrier-envelope phase on the emitted radiation [73].

In the remaining part of this section, we present an overview of the NLCS induced by short-in-time
laser pulses in the plane-wave-fronted approximation. The treatment applied here is based on an extension
of the original paper by Neville and Rohrlich [74] and the work of Boca and Florescu [73]. The full
derivations and additional details can be found in Refs. [58,70].
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Before presenting detailed derivations, let us give a general overview of the Compton scattering in
the Furry picture by following the reasoning presented in [23,72]. Prior to scattering event, the electron is
coupled to the strong, classical electromagnetic field A(φ) defined in Equation (23), i.e., it is described by
the Volkov solution in Equation (35) labeled by the initial momentum p (before the interaction with the
light pulse starts). The electromagnetic radiation induces an additional contribution to the momentum due
to the oscillating motion in the field [23,72]. At certain time, such electron emits an extra non-laser photon
and, subsequently, the particle is again described by the Volkov solution with asymptotic momentum p′

(after the laser pulse has vanished). In Figure 1 (left), we present the Feynman diagram representing
the Compton process described here. As stressed in Ref. [23], the straight lines are not associated with
plane-wave free-electron states but correspond to the Volkov solutions Equation (35). The wiggly line
represents the emitted radiation during the scattering event. Contrary to the Thomson process, the electron
experiences a recoil upon the interaction with the laser photon, which explains its change in momentum.
Furthermore, the emitted photon has a different frequency compared to the laser radiation. This is a
consequence of the energy and momentum conservation relations, as already established by Compton [19].

Consider an electron with initial four-momentum p and spin polarization λ interacting with a laser
field. After scattering by the laser radiation, the particle is found with a final four-momentum p′ and
spin state λ′; one photon of frequency ωK = cK0 propagating along the direction nK is also emitted.
Such photon is characterized by the wave and polarization four vectors, Kµ = (K0, K) = K0(1, nK) and
ε

µ
Kσ = (0, εKσ), respectively. Here, εKσ is a unit vector and σ = 1, 2 labels the polarization degrees of

freedom. As it is for the primary radiation, the relations K · K = 0 and K · εKσ = 0 also apply. Additionally,
for two polarization states σ, σ′ we have that εKσ · εKσ′ = −δσ,σ′ . With the notation already introduced, we
write the Compton probability amplitude for the scattering of electrons by the laser field as [70]

A(++)
C (Kσ; p′λ′; pλ) = −ie

∫
d4x [j(++)

p′λ′,pλ]
µ[A(−)

Kσ (x)]µ. (48)

Here, j(++)
p′λ′,pλ is the four-component probability current for electrons (β = +) defined in Equation (39)

and the term A(−)
Kσ (x) is given by

A(−)
Kσ (x) =

√
2πcα

e2ωKV
eiK·xε∗Kσ. (49)

Taking into account the analytical expressions of the Volkov solution in Equation (35) for the finite
laser pulse in Equation (23), we write the probability amplitude for Compton scattering in Equation (48)
in the Furry picture as [70]

A(++)
C (Kσ; p′λ′; pλ) =A(ωK, p0, p′0)

∫
d4x exp

(
− i[S(+)

p (x)− S(+)
p′ (x)− K · x]

)
×ū(+)

p′λ′

(
1+

e /A/k
2p′ · k

)
/ε ∗Kσ

(
1− e /A/k

2p · k

)
u(+)

pλ . (50)

For simplicity, we introduce the amplitude prefactor A0(ωK, p′0, p0), given by

A0(ωK, p′0, p0) = i

√
2παm2

ec3

p′0p0ωKV3 . (51)
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Up to now, the laser four-vector potential has been presented in the general way A(k · x) = A(φ).
In the following, we express the Compton amplitude in Equation (51) in terms of the shape functions
f1(k · x) and f2(k · x) introduced in Equation (23). Namely, we write

A(++)
C (Kσ; p′λ′; pλ) = A(ωK, p0, p′0)

∫
d4x exp

(
− i[S(+)

p (x)− S(+)
p′ (x)− K · x]

)
×
[
ū(+)

p′λ′

(
1− µmec

2p′ · k [ f1(k · x)/ε 1 + f2(k · x)/ε 2]/k
)

/ε ∗Kσ

(
1+

µmec
2p · k [ f1(k · x)/ε 1 + f2(k · x)/ε 2]/k

)
u(+)

pλ

]
.

(52)

Note that in the integrand, besides the exponential factor, the only functions depending on x are
f1(k · x) and f2(k · x). Hence, by following the derivations in [70], Equation (52) can be written as a sum of
integrals of the type

C(n,m) =
∫

d4x[ f1(k · x)]n[ f2(k · x)]m exp
(
− i[S(+)

p (x)− S(+)
p′ (x)− K · x]

)
, (53)

where n, m = 0, 1, 2. For our further purposes, we express the exponent in Equation (53) in the following way,

S(+)
p (x)− S(+)

p′ (x)−K · x = (p− p′ − K) · x +
∫ k·x

0
dϕ
(
− µmec

[ p · ε1

p · k −
p′ · ε1

p′ · k

]
f1(ϕ)

−µmec
[ p · ε2

p · k −
p′ · ε2

p′ · k

]
f2(ϕ) +

(µmec)2

2

[ 1
p · k −

1
p′ · k

]
[ f 2

1 (ϕ) + f 2
2 (ϕ)]

)
(54)

≡Q · x +
∫ k·x

0
dϕ
(

a1 f1(ϕ) + a2 f2(ϕ) + a1,2[ f 2
1 (ϕ) + f 2

2 (ϕ)]
)

. (55)

Equations (54) and (55) implicitly define the factors a1, a2, and a1,2, together with the four vector Q. All
of them are independent of x. This is useful for the application of the Boca–Florescu transformation [70,73]
(see below).

At this point, let us separate the integrals C(n,m) into two groups. The first group, characterized by n
and m such that n 6= 0 or m 6= 0, contains vanishing integrands outside the interval k · x ∈]0, 2π[. On the
other hand, as noted by Boca and Florescu [73], the term corresponding to C(0,0) behaves differently and
requires a separate treatment. We start by considering this case first.

As shown above, to calculate the Compton probability amplitude, it is necessary to perform all
integrals C(n,m) for n, m = 0, 1, 2. However, the different character of C(0,0) complicates the situation.
It would be useful to transform this integral such that it could be expressed in a similar way as the other
C(n,m). In fact, this can be done by means of the Boca–Florescu transformation (BFT) [73] (see also Appendix
B in Ref. [70]). To this end, we write C(0,0) as follows,

C(0,0) =
∫

d4x exp
[
− i

∫ k·x

0
dϕ h(ϕ)− iQ · x

]
, (56)

where h(ϕ) = a1 f1(ϕ) + a2 f2(ϕ) + a1,2[ f 2
1 (ϕ) + f 2

2 (ϕ)] is an integrable function, which vanishes at ϕ < 0
and ϕ > 2π. According to the BFT (see Ref. [70] for details), Equation (56) can be rewritten as

C(0,0) =− k0

Q0

∫
d4x h(k · x) exp

[
− i

∫ k·x

0
dϕ h(ϕ)− iQ · x

]
=
∫

d4x
(

ã1 f1(k · x) + ã2 f2(k · x) + ã1,2[ f 2
1 (k · x) + f 2

2 (k · x)]
)

exp
[
− i

∫ k·x

0
dϕ h(ϕ)− iQ · x

]
.

(57)
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Here, ã = −k0a/Q0 for a being a1, a2 or a1,2 and Q0 6= 0, which is always satisfied in the process under
consideration [70]. Hence, from Equation (57) and the definition in Equation (53), we can express C(0,0) in
terms of the other integrals, namely

C(0,0) = ã1C(1,0) + ã2C(0,1) + ã1,2[C(2,0) + C(0,2)]. (58)

The BFT has then reduced the problem to the calculation of the remaining C(n,m). We now consider
this case. First, we introduce the so-called laser-dressed four-momentum p̄ given by

p̄ = p−mecµ

p · k (ε1 · p〈 f1〉+ ε2 · p〈 f2〉)k +
(mecµ)2

2p · k (〈 f 2
1 〉+ 〈 f 2

2 〉)k, (59)

where the angular brackets 〈F〉 denote the average of the function F(φ) over the duration of the pulse.
This means that, if F(φ) is integrable and vanishes outside the interval 0 6 φ 6 2π, then

〈F〉 = 1
2π

∫ 2π

0
dφF(φ). (60)

Note that the definition in Equation (59), which comes from the analytical form of the Volkov
solution in Equation (35), is arbitrary [27,76]. Namely, the probability amplitude of scattering in the laser
field depends on the four-current in Equation (39), thus the measurable quantity is always the difference
p̄− p̄′. In other words, all physical quantities remain unchanged by adding an extra term, independent
of p and vanishing in the absence of the laser pulse, to the dressed four-momentum. Furthermore, it is
noteworthy that p̄, as presented in Equation (59), is only on the mass shell if 〈 f1〉 = 〈 f2〉 = 0, which is
not always the case for a single and short laser pulse. This problem can be solved by introducing the
transformation (see Ref. [27])

p̄→ p̄ + µmec(〈 f1〉ε1 + 〈 f2〉ε2). (61)

In this particular case, we obtain that p̄ · p̄ = m̄2
ec2, where m̄e is the effective mass of the electron,

given by

m̄2
e = m2

e

(
1+

2Up

mec2

)
(62)

and Up is the ponderomotive energy of the electron in the laser pulse, i.e.,

Up =
µ2mec2

2
(〈 f 2

1 〉 − 〈 f1〉2 + 〈 f 2
2 〉 − 〈 f2〉2), (63)

(see also the analysis about the mass shift presented by Harvey et al. in Ref. [77] and the discussion in [27]).
However, as our main concern is the calculation of the probability amplitude in Compton scattering, we
remain with the definition in Equation (59). In doing so, we recast the exponent in Equation (53) in terms
of a function G(k · x), which depends on x only through the phase of the laser pulse. In terms of the
parameters a1, a2 and a1,2, introduced in Equation (55), this function is given by

G(k · x) =
∫ k·x

0
dϕ
[
a1( f1(ϕ)− 〈 f1〉) + a2( f2(ϕ)− 〈 f2〉) + a1,2( f 2

1 (ϕ) + f 2
2 (ϕ)− 〈 f 2

1 〉 − 〈 f 2
2 〉)
]

(64)

such that
S(+)

p (x)− S(+)
p′ (x)− K · x = (p̄− p̄′ − K) · x + G(k · x). (65)
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At this point, the functions C(n,m) in Equation (53) can be obtained with the introduction of the
following Fourier decomposition,

[ f1(k · x)]n[ f2(k · x)]me−iG(k·x) =
∞

∑
N=−∞

G(n,m)
N e−iNk·x, 0 6 k · x 6 2π. (66)

This leads to the expression

C(n,m) =
∞

∑
N=−∞

G(n,m)
N

∫
d4x exp

(
− i[p̄− p̄′ + Nk− K] · x

)
≡

∞

∑
N=−∞

G(n,m)
N

∫
d4x e−iPN ·x, (67)

where we have introduced the four-vector PN = p̄− p̄′ + Nk− K. Note that the integration measure d4x is
restricted to such x for which 0 6 k · x 6 2π. For this reason, it is convenient to introduce the so-called
light-cone coordinates (see, e.g., [70,78,79]), defined with respect to the laser pulse propagation direction n.
The four-position, in this coordinate system, is represented as

x‖ = n · x, x⊥ = x− x‖n, x− = x0 − x‖, x+ = (x0 + x‖)/2, (68)

the integration measure takes the form d4x = dx+dx−d2x⊥ and, in particular, PN · x = P+
N x− + P−N x+ −

P⊥N · x⊥. The phase of the laser field is now given by φ = k · x = k0x−. Thus, due to the finite duration
of the pulse, the integration variable x− changes from 0 to 2π/k0. With this in mind, we write C(n,m)

in Equation (67) as

C(n,m) =
∞

∑
N=−∞

G(n,m)
N

∫
dx+d2x⊥

∫ 2π/k0

0
dx− exp

[
− i(P+

N x− + P−N x+ − P⊥N · x⊥)
]

=(2π)3
∞

∑
N=−∞

G(n,m)
N δ(1)(P−N )δ(2)(P⊥N )

[1− e−2πiP+
N /k0

iP+
N

]
. (69)

Therefore, the Compton probability amplitude in Equation (52) takes the form

A(++)
C (Kσ; p′λ′; pλ) = (2π)3A(ωK, p0, p′0)

∞

∑
N=−∞

δ(1)(P−N )δ(2)(P⊥N )
1− e−2πiP+

N /k0

iP+
N

DN, (70)

where

DN = ū(+)
p′λ′

{
/ε ∗KσG̃(0,0)

N +
µmec

2

[(
/ε ∗Kσ/ε 1/k

p · k − /ε 1/k/ε ∗Kσ

p′ · k

)
G(1,0)

N +

(
/ε ∗Kσ/ε 2/k

p · k − /ε 2/k/ε ∗Kσ

p′ · k

)
G(0,1)

N

]
(71)

− (µmec)2

4(p · k)(p′ · k) [/ε 1/k/ε ∗Kσ/ε 1/kG(2,0)
N + /ε 2/k/ε ∗Kσ/ε 2/kG(0,2)

N + (/ε 1/k/ε ∗Kσ/ε 2/k + /ε 2/k/ε ∗Kσ/ε 1/k)G(1,1)
N ]

}
u(+)

pλ .

To account for the C(0,0) integral, we introduce the modified Fourier coefficient

G̃(0,0) = ã1G(1,0)
N + ã2G(0,1)

N + ã1,2[G
(2,0)
N + G(0,2)

N ], (72)

which comes from our analysis of the BFT (see Equation (58)). Note that each term in the sum in
Equation (70) constitutes an individual non-linear contribution to the overall probability amplitude. For
the case of a monochromatic laser field, the integer N is interpreted as the number of photons absorbed in
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the scattering process [70]. In addition, from the delta functions in this equation, the definition of PN and
the light-cone coordinates, the conservation relations can be identified. In doing so, we find (see Ref. [27]),

(p̄− p̄′ − K) · n = 0, and p̄⊥ − p̄′⊥ −K⊥ = 0. (73)

This set of equations, together with other considerations, can be used to determine the final electron
momenta for well-defined initial conditions by measuring the properties of the emitted radiation.

Once the probability amplitude of scattering in Equation (70) is obtained, it is possible to calculate the
energy spectra of Compton photons for a given initial electron spin state λ and final photon polarization σ.
In doing so, one arrives at the following expression (see Ref. [70] for more details as well as Refs. [80,81]),

d3EC(Kσ; pλ)

dωKd2ΩK
= ∑

λ′=±

αm2
ec2(K0)2

(2π)2(k · p)(k · p′)

∣∣∣∣∣∑N DN
1− e−2πiP0

N/k0

P0
N/k0

∣∣∣∣∣
2

, (74)

where DN is given by Equation (71). Here, ΩK is the solid angle at which the Compton photon of
frequency ωK is detected. The spin- and polarization-independent probability distribution is obtained
from Equation (74) by summing over the final polarization states while averaging with respect to the initial
spin degrees of freedom,

d3EC

dωKd2ΩK
= ∑

σ=1,2

d3EC,σ

dωKd2ΩK
and

d3EC,σ

dωKd2ΩK
=

1
2 ∑

λ=±

d3EC(Kσ; pλ)

dωKd2ΩK
. (75)

It is clear that the quantum calculations, from the theoretical and numerical point of view, require a
considerably larger effort as compared to the classical ones. For this reason, it is of interest to analyze the
Compton and Thomson polarization-dependent angular-frequency distributions [Equations (47) and (75)]
in order to determine the parameters for which they coincide. Heinzl, Seipt, and Kämpfer [23] (see
also Refs. [24,25]) found a scaling law between the Thomson and Compton frequencies (now denoted
as ωTh

K and ωK, respectively) which relate both spectral responses, provided that the driving fields are
monochromatic or are characterized by slowly-varying envelopes. This was later generalized by Krajewska
and Kamiński [26] for the case of arbitrary ultrashort laser pulses. According to them, such scaling law is
defined by the relation

ωTh
K =

ωK

1− ωK
ωcut

, (76)

where
ωcut =

1
h̄

cp · n
n · nK

(77)

is the so-called cutoff, i.e., the maximum photon frequency emitted in Compton scattering. (Here, we
have exceptionally restored the reduced Planck constant, h̄, to underline the quantum nature of ωcut.)
Furthermore, the authors found that the polarization-dependent classical and quantum spectra are related
by the formula

d3EC,σ

dωKd2ΩK
= γ(ωK, ΩK)

d3ETh,σ

dωTh
K d2ΩK

∣∣∣
ωTh

K =
ωK

1−ωK/ωcut

, (78)

where γ(ωK, ΩK) is a smooth and slowly varying function. This means that both distributions coincide, up
to a multiplicative factor, when the Thomson frequency is rescaled according to Equation (76). However,
such approximation is valid provided that the spin is conserved during the scattering (this is actually
expected, as classical particles do not have spin degrees of freedom) and that the frequency of the emitted
radiation is smaller than ωcut. Furthermore, only when this frequency is much smaller than the cutoff, the
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Thomson and Compton spectra become identical, i.e., the corrections in the scaling law are negligible. In
this sense, the scaling formula augmented considerably the previously-known range of validity of the
Thomson process.

At this point, we make some comments about the Klein–Nishina (KN) formula and its generalization
to ultrashort laser pulses. As mentioned above, the integer number N, which appears in the Compton
probability amplitude in Equation (70), defines the number of laser photons absorbed during scattering,
provided that the driving field approximates a monochromatic plane wave. In such case, the KN formula
takes the form

ωK,N =
Nω

p·nK
p·n +

Um.
p
c

n·nK
p·n + Nω

ωcut

. (79)

It determines the frequency ωK,N of the emitted radiation in the direction nK [i.e., nK = (1, nK)], after
the electron absorbed N quanta. Here, Um.

p = µ2(mec2)2/(4cp · n) is the ponderomotive energy of the
electron in the monochromatic field. On the other hand, two effects can take place when the driving field
lasts for a very short time [27]: first, due to the uncertainty principle together with multiple incoherent
contributions to the total probability amplitude, the individual Compton peaks are broadened and cannot
be properly resolved. Second, the KN formula [Equation (79)] is no longer applicable, as it requires laser
fields for which 〈 f1〉 = 〈 f2〉 ≈ 0 (this is not the case for finite-in-time pulses). The first problem can be
addressed by using trains consisting of Nrep pulses with Nosc field oscillations within each individual
envelope. This causes a “coherent enhancement of the Compton amplitude”, leading to an increment of
the signal by the factor N2

rep in the frequency spectra [27]. The second problem requires a modification
to Equation (79), which is the so-called generalized Klein–Nishina formula (GKN) [27]. The latter accounts
for the finite time duration of each pulse from a train, and can be written as

ωGKN
K,N =

(N/Nosc)ωL
p·nK
p·n + νn·nK+µmec(〈 f1〉q1+〈 f2〉q2)

(p·n)2 + (N/Nosc)ωL
ωcut

, (80)

where the scalar quantities qi (i = 1, 2) and ν are defined as

qi = (p · n)(nK · εi)− (p · εi)(n · nK) and ν =
µ2(mec)2

2
(〈 f 2

1 〉+ 〈 f 2
2 〉) (81)

and the frequency of the field is ωL = NrepNoscω. Furthermore, as shown in [27], a detailed analysis
of such spectra can be used to determine important parameters of the driving field, when measured at
different collision geometries. Hence, the GKN formula could provide a novel diagnostics tool for intense
and short laser pulses.

In closing this section, we mention the most important experimental evidence of non-linear quantum
electrodynamics, the SLAC experiment [82]. In this experiment, electron–positron pair creation was
observed during the collision of highly energetic electrons and intense laser fields. It is agreed that such
process happens in two steps: first, a highly energetic photon is produced during Compton back-scattering;
second, such photon interacts with multiple laser photons in the non-linear Breit–Wheeler process
producing the pairs (see Refs. [82,83] and references therein). However, it is worth mentioning that
another single-step phenomenon, the trident process (which involves the collision of fast electrons with
photons leading to pair production), can also occur (see Ref. [83]).

5. Møller Scattering

Only few years after Dirac published his equation, the Danish physicist Christian Møller successfully
treated the electron-electron scattering from a relativistic and quantum point of view [15,16]. His work,
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originally oriented towards the problem of the stopping process (the mechanisms for which relativistic
electrons are stopped by matter), led to the celebrated Møller formula, which determines the scattering
cross-section for the collision of two relativistic electrons (see the historical reviews [12,13]). As mentioned
in those reviews, this problem was already considered by Bethe from a non-relativistic perspective.
Formally, he demonstrated that the impact of two charged particles can be described in terms of an
effective electrostatic potential consistent with an effective charge distribution. The scattering problem is
then reduced to the Coulomb interaction between a moving particle and the apparent effective charge
created by the other one. As discussed in [13], Møller’s great achievement was the generalization of
Bethe’s ideas to the relativistic case. The introduction of a retarded potential with the effective charge and
current distributions, treated in accordance to the Bohr’s correspondence principle, was considered in [15]
(see Refs. [12,13]).

After the invention of the laser, a renewed attention was given to light-assisted scattering processes.
Already in 1967, V. P. Oleĭnik analyzed the Møller scattering in the presence of an infinite, monochromatic,
and circularly polarized plane wave [84,85]. By calculating the effective cross-section, the author
demonstrated that, for certain parameters of the electrons momenta and electromagnetic radiation, strong
resonances may occur. Furthermore, he showed that the electron in the laser field behaves similarly
to a “quasiparticle” characterized by an infinite number of discrete energy states with finite lifetimes.
Hence, for appropriate parameters of the interaction, resonance effects should be observed. Additionally,
Oleĭnik showed that the effective interaction between the two electrons can become attractive due to their
interaction with the electromagnetic radiation. More than ten years later, Bös et al. [86,87] reanalyzed the
problem of resonances in Møller scattering in the same type of laser fields (namely, in circularly-polarized
monochromatic plane waves) and for non-relativistic electrons with opposite initial momenta. As they have
shown, the presence of the electromagnetic radiation modifies the field-free process in three fundamental
ways: (i) both electrons can absorb or radiate an integer number of laser photons; (ii) their effective masses
are modified; and (iii) light-induced scattering resonances can, in fact, appear. As a consequence of (i) and
(ii), the conservation relations turn out to be different in the presence of the light field. This leads to a
discrete and intensity-dependent energy spectra of scattered electrons. In another paper, Bergou, Varró and
Fedorov [88] also analyzed the laser-assisted Møller scattering from a non-relativistic point of view. It was
demonstrated there that the dipole approximation can be used to transform the Schrödinger equation into
two different equations, one accounting for the interaction with the laser field and the other one for the
charge repulsion. Hence, they concluded that the laser effects in the scattering process require a treatment
beyond such approximation. In doing so, the authors analyzed the intensity-dependent momentum and
energy conservation relations in the non-relativistic case and the resonance phenomena for a screened
Coulomb potential. They also corroborated that resonances can be related to bound(-like) states caused
by the effective attraction experienced by the particles. Few years later, Kazantsev and Sokolov [89] (see
also Ref. [90]) studied classically the dynamics of two electrons in laser fields. They found that for very
intense radiation the effective potential can, in fact, be attractive and may lead to the aforementioned
bound states (see also the review [91]). In Ref. [92], Fedorov and Roshchupkin examined the influence of
the laser field on interference effects far from resonances. Those interferences arise from the exchange and
direct contributions to the Møller-assisted process and, as the authors showed, they can be suppressed for
certain parameters of the light-matter interaction.

Already in the 1990s, Denisenko and Roshchupkin [93] examined the Møller scattering in more
complex laser fields under non-resonant conditions. In particular, they considered bi-chromatic linearly-
or circularly-polarized plane wave fields and determined their influence on the laser-assisted process (see
also [94]). In a series of papers, Starodub, Roshchupkin and co-authors [91,95–98] studied the effective
forces experienced by two electrons in the presence of light pulses. The influence of laser fields composed
by counter-propagating, co-propagating or perpendicularly-propagating pulses of radiation was also
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considered. Their treatment was based on the solution of the classical equations of motion governing
the dynamics of non-relativistic particles in the field. The authors determined the pulse parameters for
which the electron-electron (e-e) interaction becomes attractive or for which the so-called anomalous
repulsion can take place [98]. For the laser-assisted Møller process from a quantum electrodynamics point
of view, Padusenko and Roshchupkin [99] calculated the scattering cross-section under resonant conditions
for light pulses of relatively long duration. This mechanism was also generalized there for the case of
two-lepton scattering in an electromagnetic wave. In addition, in Ref. [100], Lebed’ et al. considered the
resonance effects in ultrarelativistic e-e collisions in laser pulses at small scattering angles. In the same
reference, the influence of the light field polarization properties on the scattering cross-section received
attention. For a detailed analysis of resonant and non-resonant Møller-like scattering (and other processes)
in long-in-time laser pulses, we refer the reader to the reviews [101,102], and references therein.

In 2004, Panek et al. [103] studied the Møller scattering in linearly-polarized laser fields of relativistic
intensities (the ponderomotive energy of the electron in the plane wave is similar or larger than its rest
energy). They determined the circumstances for which resonances can take place. The authors showed
that, under non-resonant conditions and for certain parameters of the e-e collision, the resulting scattering
cross-sections are minimal. In the terminology coined by them, there exist “dark angular windows” when
the scattering angles are sufficiently small [103]. Møller scattering in super intense laser fields was also
presented in the review article [28], together with other fundamental phenomena in strong-field quantum
electrodynamics. In the following, it is our aim to summarize some of the derivations and conclusions
already presented in Refs. [28,103]. For further details, we refer the reader to those references.

Let us start by considering two electrons with (field-free) four-momenta p1 and p2 in a relativistically
intense train of laser pulses of arbitrary polarization. Similar to the case of Compton scattering (see
Section 4), our approach considers that the electrons interact with a classical vector potential and can
absorb or emit N quantized modes of the field (photons). Hence, in the Furry picture, the electron states
before and after the scattering event takes place, are described by the Volkov solution in Equation (35) with
asymptotic four-momenta p1 and p2 (incoming particles) or p′1 and p′2 (outgoing particles). In Figure 2,
we present the Feynman diagrams corresponding to the direct (Figure 2, left) and exchange (Figure 2,
right) contributions to the Møller scattering. While the straight lines represent Volkov states labeled by
different field-free momenta, the wiggly line corresponds to the exchange of a virtual photon. Due to
the indistinguishability of electrons, both the direct and exchange contributions need to be accounted
for. To obtain an explicit form of the scattering matrix element, the plane-wave-front approximation
needs to be introduced. In such case, we represent the four-vector potential defining the field in the form
of Equation (23). However, the functions f1(k · x) and f2(k · x) are periodic and do not vanish outside the
interval k · x ∈ [0, 2π].

Figure 2. Feynman diagrams representing the scattering of electrons with initial (p1 and p2) and final (p′1
and p′2) four-momenta. All particles are on their mass shells.
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As done in [28,103], the scattering matrix element in the laser-assisted Møller process can be calculated
from the well-know formulas for the laser-free case (see, e.g., [104,105]). To this end, the field-free states
of the electron are replaced by the Volkov solution. Hence, the probability amplitude for the problem in
consideration is

A(++)(p′1λ′1, p′2λ′2; p1λ1, p2λ2) =
1√
2

[
A(++)

Dis (p′1λ′1, p′2λ′2; p1λ1, p2λ2)

−A(++)
Dis (p′2λ′2, p′1λ′1; p1λ1, p2λ2)

]
. (82)

While the first term in the right-hand side of this equation accounts for the direct process, the second
term accounts for the exchange one. The partial (distinguishable) amplitudes A(++)

Dis correspond to each
individual Feynman diagram in Figure 2 and are given by

A(++)
Dis ≡ A(++)

Dis (p′1λ′1, p′2λ′2; p1λ1, p2λ2) = −4πiα
∫

d4xd4y
[

j(++)
p′1λ′1,p1λ1

]µ
[DF(x− y)]µν

[
j(++)
p′2λ′2,p2λ2

]ν
. (83)

Here, j(++)
p′1λ′1,p1λ1

are the Volkov four-currents defined in Equation (39) and λi, λ′i, i = 1, 2 are the initial

and final spin states of the electrons, respectively. Furthermore, [DF(x− y)]µν is the Feynman propagator,
which we choose in the Feynman gauge,

[DF(x− y)]µν =
∫ d4K

(2π)4

gµν

K2 + i0
e−iK·(x−y) ≡

∫ d4K
(2π)4 [D̃F(K)]µν e−iK·(x−y). (84)

By inserting this expression into the distinguishable probability amplitude in Equation (83) and taking
into account the explicit form of the Volkov four-currents in Equation (39), we obtain

A(++)
Dis =

−2iα
(2π)3

∫
d4x d4y d4K e−iK·(x−y)

[
ψ̄
(+)
p′1λ′1

(x)γµψ
(+)
p1λ1

(x)
]
[D̃F(K)]µν

[
ψ̄
(+)
p′2λ′2

(y)γνψ
(+)
p2λ2

(y)
]
. (85)

As shown in the early works of Oleĭnik and Bös et al. (see Refs. [84–87]), the laser field modifies
the effective mass and momenta of the two electrons. For this reason, we introduce the dressed
four-momentum p̄, and effective mass m̄e, which we define as [70]

p̄ = p + (mecµ)2 〈 f 2
1 〉+ 〈 f 2

2 〉
2k · p k, and m̄2

e = m2
e[1 + µ2(〈 f 2

1 〉+ 〈 f 2
2 〉)], (86)

where p̄i (i = 1, 2) satisfy the relation p̄i · p̄i = m̄2
ec2 [39,86,87]. Note that p̄ is a particular case of the more

general laser-dressed four momentum, defined in Equation (59), when 〈 f1〉 and 〈 f2〉 vanish. This happens
for the infinite train of pulses considered here. It is possible now to write the Volkov states in Equation (85)
in terms of the initial and final dressed four momenta. In such case, the Volkov current operator reads (see
Equations (37) and (38))

ψ̄
(+)
p′λ′(x)γµψ

(+)
pλ (x) =

mec
V
√

p0 p′0
ū(+)

p′λ′

(
1 +

e /A/k
2p′ · k

)
γµ
(

1− e /A/k
2p · k

)
u(+)

pλ

× exp
[
i( p̄′ − p̄) · x− iQp′ ,p(k · x)

]
. (87)
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Here, we introduce the functions Qp′ ,p(k · x), which for the laser field in Equation (23) is given by

Qp′ ,p(k · x) =µmec
∫ k·x

0
dφ

{
f1(φ)

( ε1 · p′
k · p′ −

ε1 · p
k · p

)
+ f2(φ)

( ε2 · p′
k · p′ −

ε2 · p
k · p

)
− (µmec)2

2
[ f 2

1 (φ)− 〈 f 2
1 〉+ f 2

2 (φ)− 〈 f 2
2 〉]
( 1

k · p′ −
1

k · p

)}
. (88)

As shown in Refs. [28,70,103], due to the periodicity of the vector potential and the Volkov solution, it
is possible to perform the Fourier expansion of the four-current in Equation (87). In doing so, we write

[ f1(k · x)]n[ f2(k · x)]me−iQp′ ,p(k·x) =
∞

∑
N=−∞

Q(n,m)
N e−iNk·x, (89)

where n and m can be 0, 1 or 2. With this in mind, we find that the four-current is given by

ψ̄
(+)
p′λ′(x)γµψ

(+)
pλ (x) =

mec
V
√

p0 p′0
∑
N

ei( p̄′− p̄−Nk)·xΦµ
N(p′, p), (90)

where the Fourier coefficients Φµ
N(p′, p) are

Φµ
N(p′, p) = ū(+)

p′λ′

{
γµQ(0,0)

N − µmec
2

Q(1,0)
N

( /ε 1/k
k · p′ γ

µ − γµ /ε 1/k
k · p

)
− µmec

2
Q(0,1)

N

( /ε 2/k
k · p′ γ

µ − γµ /ε 2/k
k · p

)
− (µmec)2

4(k · p′)(k · p)

[
Q(2,0)

N /ε 1/kγµ/ε 1/k + Q(1,1)
N (/ε 1/kγµ/ε 2/k + /ε 2/kγµ/ε 1/k) + Q(0,2)

N /ε 2/kγµ/ε 2/k
]}

u(+)
pλ . (91)

With the help of Equations (90) and (91), it is possible to rewrite the distinguishable probability
amplitude in Equation (85) in the following way,

A(++)
Dis =

−2iα
(2π)3

m2
ec2

V2
√

p0
1 p′1

0 p0
2 p′2

0
∑
N1

∑
N2

∫
d4x d4y d4K[D̃F(K)]µνei( p̄′1− p̄1−N1k−K)·x

×ei( p̄′2− p̄2−N2k+K)·yΦµ
N1
(p′1, p1)Φν

N2
(p′2, p2). (92)

The integration over d4x leads to a four-dimensional delta function, which allows us to perform the
integral over d4K directly. Finally, we arrive at the following expression,

A(++)
Dis =

−4πiαm2
ec2(2π)4

V2
√

p0
1 p′1

0 p0
2 p′2

0
∑
N1

∑
N2

δ(4)( p̄1 + p̄2 − p̄′1 − p̄′2 + (N1 + N2)k)[D̃F( p̄2 − p̄′2 + N2k)]µν

×Φµ
N1
(p′1, p1)Φν

N2
(p′2, p2). (93)

Hence, the Møller probability amplitude accounting for the indistinguishability of the electrons
[Equation (82)] is given by

A(++)(p′1λ′1, p′2λ′2; p1λ1, p2λ2) =
−4πiαm2

ec2(2π)4

V2
√

2p0
1 p′1

0 p0
2 p′2

0
∑
N

δ(4)( p̄1 + p̄2 − p̄′1 − p̄′2 + Nk)tN(p′1, p′2, p1, p2), (94)
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where the matrix elements tN(p′1, p′2, p1, p2) are

tN(p′1, p′2, p1, p2) =∑
M

[
[D̃F( p̄2 − p̄′2 + Mk)]µνΦµ

N−M(p′1, p1)Φν
M(p′2, p2)

−[D̃F( p̄2 − p̄′1 + Mk)]µνΦµ
N−M(p′2, p1)Φν

M(p′1, p2)
]
. (95)

Note that, for each term in the sum in Equation (94), the four-dimensional delta function establishes
the energy and momentum conservation relations

p̄1 + p̄2 − p̄′1 − p̄′2 + Nk = 0. (96)

Once the probability amplitude for the Møller process is obtained [Equation (94)], it is possible to
calculate the corresponding Nth order cross-section σMøll.

N in the following way [28,103],

σMøll.
N =

2(mec)4α2√
(p1 · p2)2 − (mec)4

∫ d3 p′1
p′1

0
d3 p′2
p′2

0 δ(4)( p̄1 + p̄2 − p̄′1 − p̄′2 + Nk)|tN(p′1, p′2, p1, p2)|2. (97)

The integration over d3 p′2 can be performed by calculating the Jacobian J( p̄′2, p′2) (for details see, e.g.,
Ref. [28]). Hence, the corresponding differential cross-section is given by

d2σMøll.
N

dΩp′1

=
∫ ∞

0
d|p′1| |p′1|2

2(mec)4α2√
(p1 · p2)2 − (mec)4

J( p̄′2, p′2)

p′1
0 p′2

0

×δ(1)( p̄0
1 + p̄0

2 − p̄′ 0
1 − p̄′ 0

2 + Nk0)|tN(p′1, p′2, p1, p2)|2, (98)

where dΩp′1
is the solid angle of electrons scattering with momentum p′1. Finally, after integrating over p′1,

we arrive at the Nth photon differential cross-section

d2σMøll.
N

dΩp′1

=
2(mec)4α2√

(p1 · p2)2 − (mec)4

J( p̄′2, p′2)

p′2
0 |p′1|

∣∣∣∣∣dp′1
0

dp̄′ 01

∣∣∣∣∣ |tN(p′1, p′2, p1, p2)|2. (99)

The resonance phenomena is observed when |tN(p′1, p′2, p1, p2)|2 becomes singular. From its definition
[Equation (95)], we can see that this happens at the incoming and outgoing momenta when [D̃F]µν also
becomes singular [see Equation (84)]. This means that the relations

( p̄2 − p̄′2 + M2k)2 = 0 or ( p̄2 − p̄′1 + M2k)2 = 0 (100)

determine the resonances for a given integer value M2. For simplicity, let us consider only the first of those
equations. We define the four vector k′ as

k′ = p̄2 − p̄′2 + M2k, (101)

and, therefore, we are interested in the condition k′2 = 0. From the energy-momentum conservation
relations in Equation (96), one can write k′ in terms of p̄1 and p̄′1, namely

k′ = p̄′1 − p̄1 −M1k, (102)

where M1 + M2 = N.



Atoms 2019, 7, 34 25 of 36

Due to the symmetry of the problem, it is possible to introduce a particular frame of reference to
analyze the resonance phenomena [28,103]. In particular, we consider the center-of-mass frame, where
both electrons have opposite momenta and travel along the z-direction. On the other hand, the laser field
is assumed to propagate in the xz-plane at an angle θ with respect to the z-axis. This means that p1, p2 and
k are given by

p1 = (p0, 0, 0, p), p2 = (p0, 0, 0,−p), and k =
ω

c
(1, sin θ, 0, cos θ), (103)

where ω is the fundamental frequency of field oscillations (i.e., k0 = ω/c) and p =
√
(p0)2 − (mec)2.

The four-vector k′ can be written in terms of two parameters, ζ and ξ, as

k′ =
ω′

c

(
1, ξ,±

√
1− ξ2 − ζ2, ζ

)
, (104)

and, to guarantee that it is real, the condition ξ2 + ζ2 6 1 must be imposed. For our further derivations we
also introduce two additional quantities, p± = p0 ± p cos θ and, from Equations (103) and (104), we write
the following scalar products as

p1 · k =
ω

c
p−, p2 · k =

ω

c
p+, p1 · k′ =

ω′

c
(p0 − pζ), p2 · k′ =

ω′

c
(p0 + pζ), (105)

k · k′ = ωω′

c2 (1− ξ sin θ − ζ cos θ). (106)

From now on, we express the dressed four-momenta in terms of the ponderomotive energy of the
electron in the laser field with 〈 f1〉 = 〈 f2〉 = 0 [see Equation (63)],

Up =
e2 A2

0
2me

(〈 f 2
1 〉+ 〈 f 2

2 〉). (107)

With this in mind, we write

p̄i = pi +
meUp

k · pi
k and p̄′i = p′i +

meUp

k · p′i
k, (108)

for i = 1, 2. The final (asymptotic) momenta p′1 and p′2 are on the mass shell, so the relations

p′1 · p′1 = m2
ec2 and p′2 · p′2 = m2

ec2 (109)

are also satisfied. By making use of Equations (101), (102), and (108), Equation (109) lead to

M1 p1 · k +
[

p1 +
meUp

2p1 · k
k
]
· k′ + M1k · k′ = 0 (110)

and

−M2 p2 · k +
[

p2 +
meUp

2p2 · k
k
]
· k′ + M2k · k′ = 0. (111)

With the help of Equations (105) and (106), it is possible to rewrite Equations (110) and (111) in
terms of ξ, ζ and p±. As done in Refs. [28,103], the two resulting equations can be combined to give the
following expression,

Aξ + Bζ + C = 0, (112)
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with

A = −
[

meUp

(
M2

p+
p−

+ M1
p−
p+

)
+ 2M1M2

p0ω

c

]
sin θ, (113)

B = (M1 p− −M2 p+)p−
[

meUp

(
M2

p+
p−

+ M1
p−
p+

)
+ 2M1M2

p0ω

c

]
cos θ, (114)

and

C = (M2 p+ + M1 p−)p0 + meUp

(
M2

p+
p−

+ M1
p−
p+

)
+ 2M1M2

p0ω

c
. (115)

Note that the linear Equation (112) determines the conditions imposed on ξ and ζ to observe
resonances. Furthermore, it is known that the distance D from the origin of the ξζ-plane to the line
defined by Equation (112) is given by

D =
|C|√

A2 + B2
. (116)

As discussed above, the inequality ξ2 + ζ2 6 1 also needs to be fulfilled. This defines a disk of radius
1 in the same plane, thus the additional condition D 6 1 needs to be imposed. In other words, given the
initial parameters of the laser field and electron momenta, the function

f (M1, M2) = C2 − (A2 + B2), (117)

determines the sets of values (M1, M2) for which resonances can take place, i.e., the pair of integers for
which f (M1, M2) 6 0. Once the possible M1 and M2 are found, the total number of photons absorbed or
emitted during the Møller scattering is known (N = M1 + M2) and the frequency ω′ can be calculated.
As discussed in Refs. [28,103], the values of ξ and ζ at fixed M1 and M2 are found by introducing the
parameter 0 6 β 6 2π. Namely,

ξ(β) = − 1
A2 + B2

(
B
√

A2 + B2 − C2 cos β− AC
)

(118)

and
ζ(β) =

1
A2 + B2

(
A
√

A2 + B2 − C2 cos β + BC
)

. (119)

Hence, from Equation (104), the four-vector k′(β) is determined. By making use of Equations (101)
and (102), and for the given initial conditions, the final dressed momenta p̄′1 and p̄′2 are calculated which,
at the same time, determines p′1 and p′2.

In conclusion, by following the derivations in Refs. [28,103], we have found the Nth-order differential
cross-section in the non-linear laser-assisted Møller scattering. The laser field was modeled as an
infinite and periodic series of pulses of arbitrary polarization. Similar to the early works of Oleĭnik
and Bös et al. [84–87] or Bergou et al. [88], we determine the conservation relations satisfied by the
dressed momenta and the dynamical parameters which play a role in the resonant scattering process.
The conditions necessary for the observation of resonances are established.

6. Mott Scattering

Already in 1964, S. Rand analyzed the photon absorption during the scattering of an electron by
a positively charged particle in the presence of an electromagnetic field (also known as the inverse
bremsstrahlung mechanism) [106]. In this reference, he calculated the frequency dependence of the
absorption cross-section from a non-relativistic point of view by using an oscillating frame of reference.
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A year later, Bunkin and Fedorov [107] reconsidered the problem from a more convenient perspective;
while paying close attention to the multiphoton emission or absorption, they calculated the transition
probability and scattering cross-section associated with the exchange of a well-defined number of photons
with the electromagnetic radiation. Their treatment, also in the non-relativistic regime, was based on the
dipole approximation of the monochromatic plane laser wave. The initial and final electron states were
represented by the Volkov solution of the Schrödinger equation in the electromagnetic field (see also [108]
and references therein). In 1973, Kroll and Watson studied the radiation-assisted electron scattering for
the emission (absorption) of multiple photons [109]. The authors also calculated the non-relativistic
multiquantum differential cross-section restricted to the case of weak scattering potentials or large
wavelengths of the field. Lami and Rahman [108] analyzed the electron scattering by a hydrogen atom in a
laser field of low intensity. As they showed, this process could be used to examine the atomic structure of
the target (see also the previous works by Rahman and Faisal [110] and Gavrila and van der Wiel [111]
together with the references therein). In 1984 Gavrila and Kamiński [112] developed further an approach,
previously introduced by Gersten and Mittleman [113], to study the electron scattering by an atom (free-free
transitions) in high-intensity and short wavelength laser fields. Using the Krammers-Henneberger frame,
they demonstrated that under such circumstances the nth-order differential cross-section can be calculated
from a convergent series with a dominant term. Furthermore, it was shown there that the electron
experiences an effective (dressed) potential rather than the pure atomic one. Dimou and Faisal [114]
reconsidered the electron scattering by H+ ions and predicted the appearance of a different type of
resonances occurring at low electron kinetic energies. Those resonances were attributed to momentary
transitions to bound (Rydberg) states prior to the electron promotion to the continuum. (For a detailed
analysis of free-free transitions in the laser field, we also refer the reader to the book by Faisal [115].)

The laser radiation available in the early 1980s was characterized by a finite frequency bandwidth and
“chaotic fluctuations” of phase and amplitude [116]. For this reason, it was important to take into account
the statistical properties of the light in scattering processes. To this end, in 1980, Zoller [117] examined the
contribution of multimode laser fields over the non-linear differential cross-section. Daniele et al. [118]
centered their attention on the influence of the frequency bandwidth in a chaotic electromagnetic field over
the free-free transitions. Trombetta et al. [119] considered the “phase diffusion model” by assuming that
the radiation phase undergoes random changes while its amplitude is approximately stable. Francken and
Joachain [120] based their analysis on the so-called “random telegraph” model, which considers variations
of the phase, amplitude and frequency of the radiation as Markovian processes with random fluctuations
between two allowed states. Finally, in 1988 Kamiński [116] generalized the Kroll-Watson formula to
account for any arbitrary stochastic model describing the low-frequency laser field.

With respect to the relativistic quantum treatment of laser-assisted Mott scattering, we mention
the early work of Denisov and Fedorov [121]. The authors used the relativistic form of the Volkov
solution and considered the field as a classical monochromatic plane wave of elliptical polarization to
calculate the non-linear cross-sections. Almost 20 years later, Kamiński [122] reconsidered the scattering
of a charged particle by a central potential in a linearly-polarized laser field. The extension of the
Kroll-Watson formula to the relativistic case was also derived there. Already at the beginning of the 1990s,
Gorodnitskiĭ et al. [123] and Roshchupkin [124,125] published a series of papers regarding the free-free
transitions under the combined action of two light fields. For a particular configuration, the authors
analyzed the interference effects arising from the contribution of the two fields. In Ref. [125], special
emphasis was put on the influence of the electron velocity regime on the scattering angle, meaning that,
while ultra-relativistic particles are mostly detected in the direction of propagation of the radiation, the
non-relativistic ones are observed at angles that depend on the initial geometry of the collision. A review
article concerning free-free transitions in the presence of bichromatic fields was presented by Ehlotzky [126].
Szymanowski et al. [127] considered the scattering problem in very intense circularly-polarized laser fields.
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They compared the results from the relativistic treatments based on the Dirac and Klein-Gordon equations,
and the non-relativistic ones based on the Schrödinger equation. Such comparison allowed the authors to
determine the influence of radiation pressure, relativistic mass, and spin–orbit and spin–light coupling on
the scattering dynamics. It is known that in many processes involving the interactions of electrons and
ions (photoionization, for instance) the Coulomb potential can play an important role during the evolution
of the system. For this reason, Li et al. [128] analyzed the Coulomb effect over the free-free transitions
in a linearly-polarized monochromatic plane wave of moderate intensity. The authors showed that the
electron-ion interaction may increase the resulting cross-section at certain range of scattering angles (see
also Ref. [129]). Additionally, in Ref. [130], Ngoko Djiokap et al. considered, besides the contribution from
the Coulomb field, the influence of the “anomalous magnetic moment” of the electron. Recently, due to the
necessity to develop a new theoretical framework to account for the short duration of single laser pulses,
Boca [129] examined the scattering of a Klein-Gordon particle in such type of fields. In this reference, the
effect of the pulse duration, intensity and envelope shape over the differential cross-section was determined.
The same author also studied the case of free-free transitions of a fermion in the light pulse [131]. In recent
years, Lebed’ [132,133] and Lebed’ and Roshchupkin [134] centered their attention on the Mott scattering
assisted by pulses of electromagnetic radiation (see also the reviews [101,102]). In particular, the use of
circularly-polarized bichromatic laser fields and the interference effects associated to them are described in
Refs. [132,134]. In Ref. [133], the light field is modeled as a single non-monochromatic wave. The authors
considered long-in-time pulses such that the “quasi-monochromatic approximation” becomes valid.

In the period 1998–2009, a series of papers by Panek et al. [135,136] and Kamiński et al. [137], and review
articles by Ehlotzky et al. [28,138] were published. There, the electron–atom scattering in linearly-polarized
and intense laser fields was considered. The electromagnetic radiation was approximated as a monochromatic
plane wave. It is the aim of this section to present the analytical derivations introduced in [28,135,137] for
a more general non-monochromatic and periodic laser field of infinite duration and arbitrary polarization.
Details of the derivations can be found in the aforementioned references.

We consider here the interaction of an electron (four-momentum p and spin state λ) with an isolated
atom in the presence of a relativistically-intense plane wave. While the atom is described by a screened
Coulomb potential with a screen length `, i.e.,

eAµ
SC(x) = −Zαc

e−|x|/`

|x| gµ0 ≡ 1
c

V(x)gµ0 (120)

the laser field is defined by the four-vector potential in Equation (23). Note that, in the present calculations,
the functions f1(k · x) and f2(k · x) are assumed to be periodic and do not vanish for k · x < 0 and
k · x > 2π. The final electron four-momentum will be denoted as p′ and its spin state as λ′. As done for
the laser-assisted Compton and Møller processes, the Mott scattering is treated in the Furry picture and
plane-wave-fronted pulse approximation. In other words, the initial and final electron states are the Volkov
solution in Equation (35) labeled by the field-free momenta p and p′, respectively. This corresponds to the
Feynman diagram shown in Figure 3. Under those circumstances, and in the first Born approximation, the
probability amplitude of Mott scattering, A(++)

M (p′λ′, pλ), is given by

A(++)
M (p′λ′, pλ) =− i

∫
d4x

[
j(++)
p′λ′ ,pλ(x)

]
µ

eAµ
SC(x) = − i

c

∫
d4x

[
j(++)
p′λ′ ,pλ(x)

]
0
V(x), (121)

where j(++)
p′λ′ ,pλ(x) is the Volkov four-current in Equation (39). Hence, by inserting the analytical expression

of the Volkov solution, we obtain
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A(++)
M (p′λ′, pλ) =− i

me

V
√

p0 p′0

∫
d4x exp

(
i[S(+)

p′ (x)− S(+)
p (x)]

)
×
[
ū(+)

p′λ′

(
1 +

e /A/k
2p′ · k

)
γ0V(x)

(
1− e /A/k

2p · k

)
u(+)

pλ

]
. (122)

In the following, we proceed in a similar way as for the Møller scattering (see Section 5). Namely,
we introduce the dressed four-momenta p̄ and p̄′ as defined in Equation (86) and the function Qp′ ,p(k · x)
[Equation (88)] with the Fourier decomposition in Equation (89). Hence, the probability amplitude for
Mott scattering is given by the infinite sum

A(++)
M (p′λ′, pλ) = −i

me

V
√

p0 p′0

∞

∑
N=−∞

∫
d4xei( p̄′− p̄−Nk)·xΦ0

N(p′, p)V(x), (123)

where Φ0
N(p′, p) is the zeroth-component of the coefficients given in Equation (91). Note that, while the

integration is performed over the four space-time coordinates, the static potential depends only on the
three spatial ones. For this reason, we write

A(++)
M (p′λ′; pλ) =− i

me

V
√

p0 p′0
∑
N

∫
dx0ei[ p̄′0− p̄0−Nk0]x0

∫
d3x V(x)e−i[p̄′−p̄−Nk]·xΦ0

N(p′, p)

=− i
2πme

V
√

p0 p′0
∑
N

δ(1)[ p̄′0 − p̄0 − Nk0]Ṽ(p̄′ − p̄− Nk)Φ0
N(p′, p), (124)

where Ṽ(p) is the Fourier transform of the potential energy. Next, as it is assumed that the electromagnetic
radiation is periodic and lasts for a very long time T, we proceed to calculate the transition rates wM

wM = lim
T→∞

|A(++)
M (p′λ′; pλ)|2

T
. (125)

With this in mind, and taking into account that δ(1)[ p̄′0 − p̄0 − N1k0]× δ(1)[ p̄′0 − p̄0 − N2k0] = 0 for
N1 6= N2, we find that the transition rates for the laser-assisted Mott scattering in the field in Equation (23)
are given by

wM =
2πm2

ec
V2 p0 p′0 ∑

N
δ(1)[ p̄′0 − p̄0 − Nk0]

∣∣∣Ṽ(p̄′ − p̄− Nk)Φ0
N(p′, p)

∣∣∣2. (126)

Up to now, we have presented a theoretical description of Mott scattering in non-monochromatic
trains of laser pulses. It is worth mentioning that the laser-assisted Mott-like processes continue to attract
a lot of attention. This is due to the analysis of fundamental phenomena happening, for instance, in
plasma physics and cosmology. To this end, Hrour et al. [139] recently published a paper concerning
the role played by the Coulomb interaction in proton–nucleus collisions in intense electromagnetic
radiation. Du et al. [140] centered their attention in electron-muon scattering while focusing on the
resonance phenomena. Bai et al. [141] have also considered the collision between muon neutrinos and
electrons in the presence of electromagnetic radiation. The electron–proton scattering, where the target is
not considered to be static, was treated by Liu et al. [142]. This is only to mention few works in this field
that have been published recently.
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Figure 3. Feynman diagram representing the Mott scattering of an electron with initial and final four-momenta
p and p′ by an infinitely massive (nucleus) of charge −Ze. All particles are on their mass shells.

In this section, we consider the electron scattering by a screened Coulomb potential in the presence of
a light field. For sufficiently large initial kinetic energies, the results presented here are equally valid for
the pure and screened Coulomb potentials. Note, however, that the theoretical treatment accounting for
the electron interaction with the laser field and the pure Coulomb potential is still a challenging task and
remains an open problem in the theoretical investigations of strong laser field-matter interactions.

7. Conclusions

In this review, we describe the behavior of a classical and quantum particle in the presence of
electromagnetic radiation. Those results are used to analyze the non-linear Thomson and Compton
scattering driven by single and arbitrarily short laser pulses. Other scattering phenomena, including
Møller and Mott processes, are treated by considering non-monochromatic fields of infinite duration. As it
mentioned above, due to the development of the new state-of-the-art laser facilities (which are capable of
generating ultraintense and ultrashort pulses), it has become necessary to extend the previously known
laser-assisted scattering theories to the case of short and highly non-monochromatic fields. To this end,
Boca and Florescu [73] generalized the non-linear Compton scattering, and Boca [129,131] paved the road
for a full generalization of the Mott scattering. However, further developments for the extension of Mott
and Møller mechanisms are still necessary.
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26. Krajewska, K.; Kamiński, J.Z. Frequency scaling law for nonlinear Compton and Thomson scattering: Relevance

of spin and polarization effects. Phys. Rev. A 2014, 90, 052117. [CrossRef]
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135. Panek, P.; Kamiński, J.Z.; Ehlotzky, F. Relativistic electron-atom scattering in an extremely powerful laser field:

Relevance of spin effects. Phys. Rev. A 2002, 65, 033408. [CrossRef]
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